
CRIME
A GAP Package to Calculate Group
Cohomology and Massey Products

1.6

17 March 2022

Marcus Bishop

Marcus Bishop
Email: marcus.bishop@gmail.com
Homepage: http://math.uic.edu/~marcus

mailto://marcus.bishop@gmail.com
http://math.uic.edu/~marcus

CRIME 2

Copyright
© 2006, 2007 Marcus Bishop

CRIME is free software which is distributed under the GNU Public Licence, version 2, and may be
redistributed under the GNU Public Licence, version 2 or later (at your preference). See the file COPYING for
detailed information

Acknowledgements

This project would not have been possible without Jon Carlson. Jon devised the algorithms used by
ProjectiveResolution, CohomologyGenerators, and CohomologyRelators, having already imple-
mented them in Magma, and shared these programs with me.

Contents

1 Introduction 4
1.1 Installation and Loading . 4
1.2 For Further Information . 5

2 Usage 6
2.1 Cohomology Objects . 6
2.2 Minimal Projective Resolutions . 6
2.3 Cohomology Generators and Relators . 7
2.4 Tests for Completion . 8
2.5 Cohomology Rings . 8
2.6 What Happens if n Isn’t Big Enough? . 10
2.7 Induced Maps . 11
2.8 Massey Products . 12

A Some Benchmarks 13

B Leisure and Recreation: Cohomology Rings of all Groups of Size 16 15

References 17

Index 18

3

Chapter 1

Introduction

1.1 Installation and Loading

Like other GAP packages, you download and unpack this package into GAP’s pkg directory. For
example, if you were running GAP on some machine with a Unix-based operating system and GAP
were installed in the directory /usr/local/gap then you would do the following to install CRIME.

Example
$ cd /usr/local/gap/pkg
$ su
% wget https://github.com/gap-packages/crime/releases/download/v1.5/crime-1.6.tar.gz
% tar xvzf crime-1.6.tar.gz

In this situation, users would load the package with the LoadPackage command.
Example

$ gap
gap> LoadPackage("crime");

Users not having root access, using someone else’s computer, or having bad relationships with their
network administrators, could install the package into their home directories or into some other
writable directory such as /tmp and load the package as follows.

Example
$ mkdir /tmp/pkg
$ cd /tmp/pkg
% wget https://github.com/gap-packages/crime/releases/download/v1.5/crime-1.6.tar.gz
$ tar xvzf crime-1.6.tar.gz
$ gap -l ’;/tmp’
gap> LoadPackage("crime");

Even simpler, users can simply install the package in the ~/.gap directory as follows.
Example

$ mkdir -p ~/.gap/pkg
$ cd ~/.gap/pkg
% wget https://github.com/gap-packages/crime/releases/download/v1.5/crime-1.6.tar.gz
% tar xvzf crime-1.6.tar.gz
$ gap
gap> LoadPackage("crime");

4

CRIME 5

Finally, it would be a good idea to run the test file to confirm that all the functions work properly. This
can be accomplished as follows.

Example
gap> ReadPackage("crime", "tst/testall.g");

You can count yourself lucky if GAP doesn’t complain about anything. There is also a longer running
test file for those having ample free time described in Appendix B.

1.2 For Further Information

The file doc/example.* contains the step-by-step CRIME calculation of the cohomology ring of the
quaternion group. The file doc/explanation.* contains a theoretical description of how the package
calculates the various cohomology products. Users wishing to read the source code can print all the
programs in the gap directory with the program gap/print.pl which should be executed in the gap
directory.

Chapter 2

Usage

Unless otherwise specified, all the functions described below taking an argument n do whatever the
manual says they do up to homological degree n. These functions are idempotent in the sense that
called a second time with the same argument n, they do nothing, but called with a bigger n, they
continue computing from where the previous calculations finished.

2.1 Cohomology Objects

The computation of group cohomology involves several calculations, the results of which are reused
in later calculations, and are thus collected in an object of type CObject, which is created with the
following command.

