ANUPQ

ANU p-Quotient

3.3.0

5 January 2023

Greg Gamble
Werner Nickel
Eamonn O’Brien
Greg Gamble
Email: Greg.Gamble@uwa.edu.au
Homepage: http://school.maths.uwa.edu.au/~gregg
Address: Department of Mathematics and Statistics
 Curtin University
 GPO Box U 1987
 Perth WA 6845
 Australia

Werner Nickel
Homepage: https://www2.mathematik.tu-darmstadt.de/~nickel/

Eamonn O’Brien
Email: obrien@math.auckland.ac.nz
Homepage: https://www.math.auckland.ac.nz/~obrien
Address: Department of Mathematics
 University of Auckland
 Private Bag 92019
 Auckland
 New Zealand
Copyright

© 2001-2016 by Greg Gamble
© 2001-2005 by Werner Nickel
© 1995-2001 by Eamon O’Brien

The GAP package ANUPQ is licensed under the Artistic License 2.0.
Contents

1 Introduction 5
 1.1 Overview .. 5
 1.2 How to read this manual 5
 1.3 Authors and Acknowledgements 6

2 Mathematical Background and Terminology 7
 2.1 Basic notions ... 7
 2.2 The p-quotient Algorithm 9
 2.3 The p-group generation Algorithm, Standard Presentation, Isomorphism Testing 10

3 Infrastructure 12
 3.1 Loading the ANUPQ Package 12
 3.2 The ANUPQData Record 13
 3.3 Setting the Verbosity of ANUPQ via Info and InfoANUPQ 16
 3.4 Utility Functions ... 17
 3.5 Attributes and a Property for fp and pc p-groups 19
 3.6 Hints and Warnings regarding the use of Options 20

4 Non-interactive ANUPQ functions 24
 4.1 Computing p-Quotients 24
 4.2 Computing Standard Presentations 29
 4.3 Testing p-Groups for Isomorphism 31
 4.4 Computing Descendants of a p-Group 32

5 Interactive ANUPQ functions 36
 5.1 Starting and Stopping Interactive ANUPQ Processes 36
 5.2 Interactive ANUPQ Process Utility Functions 37
 5.3 Interactive Versions of Non-interactive ANUPQ Functions 38
 5.4 Low-level Interactive ANUPQ functions based on menu items of the pq program 47
 5.5 General commands 47
 5.6 Commands from the Main p-Quotient menu 49
 5.7 Commands from the Advanced p-Quotient menu 51
 5.8 Commands from the Standard Presentation menu 60
 5.9 Commands from the Main p-Group Generation menu 62
 5.10 Commands from the Advanced p-Group Generation menu 63
 5.11 Primitive Interactive ANUPQ Process Read/Write Functions 65
Chapter 1

Introduction

1.1 Overview

The GAP 4 package ANUPQ provides an interface to the ANU pq C program written by Eamonn O’Brien, making the functionality of the C program available to GAP. Henceforth, we shall refer to the ANUPQ package when referring to the GAP interface, and to the ANU pq program or just pq when referring to that C program.

The pq program consists of implementations of the following algorithms:

1. A *p-quotient algorithm* to compute pc-presentations for *p*-factor groups of finitely presented groups.
2. A *p-group generation algorithm* to generate pc presentations of groups of prime power order.
3. A *standard presentation algorithm* used to compute a canonical pc-presentation of a *p*-group.
4. An algorithm which can be used to compute the *automorphism group* of a *p*-group.

This part of the pq program is not accessible through the ANUPQ package. Instead, users are advised to consider the GAP 4 package AutPGrp by Bettina Eick and Eamonn O’Brien, which implements a better algorithm in GAP for the computation of automorphism groups of *p*-groups.

The current version of the ANUPQ package requires GAP 4.5, and version 1.5 of the AutPGrp package. All code that made the package compatible with earlier versions of GAP has been removed. If you must use an older GAP version and cannot upgrade, then you may try using an older ANUPQ version. However, you should not use versions of the ANUPQ package older than 2.2, since they are known to have bugs.

1.2 How to read this manual

It is not expected that readers of this manual will read it in a linear fashion from cover to cover; some sections contain material that is far too technical to be absorbed on a first reading.

Firstly, installers of the ANUPQ package will need to read Chapter “Installing the ANUPQ Package”, if they have not already gleaned these details from the README file.
Once the ANUPQ package is installed, users of the ANUPQ package will benefit most by first reading Chapter ‘Mathematical Background and Terminology’, which gives a brief description of the background and terminology used (this chapter also cites a number of references for further reading), and the introduction of Chapter ‘Infrastructure’ (skip the remainder of the chapter on a first reading).

Then the user/reader should pursue Chapter ‘Non-interactive ANUPQ functions’ in detail, delving into Chapter ‘ANUPQ Options’ as necessary for the options of the functions that are described. The user will become best acquainted with the ANUPQ package by trying the examples. This chapter describes the non-interactive functions of the ANUPQ package, i.e. “one-shot” functions that invoke the \texttt{pq} program in such a way that once \texttt{GAP} has got what it needs, the \texttt{pq} is allowed to exit. It is expected that most of the time, users will only need these functions.

Advanced users will want to explore Chapter ‘Interactive ANUPQ functions’ which describes all the interactive functions of the ANUPQ package; these are functions that extract information via a dialogue with a running \texttt{pq} process. Occasionally, a user needs the “next step”; the functions provided in this chapter make use of data from previous steps retained by the \texttt{pq} program, thus allowing the user to interact with the \texttt{pq} program like one can when one uses the \texttt{pq} program as a stand-alone (see \texttt{guide.dvi} in the \texttt{standalone-doc} directory).

After having read Chapters ‘Non-interactive ANUPQ functions’ and ‘Interactive ANUPQ functions’, cross-references will have taken the reader into Chapter ‘ANUPQ Options’; by this stage, the reader need only read the introduction of Chapter ‘ANUPQ Options’.

After the reader has developed some facility with the ANUPQ package, she should explore the examples described in Appendix ‘Examples’.

If you run into trouble using the ANUPQ functions, some troubleshooting hints are given in Section ‘Hints and Warnings regarding the use of Options’. If the troubleshooting hints don’t help, Section ‘Authors and Acknowledgements’ below, gives contact details for the authors of the components of the ANUPQ package.

1.3 Authors and Acknowledgements

The C implementation of the ANU \texttt{pq} standalone was developed by Eamonn O’Brien.

An interactive interface using iostreams was developed with the assistance of Werner Nickel by Greg Gamble.

The \texttt{GAP} 4 version of this package was adapted from the \texttt{GAP} 3 version by Werner Nickel.

A new co-maintainer, Max Horn, joined the team in November, 2011.

The authors would like to thank Joachim Neubüser for his careful proof-reading and advice, and for formulating Chapter ‘Mathematical Background and Terminology’.

We would also like to thank Bettina Eick who by her testing and provision of examples helped us to eliminate a number of bugs and who provided a number of valuable suggestions for extensions of the package beyond the \texttt{GAP} 3 capabilities.

If you find a bug, the last section of ANUPQ’s \texttt{README} describes the information we need and where to send us a bug report; please take the time to read this (i.e. help us to help you).
Chapter 2

Mathematical Background and Terminology

In this chapter we will give a brief description of the mathematical notions used in the algorithms implemented in the ANU pq program that are made accessible from GAP through this package. For proofs and details we will point to relevant places in the published literature. Also we will try to give some explanation of terminology that may help to use the “low-level” interactive functions described in Section ‘Low-level Interactive ANUPQ functions based on menu items of the pq program’. However, users who intend to use these functions are strongly advised to acquire a thorough understanding of the algorithms from the quoted literature. There is little or no checking done in these functions and naive use may result in incorrect results.

2.1 Basic notions

2.1.1 pc Presentations and Consistency

For details, see e.g. [NNN98].

Every finite p-group G has a presentation of the form:

$\{ a_1, \ldots, a_n \mid a_i^p = v_{ii}, 1 \leq i \leq n, [a_k, a_j] = v_{jk}, 1 \leq j < k \leq n \}$

where v_{jk} is a word in the elements a_{k+1}, \ldots, a_n for $1 \leq j \leq k \leq n$.

This is called a power-commutator presentation (or pc presentation or pcp) of G, generators from such a presentation will be referred to as pc generators. In terms of such pc generators every element of G can be written in a “normal form” $a_1^{e_1} \cdots a_n^{e_n}$ with $0 \leq e_i < p$. Moreover any given product of the generators can be brought into such a normal form using the defining relations in the above presentation as rewrite rules. Any such process is called collection. For the discussion of various collection methods see [LGS90] and [VL90a].

Every p-group of order p^n has such a pcp on n generators and conversely every such presentation defines a p-group. However a p-group defined by a pcp on n generators can be of smaller order p^m with $m < n$. A pcp on n generators that does in fact define a p-group of order p^n is called consistent in this manual, in line with most of the literature on the algorithms occurring here. A consistent pcp determines a confluent rewriting system (see IsConfluent (Reference: IsConfluent) of the GAP Reference Manual) for the group it defines and for this reason often (in particular in the GAP Reference Manual) such a pcp presentation is also called confluent.
Consistency of a pcp is tantamount to the fact that for any given word in the generators any two collections will yield the same normal form.

Consistency of a pcp can be checked by a finite set of consistency conditions, demanding that collection of the left hand side and of the right hand side of certain equations, starting with subproducts indicated by bracketing, will result in the same normal form. There are 3 types of such equations (that will be referred to in the manual):

\[(a^n)a = a(a^n) \quad \text{(Type 1)}\]
\[(b^n)a = b^{(n-1)}(ba), b(a^n) = (ba)a^{(n-1)} \quad \text{(Type 2)}\]
\[c(ba) = (cb)a \quad \text{(Type 3)}\]

See [VL84] for a description of a sufficient set of consistency conditions in the context of the p-quotient algorithm.

2.1.2 Exponent-p Central Series and Weighted pc Presentations

For details, see [NNN98].

The (descending or lower) exponent-p-central series of an arbitrary group G is defined by

\[P_0(G) := G, P_i(G) := [G, P_{i-1}(G)]P_{i-1}(G)^p.\]

For a p-group G this series terminates with the trivial group. G has p-class c if c is the smallest integer such that $P_c(G)$ is the trivial group. In this manual, as well as in much of the literature about the pq- and related algorithms, the p-class is often referred to simply by class.

Let the p-group G have a consistent pcp as above. Then the subgroups

\[\langle 1 \rangle < \langle a_n \rangle < \langle a_n, a_{n-1} \rangle < \ldots < \langle a_n, \ldots, a_i \rangle < \ldots < G\]

form a central series of G. If this refines the p-central series, we can define the weight function w for the pc generators by $w(a_i) = k$, if a_i is contained in $P_{k-1}(G)$ but not in $P_k(G)$.

The pair of such a weight function and a pcp allowing it, is called a weighted pcp.

2.1.3 p-Cover, p-Multiplicator

For details, see [NNN98].

Let d be the minimal number of generators of the p-group G of p-class c. Then G is isomorphic to a factor group F/R of a free group F of rank d. We denote $[F,R]R^p$ by R^*. It can be proved (see e.g. [O’B90]) that the isomorphism type of $G^* := F/R^*$ depends only on G. G^* is called the p-covering group or p-cover of G, and R/R^* the p-multiplicator of G. The p-multiplicator is, of course, an elementary abelian p-group; its minimal number of generators is called the (p)-multiplicator rank.

2.1.4 Descendants, Capable, Terminal, Nucleus

For details, see [New77] and [O’B90].

Let again G be a p-group of p-class c and d the minimal number of generators of G. A p-group H is a descendant of G if the minimal number of generators of H is d and $H/P_c(H)$ is isomorphic to G. A descendant H of G is an immediate descendant if it has p-class $c + 1$. G is called capable if it has immediate descendants; otherwise it is terminal.
Let $G^* = F/R^*$ again be the p-cover of G. Then the group $P_1(G^*)$ is called the nucleus of G. Note that $P_1(G^*)$ is contained in the p-multiplicator R/R^*.

It is proved (e.g. in [O'B90]) that the immediate descendants of G are obtained as factor groups of the p-cover by (proper) supplements of the nucleus in the (elementary abelian) p-multiplicator. These are also called allowable.

It is further proved there that every automorphism α of F/R extends to an automorphism α^* of the p-cover F/R^* and that the restriction of α^* to the multiplicator R/R^* is uniquely determined by α. Each extended automorphism α^* induces a permutation of the allowable subgroups. Thus the extended automorphisms determine a group P of permutations on the set A of allowable subgroups (The group P of permutations will appear in the description of some interactive functions). Choosing a representative S from each orbit of P on A, the set of factor groups F/S contains each (isomorphism type of) immediate descendant of G exactly once. For each immediate descendant, the procedure of computing the p-cover, extending the automorphisms and computing the orbits on allowable subgroups can be repeated. Iteration of this procedure can in principle be used to determine all descendants of a p-group.

2.1.5 Laws

Let $l(x_1,\ldots,x_n)$ be a word in the free generators x_1,\ldots,x_n of a free group of rank n. Then $l(x_1,\ldots,x_n) = 1$ is called a law or identical relation in a group G if $l(g_1,\ldots,g_n) = 1$ for any choice of elements g_1,\ldots,g_n in G. In particular, $x^e = 1$ is called an exponent law, $[[x,y],[u,v]] = 1$ the metabelian law, and $[[[x_1,x_2],x_2],\ldots,x_2] = 1$ an Engel identity.

2.2 The p-quotient Algorithm

For details, see [HN80], [NO96] and [VL84]. Other descriptions of the algorithm are given in [Sim94].

The pq algorithm successively determines the factor groups of the groups of the p-central series of a finitely presented (fp) group G. If a bound b for the p-class is given, the algorithm will determine those factor groups up to at most p-class b. If the p-central series terminates with a subgroup $P_i(G)$ with $k < b$, the algorithm will stop with that group. If no such bound is given, it will try to find the biggest such factor group.

$G/P_i(G)$ is the largest elementary abelian p-factor group of G and this can be found from the relation matrix of G using matrix diagonalisation modulo p. So it suffices to explain how $G/P_{i+1}(G)$ is found from G and $G/P_i(G)$ for some $i \geq 1$.

This is done, in principle, in two steps: first the p-cover of $G_i := G/P_i(G)$ is determined (which depends only on G_i, not on G) and then $G/P_{i+1}(G)$ as a factor group of this p-cover.

2.2.1 Finding the p-cover

A very detailed description of the first step is given in [NNN98], from which we just extract some passages in order to point to some terms occurring in this manual.

Let H be a p-group and $p(d(b))$ be the order of $H/P_{d}(H)$. So $d := d(1)$ is the minimal number of generators of H. A weighted pcp of H will be called labelled if for each generator a_k, $k > d$ one relation, having this generator as its right hand side, is marked as definition of this generator.

As described in [NNN98], a weighted labelled pcp of a p-group can be obtained stepping down its p-central series.
So let us assume that a weighted labelled pcp of G_i is given. A straightforward way of writing down a (not necessarily consistent) pcp for its p-cover is to add generators, one for each relation which is not a definition, and modify the right hand side of each such relation by multiplying it on the right by one of the new generators – a different generator for each such relation. Further relations are then added to make the new generators central and of order p. This procedure is called *adding tails*. A more formal description of it is again given in \[NNN98\].

It is important to realise that the “new” generators will generate an elementary abelian group, that is, in additive notation, a vector space over the field of p elements. As said, the pcp of the p-cover obtained in this way need not be consistent. Since the pcp of G_i was consistent, applying the consistency conditions to the pcp of the p-cover, in case the presentation obtained for p-cover is not consistent, will produce a set of equations between the new generators, that, written additively, are linear equations over the field of p elements and can hence be used to remove redundant generators until a consistent pcp is obtained.

In reality, to follow this straightforward procedure would be forbiddingly inefficient except for very small examples. There are many ways of a priori reducing the number of “new generators” to be introduced, using e.g. the weights attached to the generators, and the main part of \[NNN98\] is devoted to a detailed discussion with proofs of these possibilities.

2.2.2 Imposing the Relations of the fp Group

In order to obtain $G/P_{i+1}(G)$ from the pcp of the p-cover of $G_i = G/P_i(G)$, the defining relations from the original presentation of G must be imposed. Since G_i is a homomorphic image of G, these relations again yield relations between the “new generators” in the presentation of the p-cover of G_i.

2.2.3 Imposing Laws

While we have so far only considered the computation of the factor groups of a given fp group by the groups of its descending p-central series, the p-quotient algorithm allows a very important variant of this idea: laws can be prescribed that should be fulfilled by the p-factor groups computed by the algorithm. The key observation here is the fact that at each step down the descending p-central series it suffices to impose these laws only for a finite number of words. Again for efficiency of the method it is crucial to keep the number of such words small, and much of \[NO96\] and the literature quoted in this paper is devoted to this problem.

In this form, starting with a free group and imposing an exponent law (also referred to as an *exponent check*) the pq program has, in fact, found its most noted application in the determination of (restricted) Burnside groups (as reported in e.g. \[HN80\], \[NO96\] and \[VL90b\]).

Via a GAP program using the “local” interactive functions of the pq program made available through this interface also arbitrary laws can be imposed via the option *Identities* (see 6.2).

2.3 The p-group generation Algorithm, Standard Presentation, Isomorphism Testing

For details, see \[New77\] and \[O’B90\].

The p-group generation algorithm determines the immediate descendants of a given p-group G up to isomorphism. From what has been explained in Section ‘Basic notions’, it is clear that this amounts to the construction of the p-cover, the extension of the automorphisms of G to the p-cover
and the determination of representatives of the orbits of the action of these automorphisms on the set of supplements of the nucleus in the p-multiplicator.

The main practical problem here is the determination of these representatives. [O'B90] describes methods for this and the pq program allows choices according to whether space or time limitations must be met.

As well as the descendants of G, the pq program determines their automorphism groups from that of G (see [O'B95]), which is important for an iteration of the process; this has been used by Eamonn O'Brien, e.g. in the classification of the 2-groups that are now also part of the Small Groups library available through GAP.

A variant of the p-group generation algorithm is also used to define a standard presentation of a given p-group. This is done by constructing an isomorphic copy of the given group through a chain of descendants and at each step making a choice of a particular representative for the respective orbit of capable groups. In a fairly delicate process, subgroups of the p-multiplicator are represented by echelonised matrices and a first among the labels for standard matrices is chosen (this is described in detail in [O'B94]).

Finally, the standard presentation provides a way of testing if two given p-groups are isomorphic: the standard presentations of the groups are computed, for practical purposes compacted and the results compared for being identical, i.e. the groups are isomorphic if and only if their standard presentations are identical.
Chapter 3

Infrastructure

Most of the details in this chapter are of a technical nature; the user need only skim over this chapter on a first reading. Mostly, it is enough to know that

- you must do a `LoadPackage("anupq")`; before you can expect to use a command defined by the ANUPQ package (details are in Section ‘Loading the ANUPQ Package’);

- partial results of ANUPQ commands and some other data are stored in the ANUPQData global variable (details are in Section ‘The ANUPQData Record’);

- doing `SetInfoLevel(InfoANUPQ, n)`; for n greater than the default value 1 will give progressively more information of what is going on “behind the scenes” (details are in Section ‘Setting the Verbosity of ANUPQ via Info and InfoANUPQ’);

- in Section ‘Utility Functions’ we describe some utility functions and functions that run examples from the collection of examples of this package;

- in Section ‘Attributes and a Property for fp and pc p-groups’ we describe the attributes and property NuclearRank, MultiplierRank and IsCapable; and

- in Section ‘Hints and Warnings regarding the use of Options’ we describe some troubleshooting strategies. Also this section explains the utility of setting `ANUPQWarnOfOtherOptions := true;` (particularly for novice users) for detecting misspelt options and diagnosing other option usage problems.

3.1 Loading the ANUPQ Package

To use the ANUPQ package, as with any GAP package, it must be requested explicitly. This is done by calling

```gap
LoadPackage("anupq");
```

Loading ANUPQ 3.3.0 (ANU p-Quotient)
Werner Nickel (GAP code, https://www2.mathematik.tu-darmstadt.de/~nickel/), and
maintained by:
Note that since the ANUPQ package uses the AutomorphismGroupPGroup function of the AutPGrp package and, in any case, often needs other AutPGrp functions when computing descendants, the user must ensure that the AutPGrp package is also installed, at least version 1.5. If the AutPGrp package is not installed, the ANUPQ package will fail to load.

Also, if GAP cannot find a working pq binary, the call to LoadPackage will return fail.

If you want to load the ANUPQ package by default, you can put the LoadPackage command into your gap.ini file (see Section Reference: The gap.ini and gaprc files in the GAP Reference Manual). By the way, the novice user of the ANUPQ package should probably also append the line

\texttt{ANUPQWarnOfOtherOptions := true;}

Example

to their gap.ini file, somewhere after the \texttt{LoadPackage("anupq");} command (see ANUPQWarnOfOtherOptions (3.6.1)).

3.2 The ANUPQData Record

This section contains fairly technical details which may be skipped on an initial reading.

3.2.1 ANUPQData

- **binary**
 - the path of the pq binary;

- **tmpdir**
 - the path of the temporary directory used by the pq binary and GAP (i.e. the directory in which all the pq's temporary files are created) (also see ANUPQDirectoryTemporary (3.2.2) below);

- **outfile**
 - the full path of the default pq output file;

- **SPimages**
 - the full path of the file GAP_library to which the pq program writes its Standard Presentation images;

- **version**
 - the version of the current pq binary;
ni a data record used by non-interactive functions (see below and Chapter ‘Non-interactive ANUPQ functions’);

io list of data records for PqStart (see below and PqStart (5.1.1)) processes;

topqlogfile
 name of file logged to by ToPQLog (see ToPQLog (3.4.7)); and

logstream
 stream of file logged to by ToPQLog (see ToPQLog (3.4.7)).

Each time an interactive ANUPQ process is initiated via PqStart (see PqStart (5.1.1)), an identifying number ioIndex is generated for the interactive process and a record ANUPQData.io[ioIndex] with some or all of the fields listed below is created. Whenever a non-interactive function is called (see Chapter ‘Non-interactive ANUPQ functions’), the record ANUPQData.ni is updated with fields that, if bound, have exactly the same purpose as for a ANUPQData.io[ioIndex] record.

stream
 the IOStream opened for interactive ANUPQ process ioIndex or non-interactive ANUPQ function;

group
 the group given as first argument to PqStart, Pq, PqEpimorphism, PqDescendants or PqStandardPresentation (or any synonymous methods);

haspcp
 is bound and set to true when a pc presentation is first set inside the pq program (e.g. by PqPcPresentation or PqRestorePcPresentation or a higher order function like Pq, PqEpimorphism, PqPCover, PqDescendants or PqStandardPresentation that does a PqPcPresentation operation, but not PqStart which only starts up an interactive ANUPQ process);

gens
 a list of the generators of the group group as strings (the same as those passed to the pq program);

rels
 a list of the relators of the group group as strings (the same as those passed to the pq program);

name
 the name of the group whose pc presentation is defined by a call to the pq program (according to the pq program – unless you have used the GroupName option (see e.g. Pq (4.1.1)) or applied the function SetName (see SetName (Reference: Name)) to the group, the “generic” name "[grp]" is set as a default);

gpnum
 if not a null string, the “number” (i.e. the unique label assigned by the pq program) of the last descendant processed;

class
 the largest lower exponent-\(p\) central class of a quotient group of the group (usually group) found by a call to the pq program;
forder
the factored order of the quotient group of largest lower exponent-\(p \) central class found for the
group (usually group) by a call to the \texttt{pq} program (this factored order is given as a list \([p,n]\),
indicating an order of \(p^n \));

pcoverclass
the lower exponent-\(p \) central class of the \(p \)-covering group of a \(p \)-quotient of the group (usually
group) found by a call to the \texttt{pq} program;

workspace
the workspace set for the \texttt{pq} process (either given as a second argument to \texttt{PqStart}, or set by
default to 10000000);

menu
the current menu of the \texttt{pq} process (the \texttt{pq} program is managed by various menus, the details of
which the user shouldn’t normally need to know about – the \texttt{menu} field remembers which menu
the \texttt{pq} process is currently “in”);

outfname
is the file to which \texttt{pq} output is directed, which is always \texttt{ANUPQData.outfile}, except when
option \texttt{SetupFile} is used with a non-interactive function, in which case \texttt{outfname} is set to
“\texttt{PQ_OUTPUT}”;

pQuotient
is set to the value returned by \texttt{Pq} (see \texttt{Pq} (4.1.1)) (the field \texttt{pQepi} is also set at the same time);

pQepi
is set to the value returned by \texttt{PqEpimorphism} (see \texttt{PqEpimorphism} (4.1.2)) (the field
\texttt{pQuotient} is also set at the same time);

pCover
is set to the value returned by \texttt{PqPCover} (see \texttt{PqPCover} (4.1.3));

SP
is set to the value returned by \texttt{PqStandardPresentation} or \texttt{StandardPresentation}
(see \texttt{PqStandardPresentation} (5.3.4)) when called interactively, for process \(i \) (the field
\texttt{SPepi} is also set at the same time);

SPepi
is set to the value returned by \texttt{EpimorphismPqStandardPresentation} or
\texttt{EpimorphismStandardPresentation} (see \texttt{EpimorphismPqStandardPresentation}
(5.3.5)) when called interactively, for process \(i \) (the field \texttt{SP} is also set at the same time);

descendants
is set to the value returned by \texttt{PqDescendants} (see \texttt{PqDescendants} (4.4.1));

treepos
if set by a call to \texttt{PqDescendantsTreeCoclassOne} (see \texttt{PqDescendantsTreeCoclassOne}
(A.4.1)), it contains a record with fields \texttt{class}, \texttt{node} and \texttt{nstd} being the information that
determines the last descendant with a non-zero number of descendants processed;
xgapsheet
if set by a call to PqDescendantsTreeCoclassOne (see PqDescendantsTreeCoclassOne (A.4.1)) during an XGAP session, it contains the XGAP Sheet on which the descendants tree is displayed; and

nextX
if set by a call to PqDescendantsTreeCoclassOne (see PqDescendantsTreeCoclassOne (A.4.1)) during an XGAP session, it contains a list of integers, the ith entry of which is the x-coordinate of the next node (representing a descendant) for the ith class.

3.2.2 ANUPQDirectoryTemporary

▷ ANUPQDirectoryTemporary(dir) (function)

calls the UNIX command mkdir to create dir, which must be a string, and if successful a directory object for dir is both assigned to ANUPQData.tmpdir and returned. The field ANUPQData.outfile is also set to be a file in ANUPQData.tmpdir, and on exit from GAP dir is removed. Most users will never need this command; by default, GAP typically chooses a “random” subdirectory of /tmp for ANUPQData.tmpdir which may occasionally have limits on what may be written there. ANUPQDirectoryTemporary permits the user to choose a directory (object) where one is not so limited.

3.3 Setting the Verbosity of ANUPQ via Info and InfoANUPQ

3.3.1 InfoANUPQ

▷ InfoANUPQ (info class)

The input to and the output from the pq program is, by default, not displayed. However the user may choose to see some, or all, of this input/output. This is done via the Info mechanism (see Section Reference: Info Functions in the GAP Reference Manual). For this purpose, there is the InfoClass InfoANUPQ. If the InfoLevel of InfoANUPQ is high enough each line of pq input/output is directed to a call to Info and will be displayed for the user to see. By default, the InfoLevel of InfoANUPQ is 1, and it is recommended that you leave it at this level, or higher. Messages that the user should presumably want to see and output from the pq program influenced by the value of the option OutputLevel (see the options listed in Section Pq (4.1.1)), other than timing and memory usage are directed to Info at InfoANUPQ level 1.

To turn off all InfoANUPQ messaging, set the InfoANUPQ level to 0.

There are five other user-intended InfoANUPQ levels: 2, 3, 4, 5 and 6.

Example

```
gap> SetInfoLevel(InfoANUPQ, 2);```

enables the display of most timing and memory usage data from the pq program, and also the number of identity instances when the Identities option is used. (Some timing and memory usage data, particularly when profuse in quantity, is Info-ed at InfoANUPQ level 3 instead.) Note that the the GAP functions time and Runtime (see Runtime (Reference: Runtime) in the GAP Reference Manual) count the time spent by GAP and not the time spent by the (external) pq program.
enables the display of output of the nature of the first two InfoANUPQ that was not directly invoked by the user (e.g. some commands require GAP to discover something about the current state known to the pq program). The identity instances processed under the Identities option are also displayed at this level. In some cases, the pq program produces a lot of output despite the fact that the OutputLevel (see 6.2) is unset or is set to 0; such output is also Info-ed at InfoANUPQ level 3.

enables the display of all the commands directed to the pq program, behind a “ToPQ> ” prompt (so that you can distinguish it from the output from the pq program). See Section ‘Hints and Warnings regarding the use of Options’ for an example of how this can be a useful troubleshooting tool.

enables the display of the pq program’s prompts for input. Finally,

enables the display of all other output from the pq program, namely the banner and menus. However, the timing data printed when the pq program exits can never be observed.

3.4 Utility Functions

3.4.1 PqLeftNormComm

returns for a list of elements of some group (e.g. elts may be a list of words in the generators of a free or fp group) the left normed commutator of elts, e.g. if w1, w2, w3 are such elements then PqLeftNormComm([w1, w2, w3]); is equivalent to Comm(Comm(w1, w2), w3);

Note: elts must contain at least two elements.

3.4.2 PqGAPRelators

returns a list of words that GAP understands, given a list rels of strings in the string representations of the generators of the fp group group prepared as a list of relators for the pq program.

Note: The pq program does not use / to indicate multiplication by an inverse and uses square brackets to represent (left normed) commutators. Also, even though the pq program accepts relations, all elements of rels must be in relator form, i.e. a relation of form w1 = w2 must be written as w1*(w2)^-1.

Here is an example:
Example

```gap
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> PqGAPRelators(F, ["a*b^2", "[a,b]^2*a", "([a,b,a,b]*a*b)^2*a"]);
[a*b^2, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b^-1*a*b*a^-1*b^-1*a^-2*b*a*b*a]
```

3.4.3 PqParseWord

▷ PqParseWord(word, n)  (function)

parses a word, a string representing a word in the pc generators x1, ..., xn, through GAP. This function is provided as a rough-and-ready check of word for syntax errors. A syntax error will cause the entering of a break-loop, in which the error message may or may not be meaningful (depending on whether the syntax error gets caught at the GAP or kernel level).

Note: The reason the generators must be x1, ..., xn is that these are the pc generator names used by the pq program (as distinct from the generator names for the group provided by the user to a function like Pq that invokes the pq program).

3.4.4 PqExample (no arguments)

▷ PqExample()  (function)
▷ PqExample(example[, PqStart][, Display])  (function)
▷ PqExample(example[, PqStart][, filename])  (function)

With no arguments, or with single argument "index", or a string example that is not the name of a file in the examples directory, an index of available examples is displayed.

With just the one argument example that is the name of a file in the examples directory, the example contained in that file is executed in its simplest form. Some examples accept options which you may use to modify some of the options used in the commands of the example. To find out which options an example accepts, use one of the mechanisms for displaying the example described below.

Some examples have both non-interactive and interactive forms; those that are non-interactive only have a name ending in -ni; those that are interactive only have a name ending in -i; examples with names ending in .g also have only one form; all other examples have both non-interactive and interactive forms and for these giving PqStart as second argument invokes PqStart initially and makes the appropriate adjustments so that the example is executed or displayed using interactive functions.

If PqExample is called with last (second or third) argument Display then the example is displayed without being executed. If the last argument is a non-empty string filename then the example is also displayed without being executed but is also written to a file with that name. Passing an empty string as last argument has the same effect as passing Display.

Note: The variables used in PqExample are local to the running of PqExample, so there’s no danger of having some of your variables over-written. However, they are not completely lost either. They are saved to a record ANUPQData.examples.vars, i.e. if F is a variable used in the example then you will be able to access it after PqExample has finished as ANUPQData.examples.vars.F.
3.4.5 AllPqExamples
▷ AllPqExamples() (function)

returns a list of all currently available examples in default UNIX-listing (i.e. alphabetic) order.

3.4.6 GrepPqExamples
▷ GrepPqExamples(string) (function)

runs the UNIX command grep string over the ANUPQ examples and returns the list of examples for which there is a match. The actual matches are Info-ed at InfoANUPQ level 2.

3.4.7 ToPQLog
▷ ToPQLog([filename]) (function)

With string argument filename, ToPQLog opens the file with name filename for logging; all commands written to the pq binary (that are Info-ed behind a “ToPQ> ” prompt at InfoANUPQ level 4) are then also written to that file (but without prompts). With no argument, ToPQLog stops logging to whatever file was being logged to. If a file was already being logged to, that file is closed and the file with name filename is opened for logging.

3.5 Attributes and a Property for fp and pc p-groups

3.5.1 NuclearRank
▷ NuclearRank(G) (attribute)
▷ MultiplicatorRank(G) (attribute)
▷ IsCapable(G) (property)

return the nuclear rank of G, p-multiplicator rank of G, and whether G is capable (i.e. true if it is, or false if it is not), respectively.

These attributes and property are set automatically if G is one of the following:

• an fp group returned by PqStandardPresentation or StandardPresentation (see PqStandardPresentation (4.2.1));

• the image (fp group) of the epimorphism returned by an EpimorphismPqStandardPresentation or EpimorphismStandardPresentation call (see EpimorphismPqStandardPresentation (4.2.2)); or

• one of the pc groups of the list of descendants returned by PqDescendants (see PqDescendants (4.4.1)).

If G is an fp group or a pc p-group and not one of the above and the attribute or property has not otherwise been set for G, then PqStandardPresentation is called to set all three of NuclearRank, MultiplicatorRank and IsCapable, before returning the value of the attribute or property actually called. Such a group G must know in advance that it is a p-group; this is the case for the groups
returned by the functions $Pq$ and $PqPCover$, and the image group of the epimorphism returned by $PqEpimorphism$. Otherwise, if you know the group to be a $p$-group, then this can be set by typing

```
SetIsPGroup(G, true);
```

or by invoking $IsPGroup( G )$. Note that for an fp group $G$, the latter may result in a coset enumeration which might not terminate in a reasonable time.

*Note:* For $G$ such that $HasNuclearRank(G) = true$, $IsCapable(G)$ is equivalent to (the truth or falsity of) $NuclearRank(G) = 0$.

### 3.6 Hints and Warnings regarding the use of Options

On a first reading we recommend you skip this section and come back to it if and when you run into trouble.

*Note:* By “options” we refer to GAP options. The $pq$ program also uses the term “option”; to distinguish the two usages of “option”, in this manual we use the term *menu item* to refer to what the $pq$ program refers to as an “option”.

Options are passed to the ANUPQ interface functions in either of the two usual mechanisms provided by GAP, namely:

- options may be set globally using the function $PushOptions$ (see Chapter *Reference: Options Stack* in the GAP Reference Manual); or
- options may be appended to the argument list of any function call, separated by a colon from the argument list (see Chapter *Reference: Function Calls* in the GAP Reference Manual), in which case they are then passed on recursively to any subsequent inner function call, which may in turn have options of their own.

Particularly, when one is using the interactive functions of Chapter ‘Interactive ANUPQ functions’, one should, in general, avoid using the global method of passing options. In fact, it is recommended that prior to calling $PqStart$ the $OptionsStack$ be empty. The essential problem with setting options globally using the function $PushOptions$ is that options pushed onto $OptionsStack$, in this way, (generally) remain there until an explicit $PopOptions()$ call is made.

In contrast, options passed in the usual way behind a colon following a function’s arguments (see *Reference: Function Call With Options* in the GAP Reference Manual) are local, and disappear from $OptionsStack$ after the function has executed successfully. If the function does not execute successfully, i.e. it runs into error and the user quits the resulting break loop (see Section *Reference: Break Loops* in the Reference Manual) rather than attempting to repair the problem and typing return; then, unless the error at the kernel level, the $OptionsStack$ is reset. If an error is detected inside the kernel (hopefully, this should occur only rarely, if at all) then the options of that function will not be cleared from $OptionsStack$; in such cases:

```
gap> ResetOptionsStack();
#I Options stack is already empty
```

is usually necessary (see Chapter $ResetOptionsStack$ (*Reference: ResetOptionsStack*) in the GAP Reference Manual), which recursively calls $PopOptions()$ until $OptionsStack$ is empty, or as in the above case warns you that the $OptionsStack$ is already empty.
Note that a function, that is passed options after the colon, will also see any global options or any options passed down recursively from functions calling that function, unless those options are over-ridden by options passed via the function. Also, note that duplication of option names for different programs may lead to misinterpretations, and mis-spelled options will not be “seen”.

The non-interactive functions of Chapter ‘Non-interactive ANUPQ functions’ that have Pq somewhere in their name provide an alternative method of passing options as additional arguments. This has the advantages that options can be abbreviated and mis-spelled options will be trapped.

### 3.6.1 ANUPQWarnOfOtherOptions

▷ ANUPQWarnOfOtherOptions

is a global variable that is by default false. If it is set to true then any function provided by the ANUPQ function that recognises at least one option, will warn you of “other” options, i.e. options that the function does not recognise. These warnings are emitted at InfoWarning or InfoANUPQ level 1. This is useful for detecting mis-spelled options. Here is an example using the function Pq (first described in Chapter ‘Non-interactive ANUPQ functions’):

```gap
gap> SetInfoLevel(InfoANUPQ, 1); # Set InfoANUPQ to default level
gap> ANUPQWarnOfOtherOptions := true;;
gap> # The following makes entry into break loops very ‘quiet’ ...
gap> OnBreak := function() Where(0); end;;
gap> F := FreeGroup("a", "b");
<free group on the generators [a, b]>
gap> Pq(F : Prime := 2, Classbound := 1);
#I ANUPQ Warning: Options: ["Classbound"] ignored
#I (invalid for generic function: 'Pq').
user interrupt at
moreOfline := ReadLine(iostream);
Entering break read-eval-print loop ... you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
```

Here we mistyped ClassBound as Classbound, and after seeing the Info-ed warning that Classbound was ignored, we typed a control-C (that’s the “user interrupt at” message) which took us into a break loop. Since the Pq command was not able to finish, the options Prime and Classbound, in particular, will still be on the OptionsStack:

```gap
brk> OptionsStack;
[rec(Prime := 2, Classbound := 1),
 rec(Prime := 2, Classbound := 1, PqEpiOrPCover := "pQuotient")]
```

The option PqEpiOrPCover is a behind-the-scenes option that need not concern the user. On quitting the break-loop the OptionsStack is reset and a warning telling you this is emitted:

```gap
brk> quit; # to get back to the 'gap>' prompt
#I Options stack has been reset
```

Above, we altered OnBreak (see OnBreak (Reference: OnBreak) in the Reference manual) to reduce the back-tracing on entry into a break loop. We now restore OnBreak to its usual value.
Example

```
gap> OnBreak := Where;;
```

Notes

In cases where functions recursively call others with options (e.g. when using PqExample with options), setting ANUPQWarnOfOtherOptions := true may give rise to spurious “other” option detections.

It is recommended that the novice user set ANUPQWarnOfOtherOptions to true in their gap.ini file (see Section ‘Loading the ANUPQ Package’).

Other Troubleshooting Strategies

There are some other strategies which may have helped us to see our error above. The function Pq recognises the option OutputLevel (see 6.2); if this option is set to at least 1, the pq program provides information on each class quotient as it is generated:

Example

```
gap> ANUPQWarnOfOtherOptions := false;; # Set back to normal
gap> F := FreeGroup("a", "b");;
gap> Pq(F : Prime := 2, Classbound := 1, OutputLevel := 1);
#I Lower exponent-2 central series for [grp]
#I Group: [grp] to lower exponent-2 central class 1 has order 2^2
#I Group: [grp] to lower exponent-2 central class 2 has order 2^5
#I Group: [grp] to lower exponent-2 central class 3 has order 2^10
#I Group: [grp] to lower exponent-2 central class 4 has order 2^18
#I Group: [grp] to lower exponent-2 central class 5 has order 2^32
#I Group: [grp] to lower exponent-2 central class 6 has order 2^55
#I Group: [grp] to lower exponent-2 central class 7 has order 2^96
#I Group: [grp] to lower exponent-2 central class 8 has order 2^167
#I Group: [grp] to lower exponent-2 central class 9 has order 2^294
#I Group: [grp] to lower exponent-2 central class 10 has order 2^520
#I Group: [grp] to lower exponent-2 central class 11 has order 2^932
#I Group: [grp] to lower exponent-2 central class 12 has order 2^1679

[... output truncated ...]
```

After seeing the information for the class 2 quotient we may have got the idea that the Classbound option was not recognised and may have realised that this was due to a mis-spelling. The above will ordinarily cause the available space to be exhausted, necessitating user-intervention by typing control-C and quit; (to escape the break loop); otherwise Pq terminates when the class reaches 63 (the default value of ClassBound).

If you have some familiarity with “keyword” command input to the pq binary, then setting the level of InfoANUPQ to 4 would also have indicated a problem:

Example

```
gap> ResetOptionsStack(); # Necessary, if a break-loop was entered above
gap> SetInfoLevel(InfoANUPQ, 4);
gap> Pq(F : Prime := 2, Classbound := 1);
#I ToPQ> 7 #to (Main) p-Quotient Menu
#I ToPQ> 1 #define group
#I ToPQ> name [grp]
#I ToPQ> prime 2
#I ToPQ> class 63
#I ToPQ> exponent 0
#I ToPQ> output 0
```
Here the line "#I ToPQ> class 63" indicates that a directive to set the classbound to 63 was sent to the pq program.
Chapter 4

Non-interactive ANUPQ functions

Here we describe all the non-interactive functions of the ANUPQ package; i.e. “one-shot” functions that invoke the pq program in such a way that once GAP has got what it needs, the pq program is allowed to exit. It is expected that most of the time users will only need these functions. The functions interface with three of the four algorithms (see Chapter ‘Introduction’) provided by the ANU pq C program, and are mainly grouped according to the algorithm of the pq program they relate to.

In Section ‘Computing p-Quotients’, we describe the functions that give access to the $p$-quotient algorithm.

Section ‘Computing Standard Presentations’ describe functions that give access to the standard presentation algorithm.

Section ‘Testing p-Groups for Isomorphism’ describe functions that implement an isomorphism test for $p$-groups using the standard presentation algorithm.

In Section ‘Computing Descendants of a p-Group’, we describe functions that give access to the $p$-group generation algorithm.

To use any of the functions one must have at some stage previously typed:

```
gap> LoadPackage("anupq");
```

(the response of which we have omitted; see ‘Loading the ANUPQ Package’).

It is strongly recommended that the user try the examples provided. To save typing there is a PqExample equivalent for each manual example. We also suggest that to start with you may find the examples more instructive if you set the InfoANUPQ level to 2 (see InfoANUPQ (3.3.1)).

4.1 Computing p-Quotients

4.1.1 Pq

```
Pq(F: options)
```

returns for the fp or pc group $F$, the $p$-quotient of $F$ specified by options, as a pc group. Following the colon, options is a selection of the options from the following list, separated by commas like record components (see Section Reference: Function Call With Options in the GAP Reference Manual). As a minimum the user must supply a value for the Prime option. Below we list the options recognised by Pq (see Chapter ‘ANUPQ Options’ for detailed descriptions).
• Prime := p
• ClassBound := n
• Exponent := n
• Relators := rels
• Metabelian
• Identities := funcs
• GroupName := name
• OutputLevel := n
• SetupFile := filename
• PqWorkspace := workspace

Notes: Pq may also be called with no arguments or one integer argument, in which case it is being used interactively (see Pq (5.3.1)); the same options may be used, except that SetupFile and PqWorkspace are ignored by the interactive Pq function.

See Section 'Attributes and a Property for fp and pc p-groups' for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which may be applied to the group returned by Pq.

See also PqEpimorphism (PqEpimorphism (4.1.2)).

We now give a few examples of the use of Pq. Except for the addition of a few comments and the non-suppression of output (by not using duplicated semicolons) the next 3 examples may be run by typing: PqExample("Pq") (see PqExample (3.4.4)).

```gap
gap> LoadPackage("anupq");; # does nothing if ANUPQ is already loaded
gap> # First we get a p-quotient of a free group of rank 2
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> Pq(F : Prime := 2, ClassBound := 3);
<pc group of size 1024 with 10 generators>
gap> # Now let us get a p-quotient of an fp group
<pc group of size 256 with 8 generators>
gap> G := F / \[a^4, b^4 \];
<fp group on the generators [a, b]>
gap> Pq(G : Prime := 2, ClassBound := 3);
<pc group of size 256 with 8 generators>
gap> # Now let's get a different p-quotient of the same group
<pc group of size 128 with 7 generators>
gap> R := [a^25, Comm(Comm(b, a), a), b^5];
[a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^2, b^5]
gap> H := F / R;
<fp group on the generators [a, b]>
gap> Pq(H : Prime := 5, ClassBound := 5, Metabelian);
<pc group of size 78125 with 7 generators>
```
Now we redo the last example to show how one may use the Relators option. Observe that \( \text{Comm}(\text{Comm}(b, a), a) \) is a left normed commutator which must be written in square bracket notation for the \( \text{pq} \) program and embedded in a pair of double quotes. The function \( \text{PqGAPRelators} \) (see \( \text{PqGAPRelators} \) (3.4.2)) can be used to translate a list of strings prepared for the Relators option into \( \text{GAP} \) format. Below we use it. Observe that the value of \( R \) is the same as before.

Example

```gap
F := FreeGroup("a", "b");
rels := ["a^-25", "[b, a, a]", "b^-5"];
rels := PqGAPRelators(F, rels);
H := F / R;
<fp group on the generators [a, b]>
Pq(H : Prime := 5, ClassBound := 5, Metabelian,
 Relators := rels);
<pc group of size 78125 with 7 generators>
```

In fact, above we could have just passed \( F \) (rather than \( H \)), i.e. we could have done:

Example

```gap
F := FreeGroup("a", "b");
rels := ["a^-25", "[b, a, a]", "b^-5"];
Pq(F : Prime := 5, ClassBound := 5, Metabelian,
 Relators := rels);
<pc group of size 78125 with 7 generators>
```

The non-interactive \( \text{Pq} \) function also allows the options to be passed in two other ways; these alternatives have been included for those familiar with the \( \text{GAP} \) 3 version of the \text{ANUPQ} package; the preferred method of passing options is the one already described. Firstly, they may be passed in a record as a second argument; note that any boolean options must be set explicitly e.g.

Example

```gap
Pq(H, rec(Prime := 5, ClassBound := 5, Metabelian := true));
<pc group of size 78125 with 7 generators>
```

It is also possible to pass them as extra arguments, where each option name appears as a string followed immediately by its value (if not a boolean option) e.g.

Example

```gap
Pq(H, "Prime", 5, "ClassBound", 5, "Metabelian");
<pc group of size 78125 with 7 generators>
```

The preceding two examples can be run from \( \text{GAP} \) via \( \text{PqExample( "Pq-ni" )} \); (see \( \text{PqExample} \) (3.4.4)).

This method of passing options permits abbreviation; the only restriction is that the abbreviation must be unique. So "Pr" may be used for "Prime", "Class" or even just "C" for "ClassBound", etc.

The following example illustrates the use of the option Identities. We compute the largest finite Burnside group of exponent 5 that also satisfies the 3-Engel identity. Each identity is defined by
a function whose arguments correspond to the variables of the identity. The return value of each of those functions is the identity evaluated on the arguments of the function.

Example

```
gap> F := FreeGroup(2);
<free group on the generators [f1, f2]>
gap> Burnside5 := x->x^5;
function(x) ... end
gap> Engel3 := function(x,y) return PqLeftNormComm([x,y,y,y]); end;
function(x, y) ... end
gap> Pq(F : Prime := 5, Identities := [Burnside5, Engel3]);
#I Class 1 with 2 generators.
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
<pc group of size 3125 with 5 generators>
```

The above example can be run from GAP via PqExample( "B5-5-Engel3-Id" ); (see PqExample (3.4.4)).

### 4.1.2 PqEpimorphism