2.1.1 CohomologyObject

. CohomologyObject(G, M) (operation)

. CohomologyObject(G) (operation)

Returns: a CObject.
This function creates a CObject having components the p-group G and the MeatAxe module

M, which should be a kG-module where G the group G and k a field of characteristic p. Note that
MeatAxe modules know what k is, but not what G is, which is why this operation requires the user to
specify G but not k.

Fortunately, most users don’t need to know anything about MeatAxe modules, being interested
primarily in the case where k = Fp, and M = k is the trivial kG-module. In this situation, the second
invocation creates a cohomology object having components the p-group G and the trivial MeatAxe
kG-module k = Fp.

We emphasize that in the first invocation, k can be any field of characteristic p and M can be any
MeatAxe module over kG, and that ProjectiveResolution works when M is an arbitrary MeatAxe
module, but that all the functions dealing with the ring-structure of H∗ (G,k) require that M be the
trivial module.

The cohomology object is used to store, in addition to the items mentioned above, the boundary
maps, the Betti numbers, the multiplication table, etc.

2.2 Minimal Projective Resolutions

6

CRIME 7

Given a p-group G, a field k of characteristic p, and a kG-module M, the function below computes the
beginning of the minimal projective resolution of M

Pn→ ··· → P2→ P1→ P0→M→ 0

where Pi = (kG)⊕bi for certain numbers bi, the Betti numbers of the resolution. The minimal kG-
projective resolution of M is unique up to chain isomorphism. Because of the minimality of P∗ the
groups ExtikG (M,N) are simply HomkG (Pi,N), and if M and N are both the trivial kG-module k, then
H i (G,k) = ExtikG (k,k) = kbi .

2.2.1 ProjectiveResolution

. ProjectiveResolution(C, n) (operation)

Returns: a list containing the Betti numbers b0,b1, . . . ,bn.
Given a cohomology object C having components G and M, this function computes the first n+1

terms of the minimal projective resolution P∗ of M of the form Pi = (kG)⊕bi for 0≤ i≤ n and returns
the numbers bi as a list.

2.2.2 BoundaryMap

. BoundaryMap(C, n) (operation)

Returns: the nth boundary map.
Given the cohomology object C, this function computes a projective resolution to degree n if it

hasn’t been computed already, and returns the nth boundary map Pn→ Pn−1.
The map returned is a bn×bn−1 |G|matrix, having in the ith row the image of the element 1G from

the ith direct summand of Pn.
See the file doc/example.* for an example of the usage and interpretation of the result of this

function.

2.3 Cohomology Generators and Relators

See [2] for the details of the calculation of cohomology products using composition of chain maps.
See also the file doc/explanation.* for an explanation of the implementation.

2.3.1 CohomologyGenerators

. CohomologyGenerators(C, n) (operation)

Returns: a list containing the degrees of the elements of a set of generators of the cohomology
ring.

Given a cohomology object C having group component G and module component the trivial kG-
module, this function computes a set of generators of H∗ (G,k) having degree n or less, and stores
them in C. The function returns a list of the degrees of these generators.

The actual cohomology generators are represented by maps Pi→ k for 0≤ i≤ n and are stored in
C as matrices. Only their degrees are returned.

CRIME 8

2.3.2 CohomologyRelators

. CohomologyRelators(C, n) (operation)

Returns: a list of generators and a list of relators.
Given a cohomology object C having group component G and module component k, this function

computes a set of generators of the ideal of relators in H∗ (G,k) , all having degree n or less.
More specifically, the function returns two lists, the first list containing the variables z, y, x, . . .

corresponding to the generators of H∗ (G,k) if there are fewer than 12 generators and containing the
variables x_1, x_2, x_3, . . . otherwise. The second list is a list of polynomials in the variables from
the first list.

These two lists should be interpreted as follows. A degree n approximation of the cohomology
ring H∗ (G,k) is given by the polynomial ring over k in the non-commuting variables from the first list,
(having degrees given by the list returned by CohomologyGenerators in section 2.3.1) and subject
to the relators in the second list. See section 2.6 for more details still.