```
PqEpimorphism(F: options)
```

returns for the fp or pc group \( F \) an epimorphism from \( F \) onto the \( p \)-quotient of \( F \) specified by \( \text{options} \); the possible options \( \text{options} \) and \( \text{required} \) option ("Prime") are as for \( \text{Pq} \) (see \( \text{Pq} \) (4.1.1)). \( \text{PqEpimorphism} \) only differs from \( \text{Pq} \) in what it outputs; everything about what must/may be passed as input to \( \text{PqEpimorphism} \) is the same as for \( \text{Pq} \). The same alternative methods of passing options to the non-interactive \( \text{Pq} \) function are available to the non-interactive version of \( \text{PqEpimorphism} \).

**Notes:** \( \text{PqEpimorphism} \) may also be called with no arguments or one integer argument, in which case it is being used interactively (see \( \text{PqEpimorphism} \) (5.3.2)), and the options SetupFile and PqWorkspace are ignored by the interactive \( \text{PqEpimorphism} \) function.

See Section ‘Attributes and a Property for fp and pc p-groups’ for the attributes and property NuclearRank, MultipliorRank and IsCapable which may be applied to the image group of the epimorphism returned by \( \text{PqEpimorphism} \).

Example

```
gap> F := FreeGroup(2, "F");
<free group on the generators [F1, F2]>
gap> phi := PqEpimorphism(F : Prime := 5, ClassBound := 2);
[F1, F2] -> [f1, f2]
gap> Image(phi);
<pc group of size 3125 with 5 generators>
```

Typing: PqExample("PqEpimorphism"); runs the above example in GAP (see PqExample (3.4.4)).

### 4.1.3 PqPCover

```
PqPCover(F: options)
```

returns the pc group \( F \) with its \( p \)-cover.
returns for the fp or pc group \( F \), the \( p \)-covering group of the \( p \)-quotient of \( F \) specified by options, as a pc group, i.e. the \( p \)-covering group of the \( p \)-quotient \( \text{Pq}( F : \text{options} ) \). Thus the options that \text{PqPCover} accepts are exactly those expected for \text{Pq} (and hence as a minimum the user must supply a value for the \text{Prime} option; see \text{Pq} (4.1.1) for more details), except in the following special case.

If \( F \) is already a \( p \)-group, in the sense that \( \text{IsPGroup}(F) \) is true, then

- \text{Prime} defaults to \( \text{PrimePGroup}(F) \), if not supplied and \( \text{HasPrimePGroup}(F) = \text{true} \); and

- \text{ClassBound} defaults to \( \text{PClassPGroup}(F) \) if \( \text{HasPClassPGroup}(F) = \text{true} \) if not supplied, or to the usual default of 63, otherwise.

The same alternative methods of passing options to the non-interactive \text{Pq} function are available to the non-interactive version of \text{PqPCover}.

We now give a few examples of the use of \text{PqPCover}. These examples are just a subset of the ones we gave for \text{Pq} (see \text{Pq} (4.1.1)), except that in each instance the command \text{Pq} has been replaced with \text{PqPCover}. Essentially the same examples may be run by typing: \text{PqExample( "PqPCover" );} (see \text{PqExample} (3.4.4)).

\begin{verbatim}
Example gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> PqPCover( F : Prime := 2, ClassBound := 3 );
<pc group of size 262144 with 18 generators>
gap> # Now let's get a p-cover of a p-quotient of an fp group
gap> G := F / [a^4, b^4];
<fp group on the generators [ a, b ]>
gap> PqPCover( G : Prime := 2, ClassBound := 3 );
<pc group of size 16384 with 14 generators>
gap> # Now let's get a p-cover of a different p-quotient of the same group
gap> PqPCover( G : Prime := 2, ClassBound := 3, Exponent := 4 );
<pc group of size 8192 with 13 generators>
gap> # Now we'll get a p-cover of a p-quotient of another fp group
gap> R := [ a^25, Comm(Comm(b, a), a), b^5 ];
[ a^25, a^-1*b^-1*a*b*a^-1*b^-1*a^-1*b*a^-2, b^5 ]
gap> H := F / R;
<fp group on the generators [ a, b ]>
gap> PqPCover( H : Prime := 5, ClassBound := 5, Metabelian );
<pc group of size 48828125 with 11 generators>
gap> # Now we redo the previous example using the 'Relators' option
gap> F := FreeGroup("a", "b");
<pc group of size 48828125 with 11 generators>
gap> rels := [ "a^-25", "[b, a, a]", "b^-5" ];
[ "a^-25", "[b, a, a]", "b^-5" ]
gap> PqPCover( F : Prime := 5, ClassBound := 5, Metabelian,
 > Relators := rels );
<pc group of size 48828125 with 11 generators>
\end{verbatim}
4.2 Computing Standard Presentations

4.2.1 PqStandardPresentation

\[ \text{PqStandardPresentation}(F; \text{options}) \] (function)
\[ \text{StandardPresentation}(F; \text{options}) \] (method)

return the \( p \)-quotient specified by \textit{options} of the fp or pc \( p \)-group \( F \), as an \textit{fp group} which has a standard presentation. Here \textit{options} is a selection of the options from the following list (see Chapter ‘ANUPQ Options’ for detailed descriptions). Section ‘Hints and Warnings regarding the use of Options’ gives some important hints and warnings regarding option usage, and Section \textbf{Reference: Function Call With Options} in the GAP Reference Manual describes their “record”-like syntax.

- \texttt{Prime} := \( p \)
- \texttt{pQuotient} := \( Q \)
- \texttt{ClassBound} := \( n \)
- \texttt{Exponent} := \( n \)
- \texttt{Metabelian}
- \texttt{GroupName} := \textit{name}
- \texttt{OutputLevel} := \( n \)
- \texttt{StandardPresentationFile} := \textit{filename}
- \texttt{SetupFile} := \textit{filename}
- \texttt{PqWorkspace} := \textit{workspace}

Unless \( F \) is a pc \( p \)-group, the user \textit{must} supply either the option \texttt{Prime} or the option \texttt{pQuotient} (if both \texttt{Prime} and \texttt{pQuotient} are supplied, the prime \( p \) is determined by applying \texttt{PrimePGroup} (see \texttt{PrimePGroup} (Reference: PrimePGroup) in the Reference Manual) to the value of \texttt{pQuotient}).

The options for \texttt{PqStandardPresentation} may also be passed in the two other alternative ways described for \texttt{Pq} (see Pq (4.1.1)). \texttt{StandardPresentation} does not provide these alternative ways of passing options.

\textbf{Notes:} In contrast to the function \texttt{Pq} (see Pq (4.1.1)) which returns a pc group, \texttt{PqStandardPresentation} or \texttt{StandardPresentation} returns an fp group. This is because the output is mainly used for isomorphism testing for which an fp group is enough. However, the presentation is a polycyclic presentation and if you need to do any further computation with this group (e.g. to find the order) you can use the function \texttt{PcGroupFpGroup} (see \texttt{PcGroupFpGroup} (Reference: PcGroupFpGroup) in the GAP Reference Manual) to form a pc group.

If the user does not supply a \( p \)-quotient \( Q \) via the \texttt{pQuotient} option and the prime \( p \) is either supplied or \( F \) is a pc \( p \)-group, then a \( p \)-quotient \( Q \) is computed. If the user does supply a \( p \)-quotient \( Q \) via the \texttt{pQuotient} option, the package \texttt{AutPGrp} is called to compute the automorphism group of \( Q \); an error will occur that asks the user to install the package \texttt{AutPGrp} if the automorphism group cannot be computed.
The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the group returned by PqStandardPresentation or StandardPresentation (see Section ‘Attributes and a Property for fp and pc p-groups’).

We illustrate the method with the following examples.

Example

```gap
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
<fp group on the generators [a, b]>
gap> G := F / [a^25, Comm(Comm(b, a), a), b^5];
<fp group on the generators [a, b]>
gap> S := StandardPresentation(G : Prime := 5, ClassBound := 10);
<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26]>
gap> IsPcGroup(S);
false
gap> H := F / [a^625, Comm(Comm(Comm(Comm(b, a), a), a), a)/Comm(b, a)^5, Comm(Comm(b, a), b), b^625];
<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20]>
gap> F4 := FreeGroup("a", "b", "c", "d");;
gap> a := F4.1;; b := F4.2;; c := F4.3;; d := F4.4;;
gap> G4 := F4 / [b^4, b^2 / Comm(Comm(Comm(b, a), a), a), d^16, a^16 / (c * d), b^8 / (d * c^4)];
<fp group on the generators [a, b, c, d]>
gap> K := Pq(G4 : Prime := 2, ClassBound := 1);
<pc group of size 4 with 2 generators>
gap> StandardPresentation(G4 : pQuotient := K, ClassBound := 14);
<fp group with 53 generators>
```

Typing: PqExample( "StandardPresentation" ); runs the above example in GAP (see PqExample (3.4.4)).

### 4.2.2 EpimorphismPqStandardPresentation

- EpimorphismPqStandardPresentation(F: options) (function)
- EpimorphismStandardPresentation(F: options) (method)

Each of the above functions accepts the same arguments and options as the function StandardPresentation (see StandardPresentation (4.2.1)) and returns an epimorphism from the fp or pc group F onto the finitely presented group given by a standard presentation, i.e. if S is the standard presentation computed for the p-quotient of F by StandardPresentation then EpimorphismStandardPresentation returns the epimorphism from F to the group with presentation S.

Note: The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for the image group of the epimorphism returned by EpimorphismPqStandardPresentation or EpimorphismStandardPresentation (see Section ‘Attributes and a Property for fp and pc p-groups’).
We illustrate the function with the following example.

```
gap> F := FreeGroup(6, "F");
<free group on the generators [F1, F2, F3, F4, F5, F6]>
gap> # For printing GAP uses the symbols F1, ... for the generators of F
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;
gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3];;
gap> Q := F / R;
<fp group on the generators [F1, F2, F3, F4, F5, F6]>
-gap> # For printing GAP also uses the symbols F1, ... for the generators of Q
-gap> # (the same as used for F) ... but the gen'rs of Q and F are different:
-gap> GeneratorsOfGroup(F) = GeneratorsOfGroup(Q);
false
-gap> G := Pq(Q : Prime := 3, ClassBound := 3);
<pc group of size 729 with 6 generators>
-gap> phi := EpimorphismStandardPresentation(Q : Prime := 3,
> ClassBound := 3);
[F1, F2, F3, F4, F5, F6] -> [f1*f2^2*f3*f4^2*f5^-2, f1*f2*f3*f5, f3^2,
 f4*f6^2, f5, f6]
-gap> Source(phi); # This is the group Q (GAP uses F1, ... for gen'r symbols)
<fp group of size infinity on the generators [F1, F2, F3, F4, F5, F6]>
-gap> Range(phi); # This is the group G (GAP uses f1, ... for gen'r symbols)
<fp group on the generators [f1, f2, f3, f4, f5, f6]>
-gap> AssignGeneratorVariables(G);
#I Assigned the global variables [f1, f2, f3, f4, f5, f6]
-gap> Group([f1*f2^-2*f3, f1*f2*f3*f4*f5^-2*f6^-2, f3^-2, f4, f5, f6]); = G;
true
-gap> Size(Image(phi));
729
```

Typing: `PqExample( "EpimorphismStandardPresentation" );` runs the above example in GAP (see PqExample (3.4.4)). Note that `AssignGeneratorVariables` (see AssignGeneratorVariables (Reference: AssignGeneratorVariables)) has only been available since GAP 4.3.

## 4.3 Testing p-Groups for Isomorphism

### 4.3.1 IsPqIsomorphicPGroup

- `IsPqIsomorphicPGroup(G, H)` *(function)*
- `IsIsomorphicPGroup(G, H)` *(method)*

Each return true if $G$ is isomorphic to $H$, where both $G$ and $H$ must be pc groups of prime power order. These functions compute and compare in GAP the fp groups given by standard presentations for $G$ and $H$ (see StandardPresentation (4.2.1)).

```
gap> G := Group((1,2,3,4), (1,3));
Group([(1,2,3,4), (1,3)])
-gap> P1 := Image(IsomorphismPcGroup(G));
```

Group([ f1, f2, f3 ])
gap> P2 := SmallGroup( 8, 5 );
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup( P1, P2 );
false
gap> P3 := SmallGroup( 8, 4 );
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup( P1, P3 );
false
gap> P4 := SmallGroup( 8, 3 );
<pc group of size 8 with 3 generators>
gap> IsIsomorphicPGroup( P1, P4 );
true

Typing: PqExample( "IsIsomorphicPGroup" ); runs the above example in GAP (see PqExample (3.4.4)).

4.4 Computing Descendants of a p-Group

4.4.1 PqDescendants

▷ PqDescendants(G: options) (function)

returns, for the pc group $G$ which must be of prime power order with a confluent pc presentation (see IsConfluent (Reference: IsConfluent for pc groups) in the GAP Reference Manual), a list of descendants (pc groups) of $G$. Following the colon options a selection of the options listed below should be given, separated by commas like record components (see Section Reference: Function Call With Options in the GAP Reference Manual). See Chapter ‘ANUPQ Options’ for detailed descriptions of the options.

The automorphism group of each descendant $D$ is also computed via a call to the AutomorphismGroupPGroup function of the AutPGrp package.

- ClassBound := n
- Relators := rels
- OrderBound := n
- StepSize := n, StepSize := list
- RankInitialSegmentSubgroups := n
- SpaceEfficient
- CapableDescendants
- AllDescendants := false
- Exponent := n
- Metabelian
• GroupName := name
• SubList := sub
• BasicAlgorithm
• CustomiseOutput := rec
• SetupFile := filename
• PqWorkspace := workspace

Notes: The function \( \text{PqDescendants} \) uses the automorphism group of \( G \) which it computes via the package \text{AutPGrp}. If this package is not installed an error may be raised. If the automorphism group of \( G \) is insoluble, the pq program will call \text{GAP} together with the \text{AutPGrp} package for certain orbit-stabilizer calculations. (So, in any case, one should ensure the \text{AutPGrp} package is installed.)

The attributes and property \text{NuclearRank}, \text{MultiplicatorRank} and \text{IsCapable} are set for each group of the list returned by \text{PqDescendants} (see Section ‘Attributes and a Property for \text{fp and pc p-groups}’).

The options options for \text{PqDescendants} may be passed in an alternative manner to that already described, namely you can pass \text{PqDescendants} a record as an argument, which contains as entries some (or all) of the above mentioned. Those parameters which do not occur in the record are set to their default values.

Note that you cannot set both \text{OrderBound} and \text{StepSize}.

In the first example we compute all descendants of the Klein four group which have exponent-2 class at most 5 and order at most \( 2^6 \).

```gap
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := PcGroupFpGroup(F / [a^2, b^2, Comm(b, a)]);;
<pc group of size 4 with 2 generators>
gap> des := PqDescendants(G : OrderBound := 6, ClassBound := 5);;
gap> Length(des);
83
```

Below, we compute all capable descendants of order 27 of the elementary abelian group of order 9.

```gap
gap> F := FreeGroup(2, "g");;
<free group on the generators [g1, g2]>
gap> G := PcGroupFpGroup(F / [F.1^3, F.2^3, Comm(F.1, F.2)]);;
<pc group of size 9 with 2 generators>
gap> des := PqDescendants(G : OrderBound := 3, ClassBound := 5,);
```

```
In the third example, we compute all capable descendants of the elementary abelian group of order 5^2 which have exponent-5 class at most 3, exponent 5, and are metabelian.

The examples "PqDescendants-1", "PqDescendants-2" and "PqDescendants-3" (in order) are essentially the same as the above three examples (see PqExample (3.4.4)).

4.4.2 PqSupplementInnerAutomorphisms

returns a generating set for a supplement to the inner automorphisms of D, in the form of a record with fields agAutos, agOrder and glAutos, as provided by the pq program. One should be very careful in using these automorphisms for a descendant calculation.

Note: In principle there must be a way to use those automorphisms in order to compute descendants but there does not seem to be a way to hand back these automorphisms properly to the pq program.
Typing: \texttt{PqExample("PqSupplementInnerAutomorphisms")}; runs the above example in \textsc{GAP} (see \texttt{PqExample (3.4.4)}).

Note that by also including \texttt{PqStart} as a second argument to \texttt{PqExample} one can see how it is possible, with the aid of \texttt{PqSetPQuotientToGroup} (see \texttt{PqSetPQuotientToGroup (5.3.7)}), to do the equivalent computations with the interactive versions of \textsc{Pq} and \textsc{PqDescendants} and a single \texttt{pq} process (recall \texttt{pq} is the name of the external C program).

4.4.3 \textbf{PqList}

\begin{verbatim}
▷ PqList(filename: [SubList := sub])
(function)
\end{verbatim}

reads a file with name \texttt{filename} (a string) and returns the list \texttt{L} of pc groups (or with option \texttt{SubList} a sublist of \texttt{L} or a single pc group in \texttt{L}) defined in that file. If the option \texttt{SubList} is passed and has the value \texttt{sub}, then it has the same meaning as for \texttt{PqDescendants}, i.e. if \texttt{sub} is an integer then \texttt{PqList} returns \texttt{L}[\texttt{sub}]; otherwise, if \texttt{sub} is a list of integers \texttt{PqList} returns \texttt{Sublist(L, sub)}.

Both \texttt{PqList} and \texttt{SavePqList} (see \texttt{SavePqList (4.4.4)}) can be used to save and restore a list of descendants (see \texttt{PqDescendants (4.4.1)}).

4.4.4 \textbf{SavePqList}

\begin{verbatim}
▷ SavePqList(filename, list)
(function)
\end{verbatim}

writes a list of descendants \texttt{list} to a file with name \texttt{filename} (a string).

\texttt{SavePqList} and \texttt{PqList} (see \texttt{PqList (4.4.3)}) can be used to save and restore, respectively, the results of \texttt{PqDescendants} (see \texttt{PqDescendants (4.4.1)}).
Chapter 5

Interactive ANUPQ functions

Here we describe the interactive functions defined by the ANUPQ package, i.e. the functions that manipulate and initiate interactive ANUPQ processes. These are functions that extract information via a dialogue with a running pq process (process used in the UNIX sense). Occasionally, a user needs the “next step”; the functions provided in this chapter make use of data from previous steps retained by the pq program, thus allowing the user to interact with the pq program like one can when one uses the pq program as a stand-alone (see guide.dvi in the standalone-doc directory).

An interactive ANUPQ process is initiated by PqStart and terminated via PqQuit; these functions are described in section ‘Starting and Stopping Interactive ANUPQ Processes’.

Each interactive ANUPQ function that manipulates an already started interactive ANUPQ process, has a form where the first argument is the integer i returned by the initiating PqStart command, and a second form with one argument fewer (where the integer i is discovered by a default mechanism, namely by determining the least integer i for which there is a currently active interactive ANUPQ process). We will thus commonly say that “for the ith (or default) interactive ANUPQ process” a certain function performs a given action. In each case, it is an error if i is not the index of an active interactive process, or there are no current active interactive processes.

Notes: The global method of passing options (via PushOptions), should not be used with any of the interactive functions. In fact, the OptionsStack should be empty at the time any of the interactive functions is called.

On quitting GAP, PqQuitAll(); is executed, which terminates all active interactive ANUPQ processes. If GAP is killed without quitting, before all interactive ANUPQ processes are terminated, zombie processes (still living child processes whose parents have died), may result. Since zombie processes do consume resources, in such an event, the responsible computer user should seek out and terminate those zombie processes (e.g. on Linux: ps axw | grep pq gives you information on the pq processes corresponding to any interactive ANUPQ processes started in a GAP session; you can then do kill N for each number N appearing in the first column of this output).

5.1 Starting and Stopping Interactive ANUPQ Processes

5.1.1 PqStart (with group and workspace size)

\[\text{PqStart}(G, \text{workspace: options}) \]
\[\text{PqStart}(G: \text{options}) \]
\[\text{PqStart}(\text{workspace: options}) \] (function)
activate an iostream for an interactive ANUPQ process (i.e. PqStart starts up a pq process and opens a GAP iostream to “talk” to that process) and returns an integer i that can be used to identify that process. The argument G should be an fp group or pc group that the user intends to manipulate using interactive ANUPQ functions. If the function is called without specifying G, a group can be read in by using the function PqRestorePcPresentation (see PqRestorePcPresentation (5.6.3)). If PqStart is given an integer argument workspace, then the pq program is started up with a workspace (an integer array) of size workspace (i.e. $4 \times$ workspace) bytes in a 32-bit environment; otherwise, the pq program sets a default workspace of 1000000.

The only options currently recognised by PqStart are Prime, Exponent and Relators (see Chapter ‘ANUPQ Options’ for detailed descriptions of these options) and if provided they are essentially global for the interactive ANUPQ process, except that any interactive function interacting with the process and passing new values for these options will over-ride the global values.

5.1.2 PqQuit

- PqQuit(i)
- PqQuit()

Closes the stream of the ith or default interactive ANUPQ process and unbinds its ANUPQData.io record.

Note: It can happen that the pq process, and hence the GAP iostream assigned to communicate with it, can die, e.g. by the user typing a Ctrl-C while the pq process is engaged in a long calculation. IsPqProcessAlive (see IsPqProcessAlive (5.2.3)) is provided to check the status of the GAP iostream (and hence the status of the pq process it was communicating with).

5.1.3 PqQuitAll

- PqQuitAll()

is provided as a convenience, to terminate all active interactive ANUPQ processes with a single command. It is equivalent to executing PqQuit(i) for all active interactive ANUPQ processes i (see PqQuit (5.1.2)).

5.2 Interactive ANUPQ Process Utility Functions

5.2.1 PqProcessIndex

- PqProcessIndex(i)
- PqProcessIndex()

With argument i, which must be a positive integer, PqProcessIndex returns i if it corresponds to an active interactive process, or raises an error. With no arguments it returns the default active interactive process or returns fail and emits a warning message to Info at InfoANUPQ or InfoWarning level 1.
Note: Essentially, an interactive ANUPQ process \(i \) is “active” if ANUPQData.io[\(i \)] is bound (i.e. we still have some data telling us about it). Also see PqStart (5.1.1).

5.2.2 \textbf{PqProcessIndices}

\[\text{PqProcessIndices()} \]

returns the list of integer indices of all active interactive ANUPQ processes (see PqProcessIndex (5.2.1) for the meaning of “active”).

5.2.3 \textbf{IsPqProcessAlive}

\[\text{IsPqProcessAlive}(i) \]
\[\text{IsPqProcessAlive()} \]

return \texttt{true} if the GAP iostream of the \(i \)th (or default) interactive ANUPQ process started by PqStart is alive (i.e. can still be written to), or \texttt{false}, otherwise. (See the notes for PqStart (5.1.1) and PqQuit (5.1.2).)

If the user does not yet have a \texttt{gap>} prompt then usually the \texttt{pq} program is still away doing something and an ANUPQ interface function is still waiting for a reply. Typing a Ctrl\text{-}C (i.e. holding down the Ctrl key and typing \texttt{c}) will stop the waiting and send GAP into a break-loop, from which one has no option but to quit. The typing of Ctrl\text{-}C, in such a circumstance, usually causes the stream of the interactive ANUPQ process to die; to check this we provide IsPqProcessAlive (see IsPqProcessAlive).

The GAP iostream of an interactive ANUPQ process will also die if the \texttt{pq} program has a segmentation fault. We do hope that this never happens to you, but if it does and the failure is reproducible, then it’s a bug and we’d like to know about it. Please read the README that comes with the ANUPQ package to find out what to include in a bug report and who to email it to.

5.3 Interactive Versions of Non-interactive ANUPQ Functions

5.3.1 \textbf{Pq (interactive)}

\[\text{Pq}(i: \text{options}) \]
\[\text{Pq}(): \text{options} \]

return, for the fp or pc group (let us call it \(F \)), of the \(i \)th or default interactive ANUPQ process, the \(p \)-quotient of \(F \) specified by \texttt{options}, as a pc group; \(F \) must previously have been given (as first argument) to PqStart to start the interactive ANUPQ process (see PqStart (5.1.1)) or restored from file using the function PqRestorePcPresentation (see PqRestorePcPresentation (5.6.3)).

Following the colon \texttt{options} is a selection of the options listed for the non-interactive Pq function (see Pq (4.1.1)), separated by commas like record components (see Section Reference: Function Call With Options in the GAP Reference Manual), except that the options SetupFile or PqWorkspace are ignored by the interactive Pq, and RedoPcp is an option only recognised by the interactive Pq i.e. the following options are recognised by the interactive Pq function:

\[\text{• Prime := p} \]
Detailed descriptions of the above options may be found in Chapter ‘ANUPQ Options’.

As a minimum the Pq function must have a value for the Prime option, though Prime need not be passed again in the case it has previously been provided, e.g. to PqStart (see PqStart (5.1.1)) when starting the interactive process.

The behaviour of the interactive Pq function depends on the current state of the pc presentation stored by the pq program:

1. If no pc presentation has yet been computed (the case immediately after the PqStart call initiating the process) then the quotient group of the input group of the process of largest lower exponent-p class bounded by the value of the ClassBound option (see 6.2) is returned.

2. If the current pc presentation of the process was determined by a previous call to Pq or PqEpimorphism, and the current call has a larger value ClassBound then the class is extended as much as is possible and the quotient group of the input group of the process of the new lower exponent-p class is returned.

3. If the current pc presentation of the process was determined by a previous call to PqPCover then a consistent pc presentation of a quotient for the current class is determined before proceeding as in 2.

4. If the RedoPcp option is supplied the current pc presentation is scrapped, all options must be re-supplied (in particular, Prime must be supplied) and then the Pq function proceeds as in 1.

See Section ‘Attributes and a Property for fp and pc p-groups’ for the attributes and property NuclearRank, MultiplierRank and IsCapable which may be applied to the group returned by Pq.

The following is one of the examples for the non-interactive Pq redone with the interactive version. Also, we set the option OutputLevel to 1 (see 6.2), in order to see the orders of the quotients of all the classes determined, and we set the InfoANUPQ level to 2 (see InfoANUPQ (3.3.1)), so that we catch the timing information.

Example

```gap
gap> F := FreeGroup("a", "b");; a := F.1;; b := F.2;;
gap> G := F / [a^4, b^4];
<fp group on the generators [ a, b ]>
gap> PqStart(G);
1
```
5.3.2 \textbf{PqEpimorphism (interactive)}

\texttt{\textbf{PqEpimorphism}(\textit{i: options})}
\texttt{(function)}
\texttt{\textbf{PqEpimorphism}(\textit{: options})}
\texttt{(function)}

Return, for the fp or pc group (let us call it \(F\)), of the \(i\)th or default interactive ANUPQ process, an epimorphism from \(F\) onto the \(p\)-quotient of \(F\) specified by \textit{options}; \(F\) must previously have been given (as first argument) to \texttt{PqStart} to start the interactive ANUPQ process (see \texttt{PqStart} (5.1.1)). Since the underlying interactions with the \texttt{pq} program effected by the interactive \texttt{PqEpimorphism} are identical to those effected by the interactive \texttt{Pq}, everything said regarding the requirements and behaviour of the interactive \texttt{Pq} function (see \texttt{Pq} (5.3.1)) is also the case for the interactive \texttt{PqEpimorphism}.

\textit{Note:} See Section ‘Attributes and a Property for fp and pc \(p\)-groups’ for the attributes and property \texttt{NuclearRank}, \texttt{MultiplicatorRank} and \texttt{IsCapable} which may be applied to the image group of the epimorphism returned by \texttt{PqEpimorphism}.

5.3.3 \textbf{PqPCover (interactive)}

\texttt{\textbf{PqPCover}(\textit{i: options})}
\texttt{(function)}
\texttt{\textbf{PqPCover}(\textit{: options})}
\texttt{(function)}

Return, for the fp or pc group of the \(i\)th or default interactive ANUPQ process, the \(p\)-covering group of the \(p\)-quotient \texttt{Pq(i : options)} or \texttt{Pq(: options)}, modulo the following:

1. If no pc presentation has yet been computed (the case immediately after the \texttt{PqStart} call initiating the process) and the group \(F\) of the process is already a \(p\)-group, in the sense that \texttt{HasIsPGroup(F)} and \texttt{IsPGroup(F)} is true, then

\begin{verbatim}
Prime
defaults to PrimePGroup(F), if not supplied and HasPrimePGroup(F) = true; and
ClassBound
defaults to PClassPGroup(F) if HasPClassPGroup(F) = true if not supplied, or to
the usual default of 63, otherwise.
\end{verbatim}

2. If a pc presentation has been computed and none of \textit{options} is \texttt{RedoPcp} or if no pc presentation has yet been computed but 1. does not apply then \texttt{PqPCover(i : options)}; is equivalent to:

\texttt{Pq(i : options);}
\texttt{PqPCover(i);}
3. If the RedoPcp option is supplied the current pc presentation is scrapped, and PqPcover proceeds as in 1. or 2. but without the RedoPcp option.

5.3.4 PqStandardPresentation (interactive)

\[\text{PqStandardPresentation}([i]: \text{options}) \] (function)
\[\text{StandardPresentation}([i]: \text{options}) \] (function)

return, for the \(i\)th or default interactive ANUPQ process, the \(p\)-quotient of the group \(F\) of the process, specified by \text{options}, as an \text{fp group} which has a standard presentation. Here \text{options} is a selection of the options from the following list (see Chapter ‘ANUPQ Options’ for detailed descriptions); this list is the same as for the non-interactive version of PqStandardPresentation except for the omission of options SetupFile and PqWorkspace (see PqStandardPresentation (4.2.1)).

- Prime := \(p\)
- \(p\)Quotient := \(Q\)
- ClassBound := \(n\)
- Exponent := \(n\)
- Metabelian
- GroupName := \(name\)
- OutputLevel := \(n\)
- StandardPresentationFile := \(filename\)

Unless \(F\) is a pc \(p\)-group, or the option Prime has been passed to a previous interactive function for the process to compute a \(p\)-quotient for \(F\), the user \textit{must} supply either the option Prime or the option \(p\)Quotient (if both Prime and \(p\)Quotient are supplied, the prime \(p\) is determined by applying PrimePGroup (see PrimePGroup (Reference: PrimePGroup) in the Reference Manual) to the value of \(p\)Quotient).

Taking one of the examples for the non-interactive version of StandardPresentation (see StandardPresentation (4.2.1)) that required two separate calls to the \(pq\) program, we now show how it can be done by setting up a dialogue with just the one \(pq\) process, using the interactive version of StandardPresentation:

```
Example

\textbf{gap}\> F4 := FreeGroup( "a", "b", "c", "d" );;
\textbf{gap}\> a := F4.1;; b := F4.2;; c := F4.3;; d := F4.4;;
\textbf{gap}\> G4 := F4 / [ b^4, b^2 / Comm(Comm (b, a), a), d^16, > a^16 / (c * d), b^8 / (d * c^4) ];
<fp group on the generators [ a, b, c, d ]>
\textbf{gap}\> SetInfoLevel(InfoANUPQ, 1); #Only essential Info please
\textbf{gap}\> PqStart(G4); #Start a new interactive process for a new group
\textbf{gap}\> K := Pq( 2 : Prime := 2, ClassBound := 1 ); #pq process no. is 2
<pc group of size 4 with 2 generators>
\textbf{gap}\> StandardPresentation( 2 : pQuotient := K, ClassBound := 14 );
<fp group with 53 generators>
```
Notes

In contrast to the function \texttt{Pq} (see \texttt{Pq (4.1.1)}) which returns a pc group, \texttt{PqStandardPresentation} or \texttt{StandardPresentation} returns an fp group. This is because the output is mainly used for isomorphism testing for which an fp group is enough. However, the presentation is a polycyclic presentation and if you need to do any further computation with this group (e.g. to find the order) you can use the function \texttt{PcGroupFpGroup} (see \texttt{PcGroupFpGroup} (Reference: \texttt{PcGroupFpGroup}) in the GAP Reference Manual) to form a pc group.

If the user does not supply a p-quotient Q via the \texttt{pQuotient} option, and the prime p is either supplied, stored, or F is a pc p-group, then a p-quotient Q is computed. (The value of the prime p is stored if passed initially to \texttt{PqStart} or to a subsequent interactive process.) Note that a stored value for pQuotient (from a prior call to \texttt{Pq}) does not have precedence over a value for the prime p. If the user does supply a p-quotient Q via the \texttt{pQuotient} option, the package \texttt{AutPGrp} is called to compute the automorphism group of Q; an error will occur that asks the user to install the package \texttt{AutPGrp} if the automorphism group cannot be computed.

If any of the interactive functions \texttt{PqStandardPresentation}, \texttt{StandardPresentation}, \texttt{EpimorphismPqStandardPresentation} or \texttt{EpimorphismStandardPresentation} has been called previously for an interactive process, a subsequent call to any of these functions for the same process returns the previously computed value. Note that all these functions compute both an epimorphism and an fp group and store the results in the \texttt{SPepi} and \texttt{SP} fields of the data record associated with the process. See the example for the interactive \texttt{EpimorphismStandardPresentation} (\texttt{EpimorphismStandardPresentation} (5.3.5)).

The attributes and property \texttt{NuclearRank}, \texttt{MultiplierRank} and \texttt{IsCapable} are set for the group returned by \texttt{PqStandardPresentation} or \texttt{StandardPresentation} (see Section ‘Attributes and a Property for fp and pc p-groups’).

\subsection*{5.3.5 EpimorphismPqStandardPresentation (interactive)}

\begin{verbatim}
▷ EpimorphismPqStandardPresentation([i]: options) (function)
▷ EpimorphismStandardPresentation([i]: options) (method)
\end{verbatim}

Each of the above functions accepts the same arguments and options as the interactive form of \texttt{StandardPresentation} (see \texttt{StandardPresentation} (5.3.4)) and returns an epimorphism from the fp or pc group F of the ith or default interactive ANUPQ process onto the finitely presented group given by a standard presentation, i.e. if S is the standard presentation computed for the p-quotient of F by \texttt{StandardPresentation} then \texttt{EpimorphismStandardPresentation} returns the epimorphism from F to the group with presentation S. The group F must have been given (as first argument) to \texttt{PqStart} to start the interactive ANUPQ process (see \texttt{PqStart} (5.1.1)).

Taking our earlier non-interactive example (see \texttt{EpimorphismPqStandardPresentation} (4.2.2)) and modifying it a little, we illustrate, as for the interactive \texttt{StandardPresentation} (see \texttt{StandardPresentation} (5.3.4)), how something that required two separate calls to the pq program can now be achieved with a dialogue with just one pq process. Also, observe that calls to one of the standard presentation functions (as mentioned in the notes of \texttt{StandardPresentation} (5.3.4)) computes and stores both an fp group with a standard presentation and an epimorphism; subsequent calls to a standard presentation function for the same process simply return the appropriate stored value.

\begin{verbatim}
Example

gap> F := FreeGroup(6, "F");;
gap> x := F.1;; y := F.2;; z := F.3;; w := F.4;; a := F.5;; b := F.6;;
\end{verbatim}
gap> R := [x^3 / w, y^3 / w * a^2 * b^2, w^3 / b,
> Comm (y, x) / z, Comm (z, x), Comm (z, y) / a, z^3];
> [F1^-3*F4^-1, F2^-3*F4^-1*F5^-1*F6^-2, F4^-3*F6^-1, F2^-1*F1^-1*F2*F1*F3^-1,
> F3^-1*F1^-1*F3*F1, F3^-1*F2^-1*F3*F2*F5^-1, F3*3]

gap> Q := F / R;
<fp group on the generators [F1, F2, F3, F4, F5, F6]>

gap> PqStart(Q);
3

gap> G := Pq(3 : Prime := 3, ClassBound := 3);
<pc group of size 729 with 6 generators>

gap> lev := InfoLevel(InfoANUPQ);; # Save current InfoANUPQ level
gap> SetInfoLevel(InfoANUPQ, 2); # To see computation times

It is not necessary to pass the 'Prime' option to
'EpimorphismStandardPresentation' since it was previously
passed to 'Pq':

gap> phi := EpimorphismStandardPresentation(3 : ClassBound := 3);
#I Class 1 3-quotient and its 3-covering group computed in 0.00 seconds
#I Order of GL subgroup is 48
#I No. of soluble autos is 0
#I dim U = 1 dim N = 3 dim M = 3
#I nice stabilizer with perm rep
#I Computing standard presentation for class 2 took 0.00 seconds
#I Computing standard presentation for class 3 took 0.01 seconds

gap> # Image of phi should be isomorphic to G ...

gap> # let's check the order is correct:

gap> Size(Image(phi));
729

gap> # 'StandardPresentation' and 'EpimorphismStandardPresentation'
behave like attributes, so no computation is done when
gap> # either is called again for the same process ...

gap> StandardPresentation(3 : ClassBound := 3);
<fp group of size 729 on the generators [f1, f2, f3, f4, f5, f6]>

gap> # No timing data was Info-ed since no computation was done

A very similar (essential details are the same) example to the above may be executed live, by typing: PqExample("EpimorphismStandardPresentation-i");.

Note: The notes for PqStandardPresentation or StandardPresentation (see PqStandardPresentation (5.3.4)) apply also to EpimorphismPqStandardPresentation or EpimorphismStandardPresentation except that their return value is an epimorphism onto an fp group, i.e. one should interpret the phrase “returns an fp group” as “returns an epimorphism onto an fp group” etc.

5.3.6 PqDescendants (interactive)
return for the pc group G of the ith or default interactive ANUPQ process, which must be of prime power order with a confluent pc presentation (see IsConfluent (Reference: IsConfluent for pc groups) in the GAP Reference Manual), a list of descendants (pc groups) of G. The group G is usually given as first argument to PqStart when starting the interactive ANUPQ process (see PqStart (5.1.1)). Alternatively, one may initiate the process with an fp group, use Pq interactively (see Pq (5.3.1)) to create a pc group and use PqSetPQuotientToGroup (see PqSetPQuotientToGroup (5.3.7)), which involves no computation, to set the pc group returned by Pq as the group of the process. Note that repeating a call to PqDescendants for the same interactive ANUPQ process simply returns the list of descendants originally calculated; a warning is emitted at InfoANUPQ level 1 reminding you of this should you do this.

After the colon, options a selection of the options listed for the non-interactive PqDescendants function (see PqDescendants (4.4.1)), should be given, separated by commas like record components (see Section Reference: Function Call With Options in the GAP Reference Manual), except that the options SetupFile or PqWorkspace are ignored by the interactive PqDescendants, i.e. the following options are recognised by the interactive PqDescendants function:

- `ClassBound := n`
- `Relators := rels`
- `OrderBound := n`
- `StepSize := n, StepSize := list`
- `RankInitialSegmentSubgroups := n`
- `SpaceEfficient`
- `CapableDescendants`
- `AllDescendants := false`
- `Exponent := n`
- `Metabelian`
- `GroupName := name`
- `SubList := sub`
- `BasicAlgorithm`
- `CustomiseOutput := rec`

Notes: The function PqDescendants uses the automorphism group of G which it computes via the package AutPGrp if the automorphism group of G is not already present. If AutPGrp is not installed an error may be raised. If the automorphism group of G is insoluble the pq program will call GAP together with the AutPGrp package for certain orbit-stabilizer calculations.

The attributes and property NuclearRank, MultiplicatorRank and IsCapable are set for each group of the list returned by PqDescendants (see Section ‘Attributes and a Property for fp and pc p-groups’).

Let us now repeat the examples previously given for the non-interactive PqDescendants, but this time with the interactive version of PqDescendants:
In the second example we compute all capable descendants of order 27 of the elementary abelian group of order 9.

In the third example, we compute all capable descendants of the elementary abelian group of order 5^2 which have exponent-5 class at most 3, exponent 5, and are metabelian.
\[\langle \text{pc group of size } 125 \text{ with } 3 \text{ generators} \rangle, \langle \text{pc group of size } 625 \text{ with } 4 \text{ generators} \rangle, \langle \text{pc group of size } 3125 \text{ with } 5 \text{ generators} \rangle \]

\begin{verbatim}
gap> List(des, d -> Length(PCentralSeries(d, 5)) - 1);
[2, 3, 3]
gap> List(des, d -> Length(DerivedSeries(d)));
[3, 3, 3]
gap> List(des, d -> Maximum(List(d, Order)));
[5, 5, 5]
\end{verbatim}

5.3.7 \textbf{PqSetPQuotientToGroup}

- \texttt{PqSetPQuotientToGroup(i)} (function)
- \texttt{PqSetPQuotientToGroup()} (function)

for the \textit{i}th or default interactive ANUPQ process, set the \textit{p}-quotient previously computed by the interactive \texttt{Pq} function (see \texttt{Pq} (5.3.1)) to be the group of the process. This function is supplied to enable the computation of descendants of a \textit{p}-quotient that is already known to the \texttt{pq} program, via the interactive \texttt{PqDescendants} function (see \texttt{PqDescendants} (5.3.6)), thus avoiding the need to re-submit it and have the \texttt{pq} program recompute it.

\textit{Note:} See the function \texttt{PqPGSetDescendantToPcp} (\texttt{PqPGSetDescendantToPcp} (5.9.4)) for a mechanism to make (the \textit{p}-cover of) a particular descendant the current group of the process.

The following example of the usage of \texttt{PqSetPQuotientToGroup}, which is essentially equivalent to what is obtained by running \texttt{PqExample("PqDescendants-1-i")}; redoes the first example of \texttt{PqDescendants} (5.3.6) (which computes the descendants of the Klein four group).

\begin{verbatim}
F := FreeGroup("a", "b");
procId := PqStart(F : Prime := 2);
procId := PqSetPQuotientToGroup(procId);
des := PqDescendants(procId : OrderBound := 6, ClassBound := 5);
Length(des);
List(des, Size);
List(des, d -> Length(PCentralSeries(d, 2)) - 1);
\end{verbatim}
5.4 Low-level Interactive ANUPQ functions based on menu items of the
pq program

The pq program has 5 menus, the details of which the reader will not normally need to know, but if she
wishes to know the details they may be found in the standalone manual: guide.dvi. Both guide.dvi and the pq program refer to the items of these 5 menus as “options”, which do not correspond in any way to the options used by any of the GAP functions that interface with the pq program.

Warning: The commands provided in this section are intended to provide something like the
interactive functionality one has when running the standalone, from within GAP. The pq standalone
in particular, its “advanced” menus) assumes some expertise of the user; doing the “wrong” thing can
cause the program to crash. While a number of safeguards have been provided in the GAP interface
to the pq program, these are not foolproof, and the user should exercise care and ensure pre-requisites
of the various commands are met.

5.5 General commands

The following commands either use a menu item from whatever menu is “current” for the pq program,
or have general application and are not associated with just one menu item of the pq program.

5.5.1 PqNrPcGenerators

▷ PqNrPcGenerators(i) (function)
▷ PqNrPcGenerators() (function)

for the i th or default interactive ANUPQ process, return the number of pc generators of the lower
exponent p-class quotient of the group currently determined by the process. This also applies if the pc
presentation is not consistent.

5.5.2 PqFactoredOrder

▷ PqFactoredOrder(i) (function)
▷ PqFactoredOrder() (function)

for the i th or default interactive ANUPQ process, return an integer pair $[p, n]$ where p is a
prime and n is the number of pc generators (see PqNrPcGenerators (5.5.1)) in the pc presentation
of the quotient group currently determined by the process. If this presentation is consistent, then p^n
is the order of the quotient group. Otherwise (if tails have been added but the necessary consistency
checks, relation collections, exponent law checks and redundant generator eliminations have not yet
been done), p^n is an upper bound for the order of the group.

5.5.3 PqOrder

▷ PqOrder(i) (function)
▷ PqOrder() (function)

for the i th or default interactive ANUPQ process, return p^n where $[p, n]$ is the pair as returned
by PqFactoredOrder (see PqFactoredOrder (5.5.2)).
5.5.4 PqPClass
▷ PqPClass(i)
▷ PqPClass()

for the ith or default interactive ANUPQ process, return the lower exponent p-class of the quotient group currently determined by the process.

5.5.5 PqWeight
▷ PqWeight(i, j)
▷ PqWeight(j)

for the ith or default interactive ANUPQ process, return the weight of the jth pc generator of the lower exponent p-class quotient of the group currently determined by the process, or fail if there is no such numbered pc generator.

5.5.6 PqCurrentGroup
▷ PqCurrentGroup(i)
▷ PqCurrentGroup()

for the ith or default interactive ANUPQ process, return the group whose pc presentation is determined by the process as a GAP pc group (either a lower exponent p-class quotient of the start group or the p-cover of such a quotient).

Notes: See Section ‘Attributes and a Property for fp and pc p-groups’ for the attributes and property NuclearRank, MultiplicatorRank and IsCapable which may be applied to the group returned by PqCurrentGroup.

5.5.7 PqDisplayPcPresentation
▷ PqDisplayPcPresentation(i: [OutputLevel := lev])
▷ PqDisplayPcPresentation(): [OutputLevel := lev])

for the ith or default interactive ANUPQ process, direct the pq program to display the pc presentation of the lower exponent p-class quotient of the group currently determined by the process.

Except if the last command communicating with the pq program was a p-group generation command (for which there is only a verbose output level), to set the amount of information this command displays you may wish to call PqSetOutputLevel first (see PqSetOutputLevel (5.5.8)), or equivalently pass the option OutputLevel (see 6.2).

Note: For those familiar with the pq program, PqDisplayPcPresentation performs menu item 4 of the current menu of the pq program.

5.5.8 PqSetOutputLevel
▷ PqSetOutputLevel(i, lev)
▷ PqSetOutputLevel(lev)

(function)
for the ith or default interactive ANUPQ process, direct the pq program to set the output level of the pq program to lev.

Note: For those familiar with the pq program, $PqSetOutputLevel$ performs menu item 5 of the main (or advanced) p-Quotient menu, or the Standard Presentation menu.

5.5.9 $PqEvaluateIdentities$

- $PqEvaluateIdentities(i: \ [Identities := funcs])$
- $PqEvaluateIdentities(\ : \ [Identities := funcs])$

for the ith or default interactive ANUPQ process, invoke the evaluation of identities defined by the Identities option, and eliminate any redundant pc generators formed. Since a previous value of Identities is saved in the data record of the process, it is unnecessary to pass the Identities if set previously.

Note: This function is mainly implemented at the GAP level. It does not correspond to a menu item of the pq program.

5.6 Commands from the Main p-Quotient menu

5.6.1 $PqPcPresentation$

- $PqPcPresentation(i: \ options)$
- $PqPcPresentation(\ : \ options)$

for the ith or default interactive ANUPQ process, direct the pq program to compute the pc presentation of the quotient (determined by $options$) of the group of the process, which for process i is stored as ANUPQData.io[i].group.

The possible $options$ are the same as for the interactive Pq (see Pq (5.3.1)) function, except for $RedoPcp$ (which, in any case, would be superfluous), namely: $Prime, ClassBound, Exponent, Relators, GroupName, Metabelian, Identities$ and $OutputLevel$ (see Chapter 'ANUPQ Options' for a detailed description for these options). The option $Prime$ is required unless already provided to $PqStart$.

Notes

The pc presentation is held by the pq program. In contrast to Pq (see Pq (5.3.1)), no GAP pc group is returned; see $PqCurrentGroup$ ($PqCurrentGroup$ (5.5.6)) if you need the corresponding GAP pc group.

$PqPcPresentation(i: \ options)$; is roughly equivalent to the following sequence of low-level commands:

```plaintext
PqPcPresentation(i: opts); #class 1 call
for c in [2 .. class] do
  PqNextClass(i);
od;
```

where $opts$ is $options$ except with the $ClassBound$ option set to 1, and $class$ is either the maximum class of a p-quotient of the group of the process or the user-supplied value of the option $ClassBound$ (whichever is smaller). If the Identities option has been set, both the first
PqPcPresentation class 1 call and the PqNextClass calls invoke PqEvaluateIdentities(i); as their final step.

For those familiar with the pq program, PqPcPresentation performs menu item 1 of the main p-Quotient menu.

5.6.2 PqSavePcPresentation

\[
PqSavePcPresentation(i, filename) \quad \text{(function)}
\]

\[
PqSavePcPresentation(filename) \quad \text{(function)}
\]

for the \(i\)th or default interactive ANUPQ process, direct the pq program to save the pc presentation previously computed for the quotient of the group of that process to the file with name \(filename\). If the first character of the string \(filename\) is not \(/\), \(filename\) is assumed to be the path of a writable file relative to the directory in which GAP was started. A saved file may be restored by PqRestorePcPresentation (see PqRestorePcPresentation (5.6.3)).