For example, consider the following commands.
Example

gap> C:=CohomologyObject(DihedralGroup(8));
<object>
gap> CohomologyGenerators(C,10);
[1, 1, 2]
gap> CohomologyRelators(C,10);
[[z, y, x], [z*y+y^2]]

This tells us that for G = D8 and k = Fp, the cohomology ring H∗ (G,k) is the graded-commutative
polynomial ring in the variables z, y, x of degrees 1, 1, 2, subject to the relation zy+ y2. But since
H∗ (G,k) is commutative, k being of characteristic 2, we have H∗ (G,k) = k [z,y,x]

/(
zy+ y2

)
. This

result can be further improved by taking z = z+ y, giving H∗ (G,k) = k [z,y,x]
/
(zy) .

Observe that in this case, we knew in advance that there was a set of generators for H∗ (G,k) all
having degree less than 10, and that there was a set of generators of the ideal of relators all having
degree less than 10. See see section 2.6 for details.

While this isn’t likely to occur, we point out that if there are 12 or more generators and some
of the indeterminates x_1, x_2, x_3, . . . have already been named, say by a previous call to
CohomologyRelators, then these variables will retain their old names. If this is confusing, you
could restart GAP and do it again.

Finally, CohomologyRelators is not idempotent for efficiency reasons, so sadly, if you don’t
uncover all the relators the first time, you will have to start all over from the beginning.

2.4 Tests for Completion

A test or series of tests for completion of the calculation will hopefully be implemented soon. See [2]
for the details.

2.5 Cohomology Rings

Whereas the operations in sections 2.3.1 and 2.3.2 calculate a presentation for the cohomology ring,
the operation below creates the ring in GAP as a structure constant algebra.

CRIME 9

See [2] for the details of the calculation of cohomology products using composition of chain maps.
See also the file doc/explanation.* for an explanation of the implementation.

2.5.1 CohomologyRing

. CohomologyRing(C, n) (operation)

. CohomologyRing(G, n) (operation)

Returns: the cohomology ring of G.
Given a cohomology object C with group component G and module component the trivial kG-

module, this function returns the degree n truncation of the cohomology ring H∗ (G,k) . See 2.6 for
what this means exactly. The object returned is a structure constant algebra.

Users interested only in working with the cohomology ring of a group as a GAP object, and not
in calculating generators, relators, induced maps, etc, can use the second invocation of this function,
which returns the cohomology ring of the group G immediately, throwing away all intermediate calcu-
lations.

Observe that the object returned is a degree n truncation of the infinite-dimensional cohomology
ring. A consequence of this is that multiplying two elements whose product has degree greater than n
results in zero, whether or not the product is really zero.

Observe also that calling CohomologyRing a second time with a bigger n does not extend the
previous ring, but rather, recalculates the entire ring from the beginning. Extending the previous ring
appears not to be worth the effort for technical reasons, since almost everything would need to be
recalculated again anyway.

Recall that H∗ (G,k) is a graded algebra, the components being the cohomology groups H i (G,k).
The following functions were intended to be used for cohomology rings, but in principle, they work
for any graded structure constant algebra.

2.5.2 IsHomogeneous

. IsHomogeneous(e) (operation)

Returns: true or false.
Given an element e of a cohomology ring H∗ (G,k), this operation determines whether or not e is

homogeneous, that is, whether e is contained in H i (G,k) for some i.

2.5.3 Degree

. Degree(e) (method)

Returns: the degree of e.
This function returns the degree of the possibly non-homogeneous element e of a cohomology

ring H∗ (G,k). Specifically, if H∗ (G,k) = A0⊕A1⊕A2⊕·· · where Ai = H i (G,k) then this function
returns the minimum n such that e is in A0⊕A1⊕·· ·⊕An.