Note: For those familiar with the pq program, PqSavePcPresentation performs menu item 2 of the main p-Quotient menu.

5.6.3 PqRestorePcPresentation

\[
PqRestorePcPresentation(i, filename) \quad \text{(function)}
\]

\[
PqRestorePcPresentation(filename) \quad \text{(function)}
\]

for the \(i\)th or default interactive ANUPQ process, direct the pq program to restore the pc presentation previously saved to \(filename\), by PqSavePcPresentation (see PqSavePcPresentation (5.6.2)). If the first character of the string \(filename\) is not \(/\), \(filename\) is assumed to be the path of a readable file relative to the directory in which GAP was started.

Note: For those familiar with the pq program, PqRestorePcPresentation performs menu item 3 of the main p-Quotient menu.

5.6.4 PqNextClass

\[
PqNextClass(i: [QueueFactor]) \quad \text{(function)}
\]

\[
PqNextClass(): [QueueFactor] \quad \text{(function)}
\]

for the \(i\)th or default interactive ANUPQ process, direct the pq program to calculate the next class of ANUPQData.io[i].group.

PqNextClass accepts the option QueueFactor (see also 6.2) which should be a positive integer if automorphisms have been previously supplied. If the pq program requires a queue factor and none is supplied via the option QueueFactor a default of 15 is taken.

Notes
The single command: PqNextClass(i); is equivalent to executing

\[
\begin{align*}
PqComputePCover(i); \\
PqCollectDefiningRelations(i); \\
PqDoExponentChecks(i); \\
PqEliminateRedundantGenerators(i);
\end{align*}
\]
If the Identities option is set the \texttt{PqEliminateRedundantGenerators(i)}; step is essentially replaced by \texttt{PqEvaluateIdentities(i)}; (which invokes its own elimination of redundant generators).

For those familiar with the \texttt{pq} program, \texttt{PqNextClass} performs menu item 6 of the main \(p\)-Quotient menu.

5.6.5 \texttt{PqComputePCover}

\begin{itemize}
 \item \texttt{PqComputePCover(i)} (function)
 \item \texttt{PqComputePCover()} (function)
\end{itemize}

for the \(i\)th or default interactive \texttt{ANUPQ} process, directi, the \texttt{pq} program to compute the \(p\)-covering group of \texttt{ANUPQData.io[i].group}. In contrast to the function \texttt{PqPCover} (see \texttt{PqPCover (4.1.3)}), this function does not return a \texttt{GAP pc group}.

Notes
The single command: \texttt{PqComputePCover(i)}; is equivalent to executing

\begin{verbatim}
PqSetupTablesForNextClass(i);
PqTails(i, 0);
PqDoConsistencyChecks(i, 0, 0);
PqEliminateRedundantGenerators(i);
\end{verbatim}

For those familiar with the \texttt{pq} program, \texttt{PqComputePCover} performs menu item 7 of the main \(p\)-Quotient menu.

5.7 Commands from the Advanced \(p\)-Quotient menu

5.7.1 \texttt{PqCollect}

\begin{itemize}
 \item \texttt{PqCollect(i, word)} (function)
 \item \texttt{PqCollect(word)} (function)
\end{itemize}

for the \(i\)th or default interactive \texttt{ANUPQ} process, instruct the \texttt{pq} program to do a collection on \texttt{word}, a word in the current \(p\)c generators (the form of \texttt{word} required is described below). \texttt{PqCollect} returns the resulting word of the collection as a list of generator number, exponent pairs (the same form as the second allowed input form of \texttt{word}; see below).

The argument \texttt{word} may be input in either of the following ways:

1. \texttt{word} may be a string, where the \(i\)th \(p\)c generator is represented by \texttt{x\(i\)}, e.g. \texttt{"x3*x2^2*x1"}. This way is quite versatile as parentheses and left-normed commutators – using square brackets, in the same way as \texttt{PqGAPRelators} (see \texttt{PqGAPRelators (3.4.2)}) – are permitted; \texttt{word} is checked for correct syntax via \texttt{PqParseWord} (see \texttt{PqParseWord (3.4.3)}).

2. Otherwise, \texttt{word} must be a list of generator number, exponent pairs of integers, i.e. each pair represents a “syllable” so that \[[[3, 1], [2, 2], [1, 1]]\] represents the same word as that of the example given for the first allowed form of \texttt{word}.

Note: For those familiar with the \texttt{pq} program, \texttt{PqCollect} performs menu item 1 of the Advanced \(p\)-Quotient menu.
5.7.2 PqSolveEquation

- \(\text{PqSolveEquation}(i, \text{a, b}) \)
- \(\text{PqSolveEquation}(\text{a, b}) \)

for the \(i \)th or default interactive ANUPQ process, direct the pq program to solve \(a \ast x = b \) for \(x \), where \(a \) and \(b \) are words in the pc generators. For the representation of these words see the description of the function PqCollect (PqCollect (5.7.1)).

Note: For those familiar with the pq program, PqSolveEquation performs menu item 2 of the Advanced \(p \)-Quotient menu.

5.7.3 PqCommutator

- \(\text{PqCommutator}(i, \text{words, pow}) \)
- \(\text{PqCommutator}(\text{words, pow}) \)

for the \(i \)th or default interactive ANUPQ process, instruct the pq program to compute the left normed commutator of the list \(\text{words} \) of words in the current pc generators raised to the integer power \(\text{pow} \), and return the resulting word as a list of generator number, exponent pairs. The form required for each word of \(\text{words} \) is the same as that required for the \text{word} argument of PqCollect (see PqCollect (5.7.1)). The form of the output word is also the same as for PqCollect.

Note: For those familiar with the pq program, PqCommutator performs menu item 3 of the Advanced \(p \)-Quotient menu.

5.7.4 PqSetupTablesForNextClass

- \(\text{PqSetupTablesForNextClass}(i) \)
- \(\text{PqSetupTablesForNextClass}() \)

for the \(i \)th or default interactive ANUPQ process, direct the pq program to set up tables for the next class. As a side-effect, after PqSetupTablesForNextClass\((i)\) the value returned by PqPClass\((i)\) will be one more than it was previously.

Note: For those familiar with the pq program, PqSetupTablesForNextClass performs menu item 6 of the Advanced \(p \)-Quotient menu.

5.7.5 PqTails

- \(\text{PqTails}(i, \text{weight}) \)
- \(\text{PqTails}(\text{weight}) \)

for the \(i \)th or default interactive ANUPQ process, direct the pq program to compute and add tails of weight \(\text{weight} \) if \(\text{weight} \) is in the integer range \([2 \ldots \text{PqPClass}(i)]\) (assuming \(i \) is the number of the process, even in the default case) or for all weights if \(\text{weight} = 0 \).

If \(\text{weight} \) is non-zero, then tails that introduce new generators for only weight \(\text{weight} \) are computed and added, and in this case and if \(\text{weight} < \text{PqPClass}(i) \), it is assumed that the tails that introduce new generators for each weight from \(\text{PqPClass}(i) \) down to weight \(\text{weight} + 1 \) have already been added. You may wish to call PqSetMetabelian (see PqSetMetabelian (5.7.16)) prior to calling PqTails.
Notes
For its use in the context of finding the next class see PqNextClass (5.6.4); in particular, a call to PqSetupTablesForNextClass (see PqSetupTablesForNextClass (5.7.4)) needs to have been made prior to calling PqTails.

The single command: PqTails(i, weight); is equivalent to

\[
\begin{align*}
PqComputeTails(i, weight); \\
PqAddTails(i, weight);
\end{align*}
\]

For those familiar with the pq program, PqTails uses menu item 7 of the Advanced \(p\)-Quotient menu.

5.7.6 PqComputeTails

\[
\begin{align*}
PqComputeTails(i, weight) & \quad \text{(function)} \\
PqComputeTails(weight) & \quad \text{(function)}
\end{align*}
\]

for the \(i\)th or default interactive ANUPQ process, direct the pq program to compute tails of weight \(weight\) if \(weight\) is in the integer range \([2 .. \text{PqPClass}(i)]\) (assuming \(i\) is the number of the process, even in the default case) or for all weights if \(weight = 0\). See PqTails (PqTails (5.7.5)) for more details.

Note: For those familiar with the pq program, PqComputeTails uses menu item 7 of the Advanced \(p\)-Quotient menu.

5.7.7 PqAddTails

\[
\begin{align*}
PqAddTails(i, weight) & \quad \text{(function)} \\
PqAddTails(weight) & \quad \text{(function)}
\end{align*}
\]

for the \(i\)th or default interactive ANUPQ process, direct the pq program to add the tails of weight \(weight\), previously computed by PqComputeTails (see PqComputeTails (5.7.6)), if \(weight\) is in the integer range \([2 .. \text{PqPClass}(i)]\) (assuming \(i\) is the number of the process, even in the default case) or for all weights if \(weight = 0\). See PqTails (PqTails (5.7.5)) for more details.

Note: For those familiar with the pq program, PqAddTails uses menu item 7 of the Advanced \(p\)-Quotient menu.

5.7.8 PqDoConsistencyChecks

\[
\begin{align*}
PqDoConsistencyChecks(i, weight, type) & \quad \text{(function)} \\
PqDoConsistencyChecks(weight, type) & \quad \text{(function)}
\end{align*}
\]

for the \(i\)th or default interactive ANUPQ process, do consistency checks for weight \(weight\) if \(weight\) is in the integer range \([3 .. \text{PqPClass}(i)]\) (assuming \(i\) is the number of the process) or for all weights if \(weight = 0\), and for type \(type\) if \(type\) is in the range \([1, 2, 3]\) (see below) or for all types if \(type = 0\). (For its use in the context of finding the next class see PqNextClass (5.6.4).)

The \(type\) of a consistency check is defined as follows. PqDoConsistencyChecks(i, weight, type) for weight in \([3 .. \text{PqPClass}(i)]\) and the given value of type invokes the equivalent of the following PqDoConsistencyCheck calls (see PqDoConsistencyCheck (5.7.17)):
type = 1:
PqDoConsistencyCheck(i, a, a, a) checks $2 \cdot \text{PqWeight}(i, a) + 1 = \text{weight}$, for pc generators of index a.

type = 2:
PqDoConsistencyCheck(i, b, b, a) checks for pc generators of indices b, a satisfying both $b > a$ and $\text{PqWeight}(i, b) + \text{PqWeight}(i, a) + 1 = \text{weight}$.

type = 3:
PqDoConsistencyCheck(i, c, b, a) checks for pc generators of indices c, b, a satisfying $c > b > a$ and the sum of the weights of these generators equals weight.

Notes

PqWeight(i, j) returns the weight of the jth pc generator, for process i (see PqWeight (5.5.5)).

It is assumed that tails for the given weight (or weights) have already been added (see PqTails (5.7.5)).

For those familiar with the pq program, PqDoConsistencyChecks performs menu item 8 of the Advanced p-Quotient menu.

5.7.9 PqCollectDefiningRelations

▷ PqCollectDefiningRelations(i) (function)
▷ PqCollectDefiningRelations() (function)

for the i th or default interactive ANUPQ process, direct the pq program to collect the images of the defining relations of the original fp group of the process, with respect to the current pc presentation, in the context of finding the next class (see PqNextClass (5.6.4)). If the tails operation is not complete then the relations may be evaluated incorrectly.

Note: For those familiar with the pq program, PqCollectDefiningRelations performs menu item 9 of the Advanced p-Quotient menu.

5.7.10 PqCollectWordInDefiningGenerators

▷ PqCollectWordInDefiningGenerators(i, word) (function)
▷ PqCollectWordInDefiningGenerators(word) (function)

for the i th or default interactive ANUPQ process, take a user-defined word word in the defining generators of the original presentation of the fp or pc group of the process. Each generator is mapped into the current pc presentation, and the resulting word is collected with respect to the current pc presentation. The result of the collection is returned as a list of generator number, exponent pairs.

The word argument may be input in either of the two ways described for PqCollect (see PqCollect (5.7.1)).

Note: For those familiar with the pq program, PqCollectDefiningGenerators performs menu item 23 of the Advanced p-Quotient menu.
5.7.11 PqCommutatorDefiningGenerators

- PqCommutatorDefiningGenerators\(i\), \(\text{words, pow}\) (function)
- PqCommutatorDefiningGenerators\(\text{words, pow}\) (function)

for the \(i\)th or default interactive ANUPQ process, take a list \(\text{words}\) of user-defined words in the defining generators of the original presentation of the fp or pc group of the process, and an integer power \(\text{pow}\). Each generator is mapped into the current pc presentation. The list \(\text{words}\) is interpreted as a left-normed commutator which is then raised to \(\text{pow}\) and collected with respect to the current pc presentation. The result of the collection is returned as a list of generator number, exponent pairs.

Note: For those familiar with the pq program, PqCommutatorDefiningGenerators performs menu item 24 of the Advanced \(p\)-Quotient menu.

5.7.12 PqDoExponentChecks

- PqDoExponentChecks\(i: \left\{ \text{Bounds := list} \right\}\) (function)
- PqDoExponentChecks\left\{ \text{Bounds := list} \right\} (function)

for the \(i\)th or default interactive ANUPQ process, direct the pq program to do exponent checks for weights (inclusively) between the bounds of \(\text{Bounds}\) or for all weights if \(\text{Bounds}\) is not given. The value \(\text{list}\) of \(\text{Bounds}\) (assuming the interactive process is numbered \(i\)) should be a list of two integers \(\text{low, high}\) satisfying \(1 \leq \text{low} \leq \text{high} \leq \text{PqPClass}(i)\) (see PqPClass (5.5.4)). If no exponent law has been specified, no exponent checks are performed.

Note: For those familiar with the pq program, PqDoExponentChecks performs menu item 10 of the Advanced \(p\)-Quotient menu.

5.7.13 PqEliminateRedundantGenerators

- PqEliminateRedundantGenerators\(i\) (function)
- PqEliminateRedundantGenerators() (function)

for the \(i\)th or default interactive ANUPQ process, direct the pq program to eliminate redundant generators of the current \(p\)-quotient.

Note: For those familiar with the pq program, PqEliminateRedundantGenerators performs menu item 11 of the Advanced \(p\)-Quotient menu.

5.7.14 PqRevertToPreviousClass

- PqRevertToPreviousClass\(i\) (function)
- PqRevertToPreviousClass() (function)

for the \(i\)th or default interactive ANUPQ process, direct the pq program to abandon the current class and revert to the previous class.

Note: For those familiar with the pq program, PqRevertToPreviousClass performs menu item 12 of the Advanced \(p\)-Quotient menu.
5.7.15 PqSetMaximalOccurrences

\[\text{PqSetMaximalOccurrences}(i, \text{noccur}) \quad \text{(function)} \]
\[\text{PqSetMaximalOccurrences}(\text{noccur}) \quad \text{(function)} \]

for the \(i\)th or default interactive ANUPQ process, direct the pq program to set maximal occurrences of the weight 1 generators in the definitions of pcp generators of the group of the process. This can be used to avoid the definition of generators of which one knows for theoretical reasons that they would be eliminated later on.

The argument \(\text{noccur}\) must be a list of non-negative integers of length the number of weight 1 generators (i.e.\ the rank of the class 1 \(p\)-quotient of the group of the process). An entry of 0 for a particular generator indicates that there is no limit on the number of occurrences for the generator.

Note: For those familiar with the \(\text{pq}\) program, \(\text{PqSetMaximalOccurrences}\) performs menu item 13 of the Advanced \(p\)-Quotient menu.

5.7.16 PqSetMetabelian

\[\text{PqSetMetabelian}(i) \quad \text{(function)} \]
\[\text{PqSetMetabelian}() \quad \text{(function)} \]

for the \(i\)th or default interactive ANUPQ process, direct the \(\text{pq}\) program to enforce metabelian-ness.

Note: For those familiar with the \(\text{pq}\) program, \(\text{PqSetMetabelian}\) performs menu item 14 of the Advanced \(p\)-Quotient menu.

5.7.17 PqDoConsistencyCheck

\[\text{PqDoConsistencyCheck}(i, c, b, a) \quad \text{(function)} \]
\[\text{PqDoConsistencyCheck}(c, b, a) \quad \text{(function)} \]
\[\text{PqJacobi}(i, c, b, a) \quad \text{(function)} \]
\[\text{PqJacobi}(c, b, a) \quad \text{(function)} \]

for the \(i\)th or default interactive ANUPQ process, direct the \(\text{pq}\) program to do the consistency check for the pc generators with indices \(c\), \(b\), \(a\) which should be non-increasing positive integers, i.e.\ \(c \geq b \geq a\).

There are 3 types of consistency checks:

\[
\begin{align*}
(a^n)a &= a(a^n) \quad \text{(Type 1)} \\
(b^n)a &= b^{(n-1)}(ba), b(a^n) = (ba)a^{(n-1)} \quad \text{(Type 2)} \\
c(ba) &= (cb)a \quad \text{(Type 3)}
\end{align*}
\]

The reason some people talk about Jacobi relations instead of consistency checks becomes clear when one looks at the consistency check of type 3:

\[
\begin{align*}
c(ba) &= ac[c,a][b,a] = abc[c,a][c,a][b,a][b,a] = \ldots \\
(cb)a &= bc[c,b][a] = ab[b,a][c,c][c,b][c,b][b,a] \\
&= abc[b,a][b,a][c,a][c,c][c,b][c,b][b,a] = \ldots
\end{align*}
\]
Each collection would normally carry on further. But one can see already that no other commutators of weight 3 will occur. After all terms of weight one and weight two have been moved to the left we end up with:

\[abc[b,a][c,a][c,b][c,a,b] \ldots \]
\[= abc[b,a][c,a][c,b][c,a][b,a,c] \ldots \]

Modulo terms of weight 4 this is equivalent to

\[[c,a,b][b,c,a][a,b,c] = 1 \]

which is the Jacobi identity.

See also PqDoConsistencyChecks (PqDoConsistencyChecks (5.7.8)).

Note: For those familiar with the pq program, PqDoConsistencyCheck and PqJacobi perform menu item 15 of the Advanced p-Quotient menu.

5.7.18 PqCompact

▷ PqCompact(i) (function)
▷ PqCompact() (function)

for the i th or default interactive ANUPQ process, direct the pq program to do a compaction of its work space. This function is safe to perform only at certain points in time.

Note: For those familiar with the pq program, PqCompact performs menu item 16 of the Advanced p-Quotient menu.

5.7.19 PqEchelonise

▷ PqEchelonise(i) (function)
▷ PqEchelonise() (function)

for the i th or default interactive ANUPQ process, direct the pq program to echelonise the word most recently collected by PqCollect or PqCommutator against the relations of the current pc presentation, and return the number of the generator made redundant or fail if no generator was made redundant. A call to PqCollect (see PqCollect (5.7.1)) or PqCommutator (see PqCommutator (5.7.3)) needs to be performed prior to using this command.

Note: For those familiar with the pq program, PqEchelonise performs menu item 17 of the Advanced p-Quotient menu.

5.7.20 PqSupplyAutomorphisms

▷ PqSupplyAutomorphisms(i, mlist) (function)
▷ PqSupplyAutomorphisms(mlist) (function)

for the i th or default interactive ANUPQ process, supply the automorphism data provided by the list mlist of matrices with non-negative integer coefficients. Each matrix in mlist describes one automorphism in the following way.

- The rows of each matrix correspond to the pc generators of weight one.
• Each row is the exponent vector of the image of the corresponding weight one generator under
the respective automorphism.

Note: For those familiar with the pq program, PqSupplyAutomorphisms uses menu item 18 of the
Advanced p-Quotient menu.

5.7.21 PqExtendAutomorphisms

- **PqExtendAutomorphisms**

 - **PqExtendAutomorphisms**(i)
 - **PqExtendAutomorphisms**()

 for the ith or default interactive ANUPQ process, direct the pq program to extend automorphisms
 of the p-quotient of the previous class to the p-quotient of the present class.

 Note: For those familiar with the pq program, PqExtendAutomorphisms uses menu item 18 of
 the Advanced p-Quotient menu.

5.7.22 PqApplyAutomorphisms

- **PqApplyAutomorphisms**(i, qfac)
- **PqApplyAutomorphisms**(qfac)

 for the ith or default interactive ANUPQ process, direct the pq program to apply automorphisms;
 $qfac$ is the queue factor e.g. 15.

 Note: For those familiar with the pq program, PqCloseRelations performs menu item 19 of
 the Advanced p-Quotient menu.

5.7.23 PqDisplayStructure

- **PqDisplayStructure**(i: [Bounds := list])
- **PqDisplayStructure**(): [Bounds := list]

 for the ith or default interactive ANUPQ process, direct the pq program to display the structure
 for the pcp generators numbered (inclusively) between the bounds of Bounds or for all generators if
 Bounds is not given. The value list of Bounds (assuming the interactive process is numbered i)
 should be a list of two integers low, high satisfying $1 \leq low \leq high \leq PqNrPcGenerators(i)$
 (see PqNrPcGenerators (5.5.1)). PqDisplayStructure also accepts the option OutputLevel (see
 6.2).

 Explanation of output

 New generators are defined as commutators of previous generators and generators of class 1 or
 as p-th powers of generators that have themselves been defined as p-th powers. A generator is never
 defined as p-th power of a commutator.

 Therefore, there are two cases: all the numbers on the righthand side are either the same or they
differ. Below, g_i refers to the ith defining generator.

 - If the righthand side numbers are all the same, then the generator is a p-th power (of a p-th
 power of a p-th power, etc.). The number of repeated digits say how often a p-th power has to
 be taken.
In the following example, the generator number 31 is the eleventh power of generator 17 which
in turn is an eleventh power and so on:
\begin{verbatim}
17^{11} = 1 1 1 1 1
\end{verbatim}
So generator 31 is obtained by taking the eleventh power of generator 1 five times.

• If the numbers are not all the same, the generator is defined by a commutator. If the first two
generator numbers differ, the generator is defined as a left-normed commutator of the weight
one generators, e.g.
\begin{verbatim}
[11, 1] = 2 1 1 1 1
\end{verbatim}
Here, generator 19 is defined as the commutator of generator 11 and generator 1 which is the same as the left-normed commutator
\([x_2, x_1, x_1, x_1, x_1]\). One can check this by tracing back the definition of generator 11
until one gets to a generator of class 1.

• If the first two generator numbers are identical, then the left most component of the left-normed
commutator is a \(p\)-th power, e.g.
\begin{verbatim}
[14, 1] = 1 1 2 1 1
\end{verbatim}
In this example, generator 25 is defined as commutator of generator 14 and generator 1. The
left-normed commutator is
\[
[(x_1^{11})^{11}, x_2, x_1, x_1]
\]
Again, this can be verified by tracing back the definitions.

Note: For those familiar with the \(pq\) program, \texttt{PqDisplayStructure} performs menu item 20 of the
Advanced \(p\)-Quotient menu.

5.7.24 \texttt{PqDisplayAutomorphisms}

\begin{verbatim}
PqDisplayAutomorphisms(i: [Bounds := list])
\end{verbatim}

\begin{verbatim}
PqDisplayAutomorphisms(: [Bounds := list])
\end{verbatim}

for the \(i\)th or default interactive \texttt{ANUPQ} process, direct the \(pq\) program to display the auto-
morphism actions on the pcp generators numbered (inclusive) between the bounds of \texttt{Bounds} or
for all generators if \texttt{Bounds} is not given. The value \texttt{list} of \texttt{Bounds} (assuming the interactive
process is numbered \texttt{i}) should be a list of two integers \(low, high\) satisfying
\(1 \leq low \leq high \leq \texttt{PqNrPcGenerators(i)}\) (see \texttt{PqNrPcGenerators (5.5.1)}). \texttt{PqDisplayStructure} also accepts the
option \texttt{OutputLevel} (see 6.2).

Note: For those familiar with the \(pq\) program, \texttt{PqDisplayAutomorphisms} performs menu item
21 of the Advanced \(p\)-Quotient menu.

5.7.25 \texttt{PqWritePcPresentation}

\begin{verbatim}
PqWritePcPresentation(i, filename)
\end{verbatim}

\begin{verbatim}
PqWritePcPresentation(filename)
\end{verbatim}

for the \(i\)th or default interactive \texttt{ANUPQ} process, direct the \(pq\) program to write a pc presentation
of a previously-computed quotient of the group of that process, to the file with name \texttt{filename}.
Here the group of a process is the one given as first argument when \texttt{PqStart} was called to initiate
that process (for process i the group is stored as ANUPQData.io[i].group). If the first character of the string filename is not /, filename is assumed to be the path of a writable file relative to the directory in which GAP was started. If a pc presentation has not been previously computed by the pq program, then pq is called to compute it first, effectively invoking PqPcPresentation (see PqPcPresentation (5.6.1)).

Note: For those familiar with the pq program, PqPcWritePresentation performs menu item 25 of the Advanced p-Quotient menu.

5.8 Commands from the Standard Presentation menu

5.8.1 PqSPComputePcpAndPCover

\[\text{PqSPComputePcpAndPCover}(i: \text{options})\]
\[\text{PqSPComputePcpAndPCover}(: \text{options})\]

for the i\text{th} or default interactive ANUPQ process, directs the pq program to compute for the group of that process a pc presentation up to the p-quotient of maximum class or the value of the option ClassBound and the p-cover of that quotient, and sets up tabular information required for computation of a standard presentation. Here the group of a process is the one given as first argument when PqStart was called to initiate that process (for process i the group is stored as ANUPQData.io[i].group).

The possible options are Prime, ClassBound, Relators, Exponent, Metabelian and OutputLevel (see Chapter ‘ANUPQ Options’ for detailed descriptions of these options). The option Prime is normally determined via PrimePGroup, and so is not required unless the group doesn’t know it’s a p-group and HasPrimePGroup returns false.

Note: For those familiar with the pq program, PqSPComputePcpAndPCover performs option 1 of the Standard Presentation menu.

5.8.2 PqSPStandardPresentation

\[\text{PqSPStandardPresentation}(i[, mlist]: \text{[options]}\)]
\[\text{PqSPStandardPresentation}([mlist]: \text{[options]}\)]

for the i\text{th} or default interactive ANUPQ process, inputs data given by options to compute a standard presentation for the group of that process. If argument mlist is given it is assumed to be the automorphism group data required. Otherwise it is assumed that a call to either Pq (see Pq (5.3.1)) or PqEpimorphism (see PqEpimorphism (5.3.2)) has generated a p-quotient and that GAP can compute its automorphism group from which the necessary automorphism group data can be derived. The group of the process is the one given as first argument when PqStart was called to initiate the process (for process i the group is stored as ANUPQData.io[i].group and the p-quotient if existent is stored as ANUPQData.io[i].pQuotient). If mlist is not given and a p-quotient of the group has not been previously computed a class 1 p-quotient is computed.

PqSPStandardPresentation accepts three options, all optional:

- ClassBound := n
- PcgsAutomorphisms
• StandardPresentationFile := filename

If ClassBound is omitted it defaults to 63.

Detailed descriptions of the above options may be found in Chapter ‘ANUPQ Options’.

Note: For those familiar with the pq program, PqSPcPresentation performs menu item 2 of the Standard Presentation menu.

5.8.3 PqSPSavePresentation

▷ PqSPSavePresentation(i, filename) (function)
▷ PqSPSavePresentation(filename) (function)

for the i th or default interactive ANUPQ process, directs the pq program to save the standard presentation previously computed for the group of that process to the file with name filename, where the group of a process is the one given as first argument when PqStart was called to initiate that process. If the first character of the string filename is not /, filename is assumed to be the path of a writable file relative to the directory in which GAP was started.

Note: For those familiar with the pq program, PqSPSavePresentation performs menu item 3 of the Standard Presentation menu.

5.8.4 PqSPCompareTwoFilePresentations

▷ PqSPCompareTwoFilePresentations(i, f1, f2) (function)
▷ PqSPCompareTwoFilePresentations(f1, f2) (function)

for the i th or default interactive ANUPQ process, direct the pq program to compare the presentations in the files with names f1 and f2 and returns true if they are identical and false otherwise. For each of the strings f1 and f2, if the first character is not a / then it is assumed to be the path of a readable file relative to the directory in which GAP was started.

Notes

The presentations in files f1 and f2 must have been generated by the pq program but they do not need to be standard presentations. If If the presentations in files f1 and f2 have been generated by PqSPStandardPresentation (see PqSPStandardPresentation (5.8.2)) then a false response from PqSPCompareTwoFilePresentations says the groups defined by those presentations are not isomorphic.

For those familiar with the pq program, PqSPCompareTwoFilePresentations performs menu item 6 of the Standard Presentation menu.

5.8.5 PqSPIsomorphism

▷ PqSPIsomorphism(i) (function)
▷ PqSPIsomorphism() (function)

for the i th or default interactive ANUPQ process, direct the pq program to compute the isomorphism mapping from the p-group of the process to its standard presentation. This function provides a description only; for a GAP object, use EpimorphismStandardPresentation (see EpimorphismStandardPresentation (5.3.5)).
5.9 Commands from the Main p-Group Generation menu

Note that the p-group generation commands can only be applied once the pq program has produced a pc presentation of some quotient group of the “group of the process”.

5.9.1 PqPGSupplyAutomorphisms

\[
PqPGSupplyAutomorphisms(i[, mlist]: \text{options})
\]

for the ith or default interactive ANUPQ process, supply the pq program with the automorphism group data needed for the current quotient of the group of that process (for process i the group is stored as ANUPQData.io[i].group). For a description of the format of $mlist$ see PqSupplyAutomorphisms (5.7.20). The options possible are NumberOfSolubleAutomorphisms and RelativeOrders. (Detailed descriptions of these options may be found in Chapter ‘ANUPQ Options’.)

Note: For those familiar with the pq program, PqPGSupplyAutomorphisms performs menu item 1 of the main p-Group Generation menu.

5.9.2 PqPGExtendAutomorphisms

\[
PqPGExtendAutomorphisms(i)
PqPGExtendAutomorphisms()
\]

for the ith or default interactive ANUPQ process, direct the pq program to compute the extensions of the automorphisms of the p-quotient of the previous class to the p-quotient of the current class. You may wish to set the InfoLevel of InfoANUPQ to 2 (or more) in order to see the output from the pq program (see InfoANUPQ (3.3.1)).

Note: For those familiar with the pq program, PqPGExtendAutomorphisms performs menu item 2 of the main or advanced p-Group Generation menu.

5.9.3 PqPGConstructDescendants

\[
PqPGConstructDescendants(i: \text{options})
PqPGConstructDescendants(): \text{options}
\]

for the ith or default interactive ANUPQ process, direct the pq program to construct descendants prescribed by $options$, and return the number of descendants constructed (compare function PqDescendants (4.4.1) which returns the list of descendants). The options possible are ClassBound, OrderBound, StepSize, PcgsAutomorphisms, RankInitialSegmentSubgroups, SpaceEfficient, CapableDescendants, AllDescendants, Exponent, Metabelian,
BasicAlgorithm, CustomiseOutput. (Detailed descriptions of these options may be found in Chapter ‘ANUPQ Options’.)

PqPGConstructDescendants requires that the pq program has previously computed a pc presentation and a p-cover for a p-quotient of some class of the group of the process.

Note: For those familiar with the pq program, PqPGConstructDescendants performs menu item 5 of the main p-Group Generation menu.

5.9.4 PqPGSetDescendantToPcp (with class)

- PqPGSetDescendantToPcp(i, cls, n) (function)
- PqPGSetDescendantToPcp(cls, n) (function)
- PqPGSetDescendantToPcp(i: [Filename := name]) (function)
- PqPGSetDescendantToPcp(: [Filename := name]) (function)
- PqPGRestoreDescendantFromFile(i, cls, n) (function)
- PqPGRestoreDescendantFromFile(cls, n) (function)
- PqPGRestoreDescendantFromFile(i: [Filename := name]) (function)
- PqPGRestoreDescendantFromFile(: [Filename := name]) (function)

for the i^th or default interactive ANUPQ process, direct the pq program to restore group n of class cls from a temporary file, where cls and n are positive integers, or the group stored in name. PqPGSetDescendantToPcp and PqPGRestoreDescendantFromFile are synonyms; they make sense only after a prior call to construct descendants by say PqPGConstructDescendants (see PqPGConstructDescendants (5.9.3)) or the interactive PqDescendants (see PqDescendants (5.3.6)). In the Filename option forms, the option defaults to the last filename in which a presentation was stored by the pq program.

Notes

Since the PqPGSetDescendantToPcp and PqPGRestoreDescendantFromFile are intended to be used in calculation of further descendants the pq program computes the p-cover of the restored descendant. Hence, PqCurrentGroup used immediately after one of these commands returns the p-cover of the restored descendant rather than the descendant itself.

For those familiar with the pq program, PqPGSetDescendantToPcp and PqPGRestoreDescendantFromFile perform menu item 3 of the main or advanced p-Group Generation menu.

5.10 Commands from the Advanced p-Group Generation menu

The functions below perform the component algorithms of PqPGConstructDescendants (see PqPGConstructDescendants (5.9.3)). You can get some idea of their usage by trying PqExample("Nott-APG-Rel-i"); You can get some idea of the breakdown of PqPGConstructDescendants into these functions by comparing the previous output with PqExample("Nott-PG-Rel-i");

These functions are intended for use only by "experts"; please contact the authors of the package if you genuinely have a need for them and need any amplified descriptions.
5.10.1 PqAPGDegree

▷ PqAPGDegree(i, step, rank: \{Exponent := n\})
▷ PqAPGDegree(step, rank: \{Exponent := n\})

for the \(i\)th or default interactive ANUPQ process, direct the \(pq\) program to invoke menu item 6 of the Advanced \(p\)-Group Generation menu. Here the step-size \(step\) and the rank \(rank\) are positive integers and are the arguments required by the \(pq\) program. See 6.2 for the one recognised option Exponent.

5.10.2 PqAPGPermutations

▷ PqAPGPermutations(i: options)
▷ PqAPGPermutations(): options)

for the \(i\)th or default interactive ANUPQ process, direct the \(pq\) program to perform menu item 7 of the Advanced \(p\)-Group Generation menu. Here the options \(options\) recognised are \texttt{PcgsAutomorphisms}, \texttt{SpaceEfficient}, \texttt{PrintAutomorphisms} and \texttt{PrintPermutations} (see Chapter ‘ANUPQ Options’ for details).

5.10.3 PqAPGOrbits

▷ PqAPGOrbits(i: options)
▷ PqAPGOrbits(): options)

for the \(i\)th or default interactive ANUPQ process, direct the \(pq\) to perform menu item 8 of the Advanced \(p\)-Group Generation menu.

Here the options \(options\) recognised are \texttt{PcgsAutomorphisms}, \texttt{SpaceEfficient} and \texttt{CustomiseOutput} (see Chapter ‘ANUPQ Options’ for details). For the \texttt{CustomiseOutput} option only the setting of the orbit is recognised (all other fields if set are ignored).

5.10.4 PqAPGOrbitRepresentatives

▷ PqAPGOrbitRepresentatives(i: options)
▷ PqAPGOrbitRepresentatives(): options)

for the \(i\)th or default interactive ANUPQ process, direct the \(pq\) to perform item 9 of the Advanced \(p\)-Group Generation menu.

The options \(options\) may be any selection of the following: \texttt{PcgsAutomorphisms}, \texttt{SpaceEfficient}, \texttt{Exponent}, \texttt{Metabelian}, \texttt{CapableDescendants} (or \texttt{AllDescendants}), \texttt{CustomiseOutput} (where only the group and autgroup fields are recognised) and \texttt{Filename} (see Chapter ‘ANUPQ Options’ for details). If \texttt{Filename} is omitted the reduced \(p\)-cover is written to the file "redPCover" in the temporary directory whose name is stored in ANUPQData.tmpdir.

5.10.5 PqAPGSingleStage

▷ PqAPGSingleStage(i: options)
▷ PqAPGSingleStage(): options)
for the ith or default interactive ANUPQ process, direct the pq to perform option 5 of the Advanced p-Group Generation menu.

The possible options are StepSize, PcgAutomorphisms, RankInitialSegmentSubgroups, SpaceEfficient, CapableDescendants, AllDescendants, Exponent, Metabelian, BasicAlgorithm and CustomiseOutput. (Detailed descriptions of these options may be found in Chapter ‘ANUPQ Options’.)

5.11 Primitive Interactive ANUPQ Process Read/Write Functions

For those familiar with using the pq program as a standalone we provide primitive read/write tools to communicate directly with an interactive ANUPQ process, started via PqStart. For the most part, it is up to the user to translate the output strings from pq program into a form useful in GAP.

5.11.1 PqRead

▷ PqRead(i) (function)
▷ PqRead() (function)

read a complete line of ANUPQ output, from the ith or default interactive ANUPQ process, if there is output to be read and returns fail otherwise. When successful, the line is returned as a string complete with trailing newline, colon, or question-mark character. Please note that it is possible to be “too quick” (i.e. the return can be fail purely because the output from ANUPQ is not there yet), but if PqRead finds any output at all, it waits for a complete line. PqRead also writes the line read via Info at InfoANUPQ level 2. It doesn’t try to distinguish banner and menu output from other output of the pq program.

5.11.2 PqReadAll

▷ PqReadAll(i) (function)
▷ PqReadAll() (function)

read and return as many complete lines of ANUPQ output, from the ith or default interactive ANUPQ process, as there are to be read, at the time of the call, as a list of strings with any trailing newlines removed and returns the empty list otherwise. PqReadAll also writes each line read via Info at InfoANUPQ level 2. It doesn’t try to distinguish banner and menu output from other output of the pq program. Whenever PqReadAll finds only a partial line, it waits for the complete line, thus increasing the probability that it has captured all the output to be had from ANUPQ.

5.11.3 PqReadUntil

▷ PqReadUntil(i, IsMyLine) (function)
▷ PqReadUntil(IsMyLine) (function)
▷ PqReadUntil(i, IsMyLine, Modify) (function)
▷ PqReadUntil(IsMyLine, Modify) (function)
read complete lines of ANUPQ output, from the \(i \)th or default interactive ANUPQ process, “chomps” them (i.e. removes any trailing newline character), emits them to Info at InfoANUPQ level 2 (without trying to distinguish banner and menu output from other output of the pq program), and applies the function \(\text{Modify} \) (where \(\text{Modify} \) is just the identity map/function for the first two forms) until a “chomped” line \(\text{line} \) for which \(\text{IsMyLine}(\text{Modify}(\text{line})) \) is true. \(\text{PqReadUntil} \) returns the list of \(\text{Modify} \)-ed “chomped” lines read.

Notes: When provided by the user, \(\text{Modify} \) should be a function that accepts a single string argument.

\(\text{IsMyLine} \) should be a function that is able to accept the output of \(\text{Modify} \) (or take a single string argument when \(\text{Modify} \) is not provided) and should return a boolean.

If \(\text{IsMyLine}(\text{Modify}(\text{line})) \) is never true, \(\text{PqReadUntil} \) will wait indefinitely.

5.11.4 \textbf{PqWrite}

\begin{itemize}
\item \[\text{PqWrite}(i, \text{string})\] (function)
\item \[\text{PqWrite}(\text{string})\] (function)
\end{itemize}

write \(\text{string} \) to the \(i \)th or default interactive ANUPQ process; \(\text{string} \) must be in exactly the form the ANUPQ standalone expects. The command is echoed via Info at InfoANUPQ level 3 (with a “ToPQ> ” prompt); i.e. do SetInfoLevel(InfoANUPQ, 3); to see what is transmitted to the pq program. \(\text{PqWrite} \) returns true if successful in writing to the stream of the interactive ANUPQ process, and fail otherwise.

Note: If \(\text{PqWrite} \) returns fail it means that the ANUPQ process has died.
Chapter 6

ANUPQ Options

6.1 Overview

In this chapter we describe in detail all the options used by functions of the ANUPQ package. Note that by “options” we mean GAP options that are passed to functions after the arguments and separated from the arguments by a colon as described in Chapter Reference: Function Calls in the Reference Manual. The user is strongly advised to read Section ‘Hints and Warnings regarding the use of Options’.

6.1.1 AllANUPQoptions

▷ AllANUPQoptions() (function)

lists all the GAP options defined for functions of the ANUPQ package:

<table>
<thead>
<tr>
<th>gap> AllANUPQoptions();</th>
</tr>
</thead>
<tbody>
<tr>
<td>["AllDescendants", "BasicAlgorithm", "Bounds", "CapableDescendants",</td>
</tr>
<tr>
<td>"ClassBound", "CustomiseOutput", "Exponent", "Filename", "GroupName",</td>
</tr>
<tr>
<td>"Identities", "Metabelian", "NumberOfSolubleAutomorphisms", "OrderBound",</td>
</tr>
<tr>
<td>"OutputLevel", "PcgsAutomorphisms", "PqWorkspace", "Prime",</td>
</tr>
<tr>
<td>"PrintAutomorphisms", "PrintPermutations", "QueueFactor",</td>
</tr>
<tr>
<td>"RankInitialSegmentSubgroups", "RedoPcp", "RelativeOrders", "Relators",</td>
</tr>
<tr>
<td>"SubList", "TreeDepth", "pQuotient"]</td>
</tr>
</tbody>
</table>

The following global variable gives a partial breakdown of where the above options are used.

6.1.2 ANUPQoptions

▷ ANUPQoptions (global variable)

is a record of lists of names of admissible ANUPQ options, such that each field is either the name of a “key” ANUPQ function or other (for a miscellaneous list of functions) and the corresponding value is the list of option names that are admissible for the function (or miscellaneous list of functions).
Also, from within a GAP session, you may use GAP’s help browser (see Chapter Reference: The Help System in the GAP Reference Manual); to find out about any particular ANUPQ option, simply type: “?option option”, where option is one of the options listed above without any quotes, e.g.

```
gap> ?option Prime
```
will display the sections in this manual that describe the Prime option. In fact the first 4 are for the functions that have Prime as an option and the last actually describes the option. So follow up by choosing

```
gap> ?5
```
This is also the pattern for other options (the last section of the list always describes the option; the other sections are the functions with which the option may be used).

In the section following we describe in detail all ANUPQ options. To continue onto the next section on-line using GAP’s help browser, type:

```
gap> ?>
```

6.2 Detailed descriptions of ANUPQ Options

Prime := p

Specifies that the p-quotient for the prime p should be computed.

ClassBound := n

Specifies that the p-quotient to be computed has lower exponent-p class at most n. If this option is omitted a default of 63 (which is the maximum possible for the pq program) is taken, except for PqDescendants (see PqDescendants (4.4.1)) and in a special case of PqPCover (see PqPCover (4.1.3)). Let F be the argument (or start group of the process in the interactive case) for the function; then for PqDescendants the default is PClassPGroup(F) + 1, and for the special case of PqPCover the default is PClassPGroup(F).

pQuotient := Q

This option is only available for the standard presentation functions. It specifies that a p-quotient of the group argument of the function or group of the process is the pc p-group Q, where Q is of class less than the provided (or default) value of ClassBound. If pQuotient is provided, then the option Prime if also provided, is ignored; the prime p is discovered by computing PrimePGroup(Q).

Exponent := n

Specifies that the p-quotient to be computed has exponent n. For an interactive process, Exponent defaults to a previously supplied value for the process. Otherwise (and non-interactively), the default is 0, which means that no exponent law is enforced.

Relators := rels

Specifies that the relators sent to the pq program should be $rels$ instead of the relators of the argument group F (or start group in the interactive case) of the calling function; $rels$ should be a list of strings in the string representations of the generators of F, and F must be an fp group...
(even if the calling function accepts a pc group). This option provides a way of giving relators to the pq program, without having them pre-expanded by GAP, which can sometimes effect a performance loss of the order of 100 (see Section 'The Relators Option').

Notes

1. The pq program does not use / to indicate multiplication by an inverse and uses square brackets to represent (left normed) commutators. Also, even though the pq program accepts relations, all elements of rels must be in relator form, i.e. a relation of form \(w1 = w2 \) must be written as \(w1*(w2)^{-1} \) and then put in a pair of double-quotes to make it a string. See the example below.

2. To ensure there are no syntax errors in rels, each relator is parsed for validity via PqParseWord (see PqParseWord (3.4.3)). If they are ok, a message to say so is Info-ed at InfoANUPQ level 2.

Metabelian

Specifies that the largest metabelian \(p \)-quotient subject to any other conditions specified by other options be constructed. By default this restriction is not enforced.

GroupName := name

Specifies that the pq program should refer to the group by the name name (a string). If GroupName is not set and the group has been assigned a name via SetName (see Reference: Name) it is set as the name the pq program should use. Otherwise, the "generic" name " [grp] " is set as a default.

Identities := funcs

Specifies that the pc presentation should satisfy the laws defined by each function in the list funcs. This option may be called by Pq, PqEpimorphism, or PqPCover (see Pq (4.1.1)). Each function in the list funcs must return a word in its arguments (there may be any number of arguments). Let identity be one such function in funcs. Then as each lower exponent \(p \)-class quotient is formed, instances identity(\(w1,\ldots,wn \)) are added as relators to the pc presentation, where \(w1,\ldots,wn \) are words in the pc generators of the quotient. At each class the class and number of pc generators is Info-ed at InfoANUPQ level 1, the number of instances is Info-ed at InfoANUPQ level 2, and the instances that are evaluated are Info-ed at InfoANUPQ level 3. As usual timing information is Info-ed at InfoANUPQ level 2; and details of the processing of each instance from the pq program (which is often quite voluminous) is Info-ed at InfoANUPQ level 3. Try the examples "B2-4-Id" and "11gp-3-Engel-Id" which demonstrate the usage of the Identities option; these are run using PqExample (see PqExample (3.4.4)). Take note of Note 1. below in relation to the example "B2-4-Id"; the companion example "B2-4" generates the same group using the Exponent option. These examples are discussed at length in Section 'The Identities Option and PqEvaluateIdentities Function'.

Notes

1. Setting the InfoANUPQ level to 3 or more when setting the Identities option may slow down the computation considerably, by overloading GAP with io operations.

2. The Identities option is implemented at the GAP level. An identity that is just an exponent law should be specified using the Exponent option (see option Exponent (6.2)), which is implemented at the C level and is highly optimised and so is much more efficient.
3. The number of instances of each identity tends to grow combinatorially with the class. So care should be exercised in using the Identities option, by including other restrictions, e.g. by using the ClassBound option (see option ClassBound (6.2)).

OutputLevel := n

Specifies the level of “verbosity” of the information output by the ANU pq program when computing a pc presentation; \(n \) must be an integer in the range 0 to 3. OutputLevel := 0 displays at most one line of output and is the default; OutputLevel := 1 displays (usually) slightly more output and OutputLevels of 2 and 3 are two levels of verbose output. To see these messages from the pq program, the InfoANUPQ level must be set to at least 1 (see InfoANUPQ (3.3.1)). See Section ‘Hints and Warnings regarding the use of Options’ for an example of how OutputLevel can be used as a troubleshooting tool.

RedoPcp

Specifies that the current pc presentation (for an interactive process) stored by the pq program be scrapped and clears the current values stored for the options Prime, ClassBound, Exponent and Metabelian and also clears the pQuotient, pQepi and pCover fields of the data record of the process.

SetupFile := filename

Non-interactively, this option directs that pq should not be called and that an input file with name \(filename \) (a string), containing the commands necessary for the ANU pq standalone, be constructed. The commands written to \(filename \) are also Info-ed behind a “ToPQ>” prompt at InfoANUPQ level 4 (see InfoANUPQ (3.3.1)). Except in the case following, the calling function returns true. If the calling function is the non-interactive version of one of Pq, PqPCover or PqEpimorphism and the group provided as argument is trivial given with an empty set of generators, then no setup file is written and fail is returned (the pq program cannot do anything useful with such a group). Interactively, SetupFile is ignored.

Note: Since commands emitted to the pq program may depend on knowing what the “current state” is, to form a setup file some “close enough guesses” may sometimes be necessary; when this occurs a warning is Info-ed at InfoANUPQ or InfoWarning level 1. To determine whether the “close enough guesses” give an accurate setup file, it is necessary to run the command without the SetupFile option, after either setting the InfoANUPQ level to at least 4 (the setup file script can then be compared with the “ToPQ>” commands that are Info-ed) or setting a pq command log file by using ToPQLog (see ToPQLog (3.4.7)).