Example
gap> A:=CohomologyRing(DihedralGroup(8),10);
<algebra of dimension 66 over GF(2)>
gap> b:=Basis(A);
CanonicalBasis(<algebra of dimension 66 over GF(2)>)
gap> x:=b[2]+b[4];
v.2+v.4
gap> IsHomogeneous(x);

CRIME 10

false
gap> Degree(x);
2

2.5.4 LocateGeneratorsInCohomologyRing

. LocateGeneratorsInCohomologyRing(C) (function)

Returns: a list containing the cohomology generators.
Having already called CohomologyRing (see 2.5.1), this function returns a list of elements of the

cohomology ring which together with the identity element generate the cohomology ring.
This function is a wrapper for CohomologyGenerators (see 2.3.1). It points out which elements

of the cohomology ring correspond with the generators found by CohomologyGenerators.
Example

gap> C:=CohomologyObject(SmallGroup(8,4));
<object>
gap> A:=CohomologyRing(C,10);
<algebra of dimension 17 over GF(2)>
gap> L:=LocateGeneratorsInCohomologyRing(C);
[v.2, v.3, v.7]
gap> A=Subalgebra(A,Concatenation(L,[One(A)]));
true

2.6 What Happens if n Isn’t Big Enough?

Since P∗ is a minimal projective resolution, we have H i (G,k)=HomkG (Pi,k) where Pi =(kG)bi so that
H i (G,k) has a natural basis consisting of the maps sending the element 1G of the jth direct summand
of Pi to 1k and all other direct summands to 0, for 1≤ j ≤ bi, where bi is the kG-rank of Pi.

The command CohomologyRing(C,n) forms the vector space whose basis is the concatenation
of the natural bases of H i (G,k) for 1≤ i≤ n and computes all products of basis elements x and y for
which degx+ degy ≤ n. Thinking of H∗ (G,k) in terms of it’s multiplication table, this means that
the function computes the upper left-hand corner of the multiplication table. If degx+degy > n, the
product xy is taken to be zero. Therefore, the ring returned by CohomologyRing is H∗ (G,k)

/
J>n

where J>n is the ideal of all elements of degree > n.
The ring determined by CohomologyGenerators and CohomologyRelators is somewhat differ-

ent. CohomologyGenerators proceeds inductively, taking all natural basis elements of H1 (G,k) as
generators, and for 1 < i ≤ n, taking all natural basis elements of H i (G,k) which are not products of
lower-degree elements as generators. Therefore, unless you know that there is an n for which there
exists a generating set of H∗ (G,k) consisting of elements of degree n or less, then you are not guar-
anteed that the elements returned by the CohomologyGenerators generate H∗ (G,k) as a ring. The
knowledge of such an n is the subject of section 2.4.

Similarly, CohomologyRelators proceeds inductively until degree n, returning a list of polyno-
mials which generate the ideal of relators of degree n or less. Again, you have to already know how
big n should be.

The result of the preceding information is that there is a homomorphism f : k 〈x1,x2, . . . ,xm〉 /I→
H∗ (G,k), where k 〈x1,x2, . . . ,xm〉 is the graded polynomial ring over k in the non-commuting variables
x1,x2, . . . ,xm, having degrees the numbers in the list returned by CohomologyGenerators, and I is
the ideal in k 〈x1,x2, . . . ,xm〉 generated by the elements returned by CohomologyRelators(C,n).

CRIME 11

Therefore, if there is a generator of degree greater than n, then f won’t be surjective. Similarly, if
there is a relator of degree greater than n which is not a consequence of lower degree relators, then f
won’t be injective. See section 2.4 for a discussion on how big n needs to be to ensure that f will be
an isomorphism.

2.7 Induced Maps

Let f : H → G be a group homomorphism. Then f induces a homomorphism on cohomology
H∗ (G,k)→ H∗ (H,k) which is returned by the following function.

2.7.1 InducedHomomorphismOnCohomology

. InducedHomomorphismOnCohomology(C, D, f, n) (function)

Returns: the induced homomorphism on cohomology.
This function returns the induced homomorphism H∗ (G,k)→ H∗ (H,k) where the groups H and

G are the components of the cohomology objects C and D and f : H → G is a group homomorphism.
If the cohomology rings have not yet been calculated, they will be computed to degree n, and in this
case, they can then be accessed by calling CohomologyRing (see 2.5.1).