PqWorkspace := workspace

Non-interactively, this option sets the memory used by the pq program. It sets the maximum number of integer-sized elements to allocate in its main storage array. By default, the pq program sets this figure to 10000000. Interactively, PqWorkspace is ignored; the memory used in this case may be set by giving PqStart a second argument (see PqStart (5.1.1)).

PcgsAutomorphisms

PcgsAutomorphisms := false

Let \(G \) be the group associated with the calling function (or associated interactive process). Passing the option PcgsAutomorphisms without a value (or equivalently setting it to true), specifies that a polycyclic generating sequence for the automorphism group (which must be soluble)
of G, be computed and passed to the pq program. This increases the efficiency of the computation; it also prevents the pq from calling GAP for orbit-stabilizer calculations. By default, $PcgsAutomorphisms$ is set to the value returned by $IsSolvable(AutomorphismGroup(G))$, and uses the package $AutPGrp$ to compute $AutomorphismGroup(G)$ if it is installed. This flag is set to true or false in the background according to the above criterion by the function $PqDescendants$ (see $PqDescendants(4.4.1)$ and $PqDescendants(5.3.6)$).

Note: If $PcgsAutomorphisms$ is used when the automorphism group of G is insoluble, an error message occurs.

$OrderBound := n$

Specifies that only descendants of size at most p^n, where n is a non-negative integer, be generated. Note that you cannot set both $OrderBound$ and $StepSize$.

$StepSize := n$

$StepSize := list$

For a positive integer n, $StepSize$ specifies that only those immediate descendants which are a factor p^n bigger than their parent group be generated.

For a list $list$ of positive integers such that the sum of the length of $list$ and the exponent-p class of G is equal to the class bound defined by the option $ClassBound$, $StepSize$ specifies that the integers of $list$ are the step sizes for each additional class.

$RankInitialSegmentSubgroups := n$

Sets the rank of the initial segment subgroup chosen to be n. By default, this has value 0.

$SpaceEfficient$

Specifies that the pq program performs certain calculations of p-group generation more slowly but with greater space efficiency. This flag is frequently necessary for groups of large Fratini quotient rank. The space saving occurs because only one permutation is stored at any one time. This option is only available if the $PcgsAutomorphisms$ flag is set to true (see option $PcgsAutomorphisms(6.2)$). For an interactive process, $SpaceEfficient$ defaults to a previously supplied value for the process. Otherwise (and non-interactively), $SpaceEfficient$ is by default false.

$CapableDescendants$

By default, all (i.e. capable and terminal) descendants are computed. If this flag is set, only capable descendants are computed. Setting this option is equivalent to setting $AllDescendants := false$ (see option $AllDescendants(6.2)$), except if both $CapableDescendants$ and $AllDescendants$ are passed, $AllDescendants$ is essentially ignored.

$AllDescendants := false$

By default, all descendants are constructed. If this flag is set to $false$, only capable descendants are computed. Passing $AllDescendants$ without a value (which is equivalent to setting it to $true$) is superfluous. This option is provided only for backward compatibility with the GAP 3 version of the ANUPQ package, where by default $AllDescendants$ was set to $false$ (rather than true). It is preferable to use $CapableDescendants$ (see option $CapableDescendants(6.2)$).
TreeDepth := class
Specifies that the descendants tree developed by PqDescendantsTreeCoclassOne (see PqDescendantsTreeCoclassOne (A.4.1)) should be extended to class class, where class is a positive integer.

SubList := sub
Suppose that L is the list of descendants generated, then for a list sub of integers this option causes PqDescendants to return Sublist(L, sub). If an integer n is supplied, PqDescendants returns L[n].

NumberOfSolubleAutomorphisms := n
Specifies that the number of soluble automorphisms of the automorphism group supplied by PqPGSupplyAutomorphisms (see PqPGSupplyAutomorphisms (5.9.1)) in a p-group generation calculation is n. By default, n is taken to be 0; n must be a non-negative integer. If n ≥ 0 then a value for the option RelativeOrders (see 6.2) must also be supplied.

RelativeOrders := list
Specifies the relative orders of each soluble automorphism of the automorphism group supplied by PqPGSupplyAutomorphisms (see PqPGSupplyAutomorphisms (5.9.1)) in a p-group generation calculation. The list list must consist of n positive integers, where n is the value of the option NumberOfSolubleAutomorphisms (see 6.2). By default list is empty.

BasicAlgorithm
Specifies that an algorithm that the pq program calls its “default” algorithm be used for p-group generation. By default this algorithm is not used. If this option is supplied the settings of options RankInitialSegmentSubgroups, AllDescendants, Exponent and Metabelian are ignored.

CustomiseOutput := rec
Specifies that fine tuning of the output is desired. The record rec should have any subset (or all) of the following fields:

perm := list
where list is a list of booleans which determine whether the permutation group output for the automorphism group should contain: the degree, the extended automorphisms, the automorphism matrices, and the permutations, respectively.

orbit := list
where list is a list of booleans which determine whether the orbit output of the action of the automorphism group should contain: a summary, and a complete listing of orbits, respectively. (It’s possible to have both a summary and a complete listing.)

group := list
where list is a list of booleans which determine whether the group output should contain: the standard matrix of each allowable subgroup, the presentation of reduced p-covering groups, the presentation of immediate descendants, the nuclear rank of descendants, and the p-multiplicator rank of descendants, respectively.

autgroup := list
where list is a list of booleans which determine whether the automorphism group output should contain: the commutator matrix, the automorphism group description of descendants, and the automorphism group order of descendants, respectively.
trace := val
where val is a boolean which if true specifies algorithm trace data is desired. By default, one does not get algorithm trace data.

Not providing a field (or mis-spelling it!), specifies that the default output is desired. As a convenience, 1 is also accepted as true, and any value that is neither 1 nor true is taken as false. Also for each list above, an unbound list entry is taken as false. Thus, for example

Example

| CustomiseOutput := rec(group := [,,1], autgroup := [,1]) |

specifies for the group output that only the presentation of immediate descendants is desired, for the automorphism group output only the automorphism group description of descendants should be printed, that there should be no algorithm trace data, and that the default output should be provided for the permutation group and orbit output.

StandardPresentationFile := filename
Specifies that the file to which the standard presentation is written has name filename. If the first character of the string filename is not /, filename is assumed to be the path of a writable file relative to the directory in which GAP was started. If this option is omitted it is written to the file with the name generated by the command Filename(ANUPQData.tmpdir, "SPres"); i.e. the file with name "SPres" in the temporary directory in which the pq program executes.

QueueFactor := n
Specifies a queue factor of n, where n must be a positive integer. This option may be used with PqNextClass (see PqNextClass (5.6.4)).

The queue factor is used when the pq program uses automorphisms to close a set of elements of the p-multiplicator under their action.

The algorithm used is a spinning algorithm: it starts with a set of vectors in echelonized form (elements of the p-multiplicator) and closes the span of these vectors under the action of the automorphisms. For this each automorphism is applied to each vector and it is checked if the result is contained in the span computed so far. If not, the span becomes bigger and the vector is put into a queue and the automorphisms are applied to this vector at a later stage. The process terminates when the automorphisms have been applied to all vectors and no new vectors have been produced.

For each new vector it is decided, if its processing should be delayed. If the vector contains too many non-zero entries, it is put into a second queue. The elements in this queue are processed only when there are no elements in the first queue left.

The queue factor is a percentage figure. A vector is put into the second queue if the percentage of its non-zero entries exceeds the queue factor.

Bounds := list
Specifies a lower and upper bound on the indices of a list, where list is a pair of positive non-decreasing integers. See PqDisplayStructure (5.7.23) and PqDisplayAutomorphisms (5.7.24) where this option may be used.

PrintAutomorphisms := list
Specifies that automorphism matrices be printed.
PrintPermutations := list
 Specifies that permutations of the subgroups be printed.

Filename := string
 Specifies that an output or input file to be written to or read from by the pq program should have the name string.
Chapter 7

Installing the ANUPQ Package

The ANU pq program is written in C and the package can be installed under UNIX and in environments similar to UNIX. In particular it is known to work on Linux and Mac OS X, and also on Windows equipped with cygwin.

The current version of the ANUPQ package requires GAP 4.9, and version 1.2 of the AutPGrp package. However, we recommend using at least GAP 4.6 and AutPGrp 1.5.

To install the ANUPQ package, move the file anupq-XXX.tar.gz for some version number XXX into the pkg directory in which you plan to install ANUPQ. Usually, this will be the directory pkg in the hierarchy of your version of GAP; it is however also possible to keep an additional pkg directory in your private directories. The only essential difference with installing ANUPQ in a pkg directory different to the GAP home directory is that one must start GAP with the -l switch (see Section Reference: Command Line Options), e.g. if your private pkg directory is a subdirectory of mygap in your home directory you might type:

```
gap -l ";myhomedir/mygap"
```

where myhomedir is the path to your home directory, which may be replaced by a tilde. The empty path before the semicolon is filled in by the default path of the GAP home directory.

Then, in your chosen pkg directory, unpack anupq-XXX.tar.gz by

```
tar xf anupq-<XXX>.tar.gz
```

Change to the newly created anupq directory. Now you need to call configure. If you installed ANUPQ into the main pkg directory, call

```
./configure
```

If you installed ANUPQ in another directory than the usual 'pkg' subdirectory, instead call

```
./configure --with-gaproot=<path>
```

where path is the path to the GAP home directory. (You can also call

```
./configure --help
```

75
for further options.)

What this does is look for a file `sysinfo.gap` in the root directory of GAP in order to determine an architecture name for the subdirectory of `bin` in which to put the compiled `pq` binary. This only makes sense if GAP was compiled for the same architecture that `pq` will be. If you have a shared file system mounted across different architectures, then you should run `configure` and `make` for ANUPQ for each architecture immediately after compiling GAP on the same architecture.

If you had to install the package in your own directory but wish to use the system GAP then you will need to find out what path is. To do this, start up GAP and find out what GAP’s root path is from finding the value of the variable `GAPInfo.RootPaths`, e.g.

```
    gap> GAPInfo.RootPaths;
    [ "/usr/local/lib/gap4r4/" ]
```

would tell you to use `/usr/local/lib/gap4r4` for path.

The configure command will fetch the architecture type for which GAP has been compiled last and create a Makefile. You can now simply call

```
    make
```

to compile the binary and to install it in the appropriate place.

The path of GAP (see Note below) used by the `pq` binary (the value GAP is set to in the `make` command) may be over-ridden by setting the environment variable `ANUPQ_GAP_EXEC`. These values are only of interest when the `pq` program is run as a standalone; however, the `testPq` script assumes you have set one of these correctly (see Section ‘Testing your ANUPQ installation’). When the `pq` program is started from GAP communication occurs via an iostream, so that the `pq` binary does not actually need to know a valid path for GAP is this case.

Note. By “path of GAP” we mean the path of the command used to invoke GAP (which should be a script, e.g. the `gap.sh` script generated in the `bin` directory for the version of GAP when GAP was compiled). The usual strategy is to copy the `gap.sh` script to a standard location, e.g. `/usr/local/bin/gap`. It is a mistake to copy the GAP executable `gap` (in a directory with name of form `bin/compile-platform`) to the standard location, since direct invocation of the executable results in GAP starting without being able to find its own library (a fatal error).

7.1 Testing your ANUPQ installation

Now it is time to test the installation. After doing `configure` and `make` you will have a `testPq` script. The script assumes that, if the environment variable `ANUPQ_GAP_EXEC` is set, it is a correct path for GAP, or otherwise that the `make` call that compiled the `pq` program set GAP to a correct path for GAP (see Section ‘Running the pq program as a standalone’ for more details). To run the tests, just type:

```
    ./testPq
```

Some of the tests the script runs take a while. Please be patient. The script checks that you not only have a correct GAP (at least version 4.4) installation that includes the AutPGrp package, but that the ANUPQ package and its `pq` binary interact correctly. You should see something like the following output:
Example

Made dir: /tmp/testPq
Testing installation of ANUPQ Package (version 3.1)

The first two tests check that the pq C program compiled ok.
Testing the pq binary ... OK.
Testing the pq binary's stack size ... OK.
The pq C program compiled ok! We test it's the right one below.

The next tests check that you have the right version of GAP
for the ANUPQ package and that GAP is finding
the right versions of the ANUPQ and AutPGrp packages.

Checking GAP ...
pq binary made with GAP set to: /usr/local/bin/gap
Starting GAP to determine version and package availability ...
 GAP version (4.6.5) ... OK.
 GAP found ANUPQ package (version 3.1) ... good.
 GAP found pq binary (version 1.9) ... good.
 GAP found AutPGrp package (version 1.5) ... good.
 GAP is OK.

Checking the link between the pq binary and GAP ... OK.
Testing the standard presentation part of the pq binary ... OK.
Doing p-group generation (final GAP/ANUPQ) test ... OK.
Tests complete.
Removed dir: /tmp/testPq
Enjoy using your functional ANUPQ package!

7.2 Running the pq program as a standalone

When the pq program is run as a standalone it sometimes needs to call GAP to compute stabilisers
of subgroups; in doing so, it first checks the value of the environment variable ANUPQ_GAP_EXEC, and
uses that, if set, or otherwise the value of GAP it was compiled with, as the path for GAP. If you ran
testPq (see Section ‘Testing your ANUPQ installation’) and you got both GAP is OK and the link
between the pq binary and GAP is OK, you should be fine. Otherwise heed the recommendations of
the error messages you get and run the testPq until all tests are passed.

It is especially important that the GAP, whose path you gave, should know where to find the
ANUPQ and AutPGrp packages. To ensure this the path should be to a shell script that invokes GAP.
If you needed to install the needed packages in your own directory (because, say, you are not a system
administrator) then you should create your own shell script that runs GAP with a correct setting of
the -l option and set the path used by the pq binary to the path of that script. To create the script
that runs GAP it is easiest to copy the system one and edit it, e.g. start by executing the following
UNIX commands (skip the second step if you already have a bin directory; you@unix> is your UNIX
prompt):

you@unix> cd
you@unix> mkdir bin
you@unix> cd bin
you@unix> which gap
At the second-last step use the path of \textsc{gap} returned by \texttt{which gap}. Now hopefully you will have a copy of the script that runs the system \textsc{gap} in \texttt{mygap}. Now use your favourite editor to edit the \texttt{-l} part of the last line of \texttt{mygap} which should initially look something like:

\begin{verbatim}
exec $\text{GAP_DIR}/bin/$\text{GAP_PRG} -m $\text{GAP_MEM} -o 970m -l $\text{GAP_DIR} * \\
\end{verbatim}

so that it becomes (the tilde is a UNIX abbreviation for your home directory):

\begin{verbatim}
exec $\text{GAP_DIR}/bin/$\text{GAP_PRG} -m $\text{GAP_MEM} -o 970m -l "$\text{GAP_DIR};~/\text{gapstuff}" * \\
\end{verbatim}

assuming that your personal \textsc{gap} pkg directory is a subdirectory of \texttt{gapstuff} in your home directory. Finally, to let the \texttt{pq} program know where \textsc{gap} is and also know where your pkg directory is that contains \textsc{ANUPQ}, set the environment variable \texttt{ANUPQ_GAP_EXEC} to the complete (i.e. absolute) path of your \texttt{mygap} script (do not use the tilde abbreviation).
Appendix A

Examples

There are a large number of examples provided with the ANUPQ package. These may be executed or displayed via the function PqExample (see PqExample (3.4.4)). Each example resides in a file of the same name in the directory examples. Most of the examples are translations to GAP of examples provided for the pq standalone by Eamonn O'Brien; the standalone examples are found in directories standalone/examples (p-quotient and p-group generation examples) and standalone/isom (standard presentation examples). The first line of each example indicates its origin. All the examples seen in earlier chapters of this manual are also available as examples, in a slightly modified form (the example which one can run in order to see something very close to the text example “live” is always indicated near – usually immediately after – the text example). The format of the (PqExample) examples is such that they can be read by the standard Read function of GAP, but certain features and comments are interpreted by the function PqExample to do somewhat more than Read does. In particular, any function without a -i, -ni or .g suffix has both a non-interactive and interactive form; in these cases, the default form is the non-interactive form, and giving PqStart as second argument generates the interactive form.

Running PqExample without an argument or with a non-existent example Infos the available examples and some hints on usage:

 gap> PqExample();
 #I PqExample Index (Table of Contents)
 #I -----------------------------------
 #I This table of possible examples is displayed when calling ‘PqExample’
 #I with no arguments, or with the argument: "index" (meant in the sense
 #I of ‘‘list’’), or with a non-existent example name.
 #I
 #I Examples that have a name ending in ‘-ni’ are non-interactive only.
 #I Examples that have a name ending in ‘-i’ are interactive only.
 #I Examples with names ending in ‘.g’ also have only one form. Other
 #I examples have both a non-interactive and an interactive form; call
 #I ‘PqExample’ with 2nd argument ‘PqStart’ to get the interactive form
 #I of the example. The substring ‘PG’ in an example name indicates a
 #I p-Group Generation example, ‘SP’ indicates a Standard Presentation
 #I example, ‘Rel’ indicates it uses the ‘Relators’ option, and ‘Id’
 #I indicates it uses the ‘Identities’ option.
 #I
 #I The following ANUPQ examples are available:
 #I

79
p-Quotient examples:
general:
"Pq" "Pq-ni" "PqEpimorphism"
"PqPCover" "PqSupplementInnerAutomorphisms"
2-groups:
"2gp-Rel" "2gp-Rel-i" "2gp-a-Rel-i"
"B2-4" "B2-4-Id" "B2-8-i"
"B4-4-i" "B4-4-a-i" "B5-4-g"
3-groups:
"3gp-Rel-i" "3gp-a-Rel" "3gp-a-Rel-i"
"3gp-a-x-Rel-i" "3gp-maxoccur-Rel-i"
5-groups:
"5gp-Rel-i" "5gp-a-Rel-i" "5gp-b-Rel-i"
"5gp-c-Rel-i" "5gp-metabelian-Rel-i" "5gp-maxoccur-Rel-i"
"F2-5-i" "B2-5-i" "R2-5-i"
"R2-5-x-i" "B5-5-Engel3Id"
7-groups:
"7gp-Rel-i" "7gp-Rel-1"
11-groups:
"11gp-1" "11gp-Rel-i" "11gp-a-Rel-i"
"11gp-3-Engel-Id" "11gp-3-Engel-Id-i"
p-Group Generation examples:
general:
"PqDescendants-1" "PqDescendants-2" "PqDescendants-3"
"PqDescendants-i"
2-groups:
"2gp-PG-i" "2gp-PG-2-i" "2gp-PG-3-i"
"2gp-PG-4-i" "2gp-PG-e4-i"
"PqDescendantsTreeCoclassOne-16-i"
3-groups:
"3gp-PG-i" "3gp-PG-4-i" "3gp-PG-x-i"
"3gp-PG-x-1-i" "PqDescendants-treetraverse-i"
"PqDescendantsTreeCoclassOne-9-i"
5-groups:
"5gp-PG-i" "Nott-PG-Rel-i" "Nott-APG-Rel-i"
"PqDescendantsTreeCoclassOne-25-i"
7,11-groups:
"7gp-PG-i" "11gp-PG-i"
Standard Presentation examples:
general:
"StandardPresentation" "StandardPresentation-i"
"EpimorphismStandardPresentation"
"EpimorphismStandardPresentation-i" "IsIsomorphicPGroup-ni"
2-groups:
"2gp-SP-Rel-i" "2gp-SP-1-Rel-i" "2gp-SP-2-Rel-i"
"2gp-SP-3-Rel-i" "2gp-SP-4-Rel-i" "2gp-SP-d-Rel-i"
"gp-256-SP-Rel-i" "B2-4-SP-i" "G2-SP-Rel-i"
3-groups:
"3gp-SP-Rel-i" "3gp-SP-1-Rel-i" "3gp-SP-2-Rel-i"
"3gp-SP-3-Rel-i" "3gp-SP-4-Rel-i" "G3-SP-Rel-i"
#I 5-groups:
#I "5gp-SP-Rel-i" "5gp-SP-a-Rel-i" "5gp-SP-b-Rel-i"
#I "5gp-SP-big-Rel-i" "5gp-SP-d-Rel-i" "G5-SP-Rel-i"
#I "G5-SP-a-Rel-i" "Nott-SP-Rel-i"
#I 7-groups:
#I "7gp-SP-Rel-i" "7gp-SP-a-Rel-i" "7gp-SP-b-Rel-i"
#I 11-groups:
#I "11gp-SP-a-i" "11gp-SP-a-Rel-i" "11gp-SP-a-Rel-1-i"
#I "11gp-SP-b-i" "11gp-SP-b-Rel-i" "11gp-SP-c-Rel-i"
#I Notes
#I -----
#I 1. The example (first) argument of ‘PqExample’ is a string; each example above is in double quotes to remind you to include them.
#I 2. Some examples accept options. To find out whether a particular example accepts options, display it first (by including ‘Display’ as last argument) which will also indicate how ‘PqExample’ interprets the options, e.g. ‘PqExample("11gp-SP-a-i", Display);’.
#I 3. Try ‘SetInfoLevel(InfoANUPQ, <n>);’ for some <n> in [2 .. 4] before calling PqExample, to see what’s going on behind the scenes.

If on your terminal you are unable to scroll back, an alternative to typing PqExample(); to see the displayed examples is to use on-line help, i.e. you may type:

```
gap> ?anupq:examples
```

which will display this appendix in a GAP session. If you are not fussed about the order in which the examples are organised, AllPqExamples(); lists the available examples relatively compactly (see AllPqExamples (3.4.5)).

In the remainder of this appendix we will discuss particular aspects related to the Relators (see 6.2) and Identities (see 6.2) options, and the construction of the Burnside group $B(5,4)$.

A.1 The Relators Option

The Relators option was included because computations involving words containing commutators that are pre-expanded by GAP before being passed to the pq program may run considerably more slowly, than the same computations being run with GAP pre-expansions avoided. The following examples demonstrate a case where the performance hit due to pre-expansion of commutators by GAP is a factor of order 100 (in order to see timing information from the pq program, we set the InfoANUPQ level to 2).