2.7.2 SubgroupInclusion

. SubgroupInclusion(H, G) (function)

Returns: the inclusion H→ G
This function returns the group homomorphism H→ G when H is a subgroup of G. The returned

map can be used as the f argument of InducedHomomorphismOnCohomology, in which case the
induced homomorphism is the restriction map ResG

H : H∗ (G,k)→ H∗ (H,k).
The following example calculates the homomorphism on cohomology induced by the inclusion of

the cyclic group of size 4 into the dihedral group of size 8.
Example

gap> G:=DihedralGroup(8);H:=Subgroup(G,[G.2]);
<pc group of size 8 with 3 generators>
Group([f2])
gap> C:=CohomologyObject(H);D:=CohomologyObject(G);
<object>
<object>
gap> i:=SubgroupInclusion(H,G);
[f2] -> [f2]
gap> Res:=InducedHomomorphismOnCohomology(C,D,i,10);;
gap> A:=CohomologyRing(D,10);
<algebra of dimension 66 over GF(2)>
gap> LocateGeneratorsInCohomologyRing(D);
[v.2, v.3, v.6]
gap> A.1^Res; A.2^Res; A.3^Res; A.6^Res;
v.1
0*v.1
v.2
v.3

CRIME 12

2.8 Massey Products

See [3] for the definitions and [1] for the details of the calculation using the Yoneda cocomplex. See
also the file doc/explanation.* for an explanation of the implementation.

2.8.1 MasseyProduct

. MasseyProduct(x1, x2, ..., xn) (function)

Returns: the Massey product 〈x1,x2, . . . ,xn〉.
Given elements x1,x2, . . . ,xn of the ring returned by CohomologyRing (see 2.5) this function

computes the n-fold Massey product 〈x1,x2, . . . ,xn〉 provided that the lower-degree Massey products〈
xi,xi+1, . . . ,x j

〉
vanish for all 1≤ i < j ≤ n and returns fail otherwise.

As an example, recall that the cohomology rings of the cyclic groups C3 and C9 of sizes 3 and 9
over k = F3 are both given by k 〈z,y〉

/(
z2
)

, so they are isomorphic as rings. However, the following
example shows that 〈z,z,z〉 is non-zero in H∗ (C3,k) but is zero in H∗ (C9,k).

Example

gap> A:=CohomologyRing(CyclicGroup(3),10);
<algebra of dimension 11 over GF(3)>
gap> z:=Basis(A)[2];
v.2
gap> MasseyProduct(z,z);
0*v.1
gap> MasseyProduct(z,z,z);
v.3
gap> A:=CohomologyRing(CyclicGroup(9),10);
<algebra of dimension 11 over GF(3)>
gap> z:=Basis(A)[2];
v.2
gap> MasseyProduct(z,z);
0*v.1
gap> MasseyProduct(z,z,z);
0*v.1
gap> MasseyProduct(z,z,z,z,z,z,z,z,z);
v.3

Appendix A

Some Benchmarks

Some of the key subroutines have been improved in version 1.2 of CRIME, resulting in a significant
speedup of many basic calculations.

The numbers in the following table compare the runtimes of the 1.1 and 1.2 versions of the func-
tions listed in the column headers on all the groups of size 16. All functions were executed on a
2.4 GHz AMD64 processor with 12 GB of RAM. The number in the first column of every row
is the Small Group Library number of the group used in that row, so the group used in row n is
SmallGroup(16,n). The upper number in each box is the runtime for the 1.1 version, whereas the
lower number is the runtime for the 1.2 version.

13

CRIME 14

Group ProjectiveResolution CohomologyGenerators CohomologyRelators
1 0:00:00.424 0:00:00.040 0:00:00.092