Firstly, we run the example that allows pre-expansion of commutators (the function PqLeftNormComm is provided by the ANUPQ package; see PqLeftNormComm (3.4.1)). Note that since the two commutators of this example are very long (taking more than an page to print), we have edited the output at this point.

```
gap> SetInfoLevel(InfoANUPQ, 2); # to see timing information
gap> PqExample("11gp-i");
# Example: "11gp-i" . . . based on: examples/11gp
```
ANUPQ

F, a, b, c, R, procId are local to 'PqExample'

\begin{verbatim}
gap> F := FreeGroup("a", "b", "c"); a := F.1; b := F.2; c := F.3;
<free group on the generators [a, b, c]>

a
b
c
\end{verbatim}

\begin{verbatim}
gap> R := [PqLeftNormComm([b, a, a, b, c])^11,
> PqLeftNormComm([a, b, b, a, b, c])^11, (a * b)^11];;
\end{verbatim}

\begin{verbatim}
gap> procId := PqStart(F/R : Prime := 11);
1
\end{verbatim}

\begin{verbatim}
gap> PqPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);
#I Lower exponent-11 central series for [grp]
#I Group: [grp] to lower exponent-11 central class 1 has order 11^3
#I Group: [grp] to lower exponent-11 central class 2 has order 11^8
#I Group: [grp] to lower exponent-11 central class 3 has order 11^19
#I Group: [grp] to lower exponent-11 central class 4 has order 11^42
#I Group: [grp] to lower exponent-11 central class 5 has order 11^98
#I Group: [grp] to lower exponent-11 central class 6 has order 11^228
#I Group: [grp] to lower exponent-11 central class 7 has order 11^563
#I Computation of presentation took 27.04 seconds
\end{verbatim}

\begin{verbatim}
gap> PqSavePcPresentation(procId, ANUPQData.outfile);
#I Variables used in 'PqExample' are saved in 'ANUPQData.example.vars'.
\end{verbatim}

Now we do the same calculation using the Relators option. In this way, the commutators are passed directly as strings to the pq program, so that GAP does not “see” them and pre-expand them.

\begin{verbatim}
gap> PqExample("11gp-Rel-i");
#I #Example: "11gp-Rel-i" . . . based on: examples/11gp
#I #(equivalent to "11gp-i" example but uses 'Relators' option)
#I F, rels, procId are local to 'PqExample'
\end{verbatim}

\begin{verbatim}
gap> F := FreeGroup("a", "b", "c");
<free group on the generators [a, b, c]>
\end{verbatim}

\begin{verbatim}
rels := ["[b, a, a, b, c]^11", "[a, b, b, a, b, c]^11", "(a * b)^11"];
\end{verbatim}

\begin{verbatim}
gap> procId := PqStart(F : Prime := 11, Relators := rels);
2
\end{verbatim}

\begin{verbatim}
gap> PqPcPresentation(procId : ClassBound := 7,
> OutputLevel := 1);
#I Relators parsed ok.
#I Lower exponent-11 central series for [grp]
#I Group: [grp] to lower exponent-11 central class 1 has order 11^3
#I Group: [grp] to lower exponent-11 central class 2 has order 11^8
#I Group: [grp] to lower exponent-11 central class 3 has order 11^19
#I Group: [grp] to lower exponent-11 central class 4 has order 11^42
#I Group: [grp] to lower exponent-11 central class 5 has order 11^98
#I Group: [grp] to lower exponent-11 central class 6 has order 11^228
#I Group: [grp] to lower exponent-11 central class 7 has order 11^563
#I Computation of presentation took 0.27 seconds
\end{verbatim}

\begin{verbatim}
gap> PqSavePcPresentation(procId, ANUPQData.outfile);
#I Variables used in 'PqExample' are saved in 'ANUPQData.example.vars}'.
\end{verbatim}
A.2 The Identities Option and PqEvaluateIdentities Function

Please pay heed to the warnings given for the Identities option (see 6.2); it is written mainly at the GAP level and is not particularly optimised. The Identities option allows one to compute \(p \)-quotients that satisfy an identity. A trivial example better done using the Exponent option, but which nevertheless demonstrates the usage of the Identities option, is as follows:

```gap
gap> SetInfoLevel(InfoANUPQ, 1);
gap> PqExample("B2-4-Id"); #I #Example: "B2-4-Id" . . . alternative way to generate B(2, 4)
#I #Generates B(2, 4) by using the 'Identities' option
#I #... this is not as efficient as using 'Exponent' but
#I #demonstrates the usage of the 'Identities' option.
#I F, f, procId are local to 'PqExample'
gap> F := FreeGroup("a", "b");
<free group on the generators [ a, b ]>
gap> # All words w in the pc generators of B(2, 4) satisfy f(w) = 1
gap> f := w -> w^4;
function( w ) ... end
gap> Pq( F : Prime := 2, Identities := [ f ] );
#I Class 1 with 2 generators.
#I Class 2 with 5 generators.
#I Class 3 with 7 generators.
#I Class 4 with 10 generators.
#I Class 5 with 12 generators.
<pc group of size 4096 with 12 generators>
#I Variables used in 'PqExample' are saved in 'ANUPQData.example.vars'.
gap> time;
1400
```

Note that the time statement gives the time in milliseconds spent by GAP in executing the PqExample("B2-4-Id"); command (i.e. everything up to the Info-ing of the variables used), but over 90% of that time is spent in the final Pq statement. The time spent by the pq program, which is negligible anyway (you can check this by running the example while the InfoANUPQ level is set to 2), is not counted by time.

Since the identity used in the above construction of \(B(2, 4) \) is just an exponent law, the “right” way to compute it is via the Exponent option (see 6.2), which is implemented at the C level and is highly optimised. Consequently, the Exponent option is significantly faster, generally by several orders of magnitude:

```gap
gap> SetInfoLevel(InfoANUPQ, 2); # to see time spent by the 'pq' program
gap> PqExample("B2-4");
#I #Example: "B2-4" . . . the 'right' way to generate B(2, 4)
#I #Generates B(2, 4) by using the 'Exponent' option
#I F, procId are local to 'PqExample'
gap> F := FreeGroup("a", "b");
<free group on the generators [ a, b ]>
gap> Pq( F : Prime := 2, Exponent := 4 );
#I Computation of presentation took 0.00 seconds
<pc group of size 4096 with 12 generators>
```
The following example uses the Identities option to compute a 3-Engel group for the prime 11. As is the case for the example "B2-4-Id", the example has both a non-interactive and an interactive form; below, we demonstrate the interactive form.

```gap
gap> SetInfoLevel(InfoANUPQ, 1); # reset InfoANUPQ to default level
gap> PqExample("11gp-3-Engel-Id", PqStart);
#I #Example: "11gp-3-Engel-Id" . . . 3-Engel group for prime 11
#I #Non-trivial example of using the 'Identities' option
#I F, a, b, G, f, procId, Q are local to 'PqExample'
gap> F := FreeGroup("a", "b"); a := F.1; b := F.2;
<free group on the generators [ a, b ]>
a
b
gap> G := F/[ a^11, b^11 ];
<fp group on the generators [ a, b ]>
gap> # All word pairs u, v in the pc generators of the 11-quotient Q of G
# must satisfy the Engel identity: [u, v, v, v] = 1.
gap> f := function(u, v) return PqLeftNormComm( [u, v, v, v] ); end;
function( u, v ) ... end
gap> procId := PqStart( G );
3
gap> Q := Pq( procId : Prime := 11, Identities := [ f ] );
#I Class 1 with 2 generators.
#I Class 2 with 3 generators.
#I Class 3 with 5 generators.
#I Class 3 with 5 generators.
<pc group of size 161051 with 5 generators>
gap> # We do a 'sample' check that pairs of elements of Q do satisfy
# the given identity:
gap> f( Random(Q), Random(Q) );
<identity> of ...
gap> f( Q.1, Q.2 );
<identity> of ...  
#I Variables used in 'PqExample' are saved in 'ANUPQData.example.vars'.
```

The (interactive) call to Pq above is essentially equivalent to a call to PqPcPresentation with the same arguments and options followed by a call to PqCurrentGroup. Moreover, the call to PqPcPresentation (as described in PqPcPresentation (5.6.1)) is equivalent to a “class 1” call to PqPcPresentation followed by the requisite number of calls to PqNextClass, and with the Identities option set, both PqPcPresentation and PqNextClass “quietly” perform the equivalent of a PqEvaluateIdentities call. In the following example we break down the Pq call into its low-level equivalents, and set and unset the Identities option to show where PqEvaluateIdentities fits into this scheme.

```gap
gap> PqExample("11gp-3-Engel-Id-i");
#I #Example: "11gp-3-Engel-Id-i" . . . 3-Engel grp for prime 11
#I #Variation of "11gp-3-Engel-Id" broken down into its lower-level component
```
A.3 A Large Example

An example demonstrating how a large computation can be organised with the ANUPQ package is the computation of the Burnside group $B(5, 4)$, the largest group of exponent 4 generated by 5 elements. It has order 2^{2728} and lower exponent-p central class 13. The example "B5-4.g" computes $B(5, 4);$ it is based on a pq standalone input file written by M. F. Newman.

To be able to do examples like this was part of the motivation to provide access to the low-level functions of the standalone program from within GAP.

Please note that the construction uses the knowledge gained by Newman and O’Brien in their initial construction of $B(5, 4)$, in particular, insight into the commutator structure of the group and the knowledge of the p-central class and the order of $B(5, 4)$. Therefore, the construction cannot be used to prove that $B(5, 4)$ has the order and class mentioned above. It is merely a reconstruction of the group. More information is contained in the header of the file examples/B5-4.g.

```gap
procId := PqStart( FreeGroup(5) : Exponent := 4, Prime := 2 );
Pq( procId : ClassBound := 2 );
```
PqSupplyAutomorphisms(procId,
[
 [1, 1, 0, 0, 0], # first automorphism
 [0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 1, 0],
 [0, 0, 0, 0, 1]],

 [0, 0, 0, 0, 1], # second automorphism
 [1, 0, 0, 0, 0],
 [0, 1, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 1, 0]]
);;

Relations := [
 [], ## class 1
 [], ## class 2
 [], ## class 3
 [], ## class 4
 [], ## class 5
 [], ## class 6
 ## class 7
 [["x2","x1","x1","x3","x4","x4"]],
 ## class 8
 [["x2","x1","x1","x3","x4","x5","x5"]],
 ## class 9
 [["x2","x1","x1","x4","x4","x5","x5"],
 ["x2","x1","x2","x3","x4","x5","x5"],
 ["x2","x1","x1","x3","x4","x5","x5"]],
 ## class 10
 [["x2","x1","x1","x2","x3","x3","x4","x5","x5"],
 ["x2","x1","x1","x3","x4","x4","x5","x5"]],
 ## class 11
 [["x2","x1","x1","x2","x3","x3","x4","x5","x5"],
 ["x2","x1","x2","x3","x1","x4","x2","x4"]],
 ## class 12
 [["x2","x1","x1","x2","x3","x1","x3","x4","x5","x5"],
 ["x2","x1","x1","x3","x2","x4","x3","x5","x5"]],
 ## class 13
 [["x2","x1","x1","x2","x3","x1","x3","x4","x2","x4"]]
];

for class in [3 .. 13] do
 Print("Computing class ", class, "\n");
 PqSetupTablesForNextClass(procId);
 for w in [class, class-1 .. 7] do
 PqAddTails(procId, w);
 PqDisplayPcPresentation(procId);
end do;
if Relations[w] <> [] then
 # recalculate automorphisms
 PqExtendAutomorphisms(procId);

 for r in Relations[w] do
 Print("Collecting ", r, ",
");
 PqCommutator(procId, r, 1);
 PqEchelonise(procId);
 PqApplyAutomorphisms(procId, 15); #queue factor = 15
 od;

 PqEliminateRedundantGenerators(procId);
 PqComputeTails(procId, w);
 PqDisplayPcPresentation(procId);
 fi;
PqComputeTails(procId, w);
od;
PqDisplayPcPresentation(procId);
smallclass := Minimum(class, 6);
for w in [smallclass, smallclass-1 .. 2] do
 PqTails(procId, w);
 PqEliminateRedundantGenerators(procId);
 PqDisplayPcPresentation(procId);
od;
PqComputeTails(procId, w);

A.4 Developing descendants trees

In the following example we will explore the 3-groups of rank 2 and 3-coclass 1 up to 3-class 5. This will be done using the p-group generation machinery of the package. We start with the elementary abelian 3-group of rank 2. From within GAP, run the example "PqDescendants-treetraverse-i" via PqExample (see PqExample (3.4.4)).

```gap
gap> G := ElementaryAbelianGroup( 9 );
<pc group of size 9 with 2 generators>
gap> procId := PqStart( G );
5
gap> # Below, we use the option StepSize in order to construct descendants
gap> # of coclass 1. This is equivalent to setting the StepSize to 1 in
gap> # each descendant calculation.
```
```gap
# The elementary abelian group of order 9 has 3 descendants of
# 3-class 2 and 3-coclass 1, as the result of the next command
```
gap> PqDescendants(procId : StepSize := 1);
[<pc group of size 27 with 3 generators>,
 <pc group of size 27 with 3 generators>,
 <pc group of size 27 with 3 generators>]
gap> #
gap> # Now we will compute the descendants of coclass 1 for each of the
gap> # groups above. Then we will compute the descendants of coclass 1
gap> # of each descendant and so on. Note that the pq program keeps
gap> # one file for each class at a time. For example, the descendants
gap> # calculation for the second group of class 2 overwrites the
gap> # descendant file obtained from the first group of class 2.
gap> # Hence, we have to traverse the descendants tree in depth first
gap> # order.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
2
gap> PqPGSetDescendantToPcp(procId, 3, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
2
gap> PqPGSetDescendantToPcp(procId, 4, 1);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
2
gap> #
gap> # At this point we stop traversing the 'left most' branch of the
gap> # descendants tree and move upwards.
gap> #
gap> PqPGSetDescendantToPcp(procId, 4, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> PqPGSetDescendantToPcp(procId, 3, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
#I group restored from file is incapable
0
gap> #
gap> # The computations above indicate that the descendants subtree under
gap> # the first descendant of the elementary abelian group of order 9
gap> # will have only one path of infinite length.
gap> #
gap> PqPGSetDescendantToPcp(procId, 2, 2);
gap> PqPGExtendAutomorphisms(procId);
gap> PqPGConstructDescendants(procId : StepSize := 1);
4
gap> #
gap> # We get four descendants here, three of which will turn out to be
gap> # incapable, i.e., they have no descendants and are terminal nodes
ANUPQ

As in the descendants tree.

```
gap> PqPQSetDescendantToPcp( procId, 2, 3 );
gap> PqPQExtendAutomorphisms( procId );
gap> PqPQConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
```

The third descendant of class three is incapable. Let us return to the second descendant of class 2.

```
gap> PqPQSetDescendantToPcp( procId, 2, 2 );
gap> PqPQExtendAutomorphisms( procId );
gap> PqPQConstructDescendants( procId : StepSize := 1 );
4
```

```
gap> PqPQSetDescendantToPcp( procId, 3, 1 );
gap> PqPQExtendAutomorphisms( procId );
gap> PqPQConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
```

```
gap> PqPQSetDescendantToPcp( procId, 3, 2 );
gap> PqPQExtendAutomorphisms( procId );
gap> PqPQConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
```

```
gap> PqPQSetDescendantToPcp( procId, 3, 4 );
gap> PqPQExtendAutomorphisms( procId );
gap> PqPQConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
```

```
gap> PqPQSetDescendantToPcp( procId, 3, 3 );
gap> PqPQExtendAutomorphisms( procId );
gap> PqPQConstructDescendants( procId : StepSize := 1 );
6
```

```
gap> In this branch of the descendant tree we get 6 descendants of class three. Of those 5 will turn out to be incapable and one will have 7 descendants.
```

```
gap> PqPQSetDescendantToPcp( procId, 4, 1 );
gap> PqPQExtendAutomorphisms( procId );
gap> PqPQConstructDescendants( procId : StepSize := 1 );
#I group restored from file is incapable
0
```

```
gap> PqPQSetDescendantToPcp( procId, 4, 2 );
gap> PqPQExtendAutomorphisms( procId );
```
To automate the above procedure to some extent we provide:

A.4.1 PqDescendantsTreeCoclassOne

- PqDescendantsTreeCoclassOne(i)
- PqDescendantsTreeCoclassOne()

for the ith or default interactive ANUPQ process, generate a descendant tree for the group of the process (which must be a pc p-group) consisting of descendants of p-coclass 1 and extending to the class determined by the option TreeDepth (or 6 if the option is omitted). In an XGAP session, a graphical representation of the descendants tree appears in a separate window. Subsequent calls to PqDescendantsTreeCoclassOne for the same process may be used to extend the descendant tree from the last descendant computed that itself has more than one descendant. PqDescendantsTreeCoclassOne also accepts the options CapableDescendants (or AllDescendants) and any options accepted by the interactive PqDescendants function (see PqDescendants (5.3.6)).

Notes

1. PqDescendantsTreeCoclassOne first calls PqDescendants. If PqDescendants has already been called for the process, the previous value computed is used and a warning is Info-ed at InfoANUPQ level 1.

2. As each descendant is processed its unique label defined by the pq program and number of descendants is Info-ed at InfoANUPQ level 1.

3. PqDescendantsTreeCoclassOne is an “experimental” function that is included to demonstrate the sort of things that are possible with the p-group generation machinery.

Ignoring the extra functionality provided in an XGAP session, PqDescendantsTreeCoclassOne, with one argument that is the index of an interactive ANUPQ process, is approximately equivalent to:

```plaintext
PqDescendantsTreeCoclassOne := function( procId )
  local des, i;
  des := PqDescendants( procId : StepSize := 1 );
  RecurseDescendants( procId, 2, Length(des) );
end;
```

where RecurseDescendants is (approximately) defined as follows:

```plaintext
RecurseDescendants := function( procId, class, n )
  local i, nr;
  # recursive function
end;
```
if class > ValueOption("TreeDepth") then return; fi;

for i in [1..n] do
 PqPGSetDescendantToPcp(procId, class, i);
 PqPGExtendAutomorphisms(procId);
 nr := PqPGConstructDescendants(procId : StepSize := 1);
 Print("Number of descendants of group ", i,
 " at class ", class, ": ", nr, "\n");
 RecurseDescendants(procId, class+1, nr);
od;
return;
end;

The following examples (executed via PqExample; see PqExample (3.4.4)), demonstrate the use of PqDescendantsTreeCoclassOne:

"PqDescendantsTreeCoclassOne-9-i"
approximately does example "PqDescendants-treetraverse-i" again using PqDescendantsTreeCoclassOne;

"PqDescendantsTreeCoclassOne-16-i"
uses the option CapableDescendants; and

"PqDescendantsTreeCoclassOne-25-i"
calculates all descendants by omitting the CapableDescendants option.

The numbers 9, 16 and 25 respectively, indicate the order of the elementary abelian group to which PqDescendantsTreeCoclassOne is applied for these examples.
References

Index

AllANUPQoptions, 67
allowable subgroup, 9
AllPqExamples, 19
ANUPQ, 5
ANUPQ_GAP_EXEC
 environment variable, 76, 77
ANUPQData, 13
ANUPQDirectoryTemporary, 16
ANUPQoptions, 67
ANUPQWarnOfOtherOptions, 21
automorphisms
 of p-groups, 29, 41
B(5,4), 85
banner, 12
bug reports, 6
capable, 8
class, 8
collection, 7
compaction, 11
confluent, 7
confluent rewriting system, 7
consistency conditions, 8
consistent, 7
definition
 of generator, 9
descendant, 8
echelonised matrix, 11
Engel identity, 9
EpimorphismPqStandardPresentation, 30
 interactive, 42
EpimorphismStandardPresentation, 30
 interactive, 42
exponent check, 10
exponent law, 9
exponent-p central series, 8
extended automorphism, 9
GrepPqExamples, 19
identical relation, 9
immediate descendant, 8
InfoANUPQ, 16
interruption, 38
IsCapable, 19
IsIsomorphicPGroup, 31
isomorphism testing, 11
IsPqIsomorphicPGroup, 31
IsPqProcessAlive, 38
 for default process, 38
label of standard matrix, 11
labelled pcp, 9
law, 9
menu item
 of pq program, 20
metabelian law, 9
multiplicator rank, 8
MultiplierRank, 19
NuclearRank, 19
nucleus, 8, 9
option
 of pq program is a menu item, 20
option AllDescendants, 32, 44, 71
option BasicAlgorithm, 33, 44, 72
option Bounds, 73
option CapableDescendants, 32, 44, 71
option ClassBound, 25, 29, 32, 39, 41, 44, 68
option CustomiseOutput, 33, 44, 72
option Exponent, 25, 29, 32, 39, 41, 44, 68
option Filename, 74
option GroupName, 25, 29, 33, 39, 41, 44, 69
option Identities, 25, 39, 69
 example of usage, 26
option Metabelian, 25, 29, 32, 39, 41, 44, 69
option NumberOfSolubleAutomorphisms, 72
option OrderBound, 32, 44, 71
option OutputLevel, 25, 29, 39, 41, 70
option PsgsAutomorphisms, 60, 70
option pqQuotient, 29, 41, 68
option PqWorkspace, 25, 29, 33, 70
option Prime, 25, 29, 38, 41, 68
option PrintAutomorphisms, 73
option PrintPermutations, 74
option QueueFactor, 50, 73
option RankInitialSegmentSubgroups, 32, 44, 71
option RedoPcp, 39, 70
option RelativeOrders, 72
option Relators, 25, 32, 39, 44, 68
example of usage, 26
option SetupFile, 25, 29, 33, 70
option SpaceEfficient, 32, 44, 71
option StandardPresentationFile, 29, 41, 61, 73
option StepSize, 32, 44, 71
option SubList, 33, 44, 72
option TreeDepth, 72
orbits, 10
p-class, 8
p-cover, 8
p-covering group, 8
p-group generation, 10
p-multiplier, 8
p-multiplier rank, 8
pc generators, 7
pc presentation, 7
pcp, 7
permutations, 9
power-commutator presentation, 7
Pq. 24
interactive, 38
interactive, for default process, 38
PqAddTails, 53
for default process, 53
PqAPGDegree, 64
for default process, 64
PqAPGOrbitRepresentatives, 64
for default process, 64
PqAPGOrbits, 64
for default process, 64
PqAPGPermutations, 64
for default process, 64
PqAPGSingleStage, 64
for default process, 64
PqApplyAutomorphisms, 58
for default process, 58
PqCollect, 51
for default process, 51
PqCollectDefiningRelations, 54
for default process, 54
PqCollectWordInDefiningGenerators, 54
for default process, 54
PqCommutator, 52
for default process, 52
PqCommutatorDefiningGenerators, 55
for default process, 55
PqCompact, 57
for default process, 57
PqComputePcover, 51
for default process, 51
PqComputeTails, 53
for default process, 53
PqCurrentGroup, 48
for default process, 48
PqDescendants, 32
interactive, 43
interactive, for default process, 43
PqDescendantsTreeCoclassOne, 90
for default process, 90
PqDisplayAutomorphisms, 59
for default process, 59
PqDisplayPcPresentation, 48
for default process, 48
PqDisplayStructure, 58
for default process, 58
PqDoConsistencyCheck, 56
for default process, 56
PqDoConsistencyChecks, 53
for default process, 53
PqDoExponentChecks, 55
for default process, 55
PqEchelonise, 57
for default process, 57
PqEliminateRedundantGenerators, 55
for default process, 55
PqEpimorphism, 27
interactive, 40
interactive, for default process, 40
PqEvaluateIdentities, 49
 for default process, 49
PqExample, 18
 no arguments, 18
 with filename, 18
PqExtendAutomorphisms, 58
 for default process, 58
PqFactoredOrder, 47
 for default process, 47
PqGAPRelators, 17
PqJacobi, 56
 for default process, 56
PqLeftNormComm, 17
PqList, 35
PqNextClass, 50
 for default process, 50
PqNrPcGenerators, 47
 for default process, 47
PqOrder, 47
 for default process, 47
PqParseWord, 18
PqPClass, 48
 for default process, 48
PqPCover, 27
 interactive, 40
 interactive, for default process, 40
PqPcPresentation, 49
 for default process, 49
PqPGConstructDescendants, 62
 for default process, 62
PqPExtendAutomorphisms, 62
 for default process, 62
PqPGRestoreDescendantFromFile, 63
 for default process, 63
 with class, 63
 with class, for default process, 63
PqPSetDescendantToPcp, 63
 for default process, 63
 with class, 63
 with class, for default process, 63
PqPSupplyAutomorphisms, 62
 for default process, 62
PqProcessIndex, 37
 for default process, 37
PqProcessIndices, 38
PqQuit, 37
 for default process, 37
PqQuitAll, 37
PqRead, 65
 for default process, 65
PqReadAll, 65
 for default process, 65
PqReadUntil, 65
 for default process, 65
 with modify map, 65
 with modify map, for default process, 65
PqRestorePcPresentation, 50
 for default process, 50
PqRevertToPreviousClass, 55
 for default process, 55
PqSavePcPresentation, 50
 for default process, 50
PqSetMaximalOccurrences, 56
 for default process, 56
PqSetMetabelian, 56
 for default process, 56
PqSetOutputLevel, 48
 for default process, 48
PqSetPQuotientToGroup, 46
 for default process, 46
PqSetupTablesForNextClass, 52
 for default process, 52
PqSolveEquation, 52
 for default process, 52
PqSPCompareTwoFilePresentations, 61
 for default process, 61
PqSPComputePcpAndPCover, 60
 for default process, 60
PqSPIsomorphism, 61
 for default process, 61
PqSPSavePresentation, 61
 for default process, 61
PqSPStandardPresentation, 60
 for default process, 60
PqStandardPresentation, 29
 interactive, 41
PqStart, 37
 with group, 36
 with group and workspace size, 36
 with workspace size, 36
PqSupplyInnerAutomorphisms, 34
PqSupplyAutomorphisms, 57
for default process, 57
PqTails, 52
for default process, 52
PqWeight, 48
for default process, 48
PqWrite, 66
for default process, 66
PqWritePcPresentation, 59
for default process, 59
SavePqList, 35
standard presentation, 11
StandardPresentation, 29
interactive, 41
tails, 10
terminal, 8
ToPQLog, 19
troubleshooting tips, 21
weight function, 8
weighted pcp, 8