0:00:00.380 0:00:00.016 0:00:00.012
2 0:00:00.436 0:00:01.472 0:00:05.848

0:00:00.072 0:00:00.116 0:00:00.396
3 0:00:02.752 0:00:11.469 0:00:42.887

0:00:00.352 0:00:01.192 0:00:01.944
4 0:00:00.480 0:00:01.456 0:00:06.320

0:00:00.068 0:00:00.116 0:00:00.316
5 0:00:00.480 0:00:01.136 0:00:06.045

0:00:00.080 0:00:00.096 0:00:00.296
6 0:00:00.204 0:00:00.724 0:00:01.892

0:00:00.036 0:00:00.072 0:00:00.116
7 0:00:00.504 0:00:01.156 0:00:06.140

0:00:00.088 0:00:00.100 0:00:00.344
8 0:00:00.192 0:00:00.704 0:00:01.800

0:00:00.036 0:00:00.064 0:00:00.120
9 0:00:00.060 0:00:00.100 0:00:00.284

0:00:00.020 0:00:00.012 0:00:00.028
10 0:00:10.161 0:00:34.326 0:03:07.104

0:00:01.524 0:00:04.252 0:00:08.089
11 0:00:10.397 0:00:32.354 0:03:07.355

0:00:01.716 0:00:04.584 0:00:08.021
12 0:00:01.184 0:00:04.613 0:00:20.789

0:00:00.192 0:00:00.544 0:00:00.984
13 0:00:01.152 0:00:04.496 0:00:20.990

0:00:00.196 0:00:00.472 0:00:01.072
14 0:03:26.817 0:07:37.960 0:56:39.273

0:00:41.919 0:02:07.399 0:01:54.752

Appendix B

Leisure and Recreation: Cohomology
Rings of all Groups of Size 16

Below is the output of the test file tst/batch.g. The file runs through all groups of size
n, which is initially set to 16, calls ProjectiveResolution, CohomologyGenerators, and
CohomologyRelators for each group, and prints the results, as well as the runtimes for each op-
eration, to a file like the one shown below. The runtimes in this example have been deleted, having
been presented in Appendix A. The example below was computed on a 2.4 GHz AMD64 proces-
sor with 12 GB of RAM. See the file tst/README for suggestions on dealing with other users when
running long-running batch processes.

Example
SmallGroup(16,1)
Betti Numbers: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Generators in degrees: [1, 2]
Relators: [[z, y], [z^2]]

SmallGroup(16,2)
Betti Numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Generators in degrees: [1, 1, 2, 2]
Relators: [[z, y, x, w], [z^2, y^2]]

SmallGroup(16,3)
Betti Numbers: [1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36]
Generators in degrees: [1, 1, 2, 2, 2]
Relators: [[z, y, x, w, v], [z^2, z*y, z*x, y^2*v+x^2]]

SmallGroup(16,4)
Betti Numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Generators in degrees: [1, 1, 2, 2]
Relators: [[z, y, x, w], [z^2, z*y+y^2, y^3]]

SmallGroup(16,5)
Betti Numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Generators in degrees: [1, 1, 2]
Relators: [[z, y, x], [z^2]]

SmallGroup(16,6)
Betti Numbers: [1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6]

15

CRIME 16

Generators in degrees: [1, 1, 3, 4]
Relators: [[z, y, x, w], [z^2, z*y^2, z*x, x^2]]

SmallGroup(16,7)
Betti Numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Generators in degrees: [1, 1, 2]
Relators: [[z, y, x], [z*y]]

SmallGroup(16,8)
Betti Numbers: [1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6]
Generators in degrees: [1, 1, 3, 4]
Relators: [[z, y, x, w], [z*y, z^3, z*x, y^2*w+x^2]]

SmallGroup(16,9)
Betti Numbers: [1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2]
Generators in degrees: [1, 1, 4]
Relators: [[z, y, x], [z*y, z^3+y^3, y^4]]

SmallGroup(16,10)
Betti Numbers: [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66]
Generators in degrees: [1, 1, 1, 2]
Relators: [[z, y, x, w], [z^2]]

SmallGroup(16,11)
Betti Numbers: [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66]
Generators in degrees: [1, 1, 1, 2]
Relators: [[z, y, x, w], [z*y]]

SmallGroup(16,12)
Betti Numbers: [1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17]
Generators in degrees: [1, 1, 1, 4]
Relators: [[z, y, x, w], [z^2+z*y+y^2, y^3]]

SmallGroup(16,13)
Betti Numbers: [1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17]
Generators in degrees: [1, 1, 1, 4]
Relators: [[z, y, x, w], [z*y+x^2, z*x^2+y*x^2, y^2*x^2+x^4]]

SmallGroup(16,14)
Betti Numbers: [1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286]
Generators in degrees: [1, 1, 1, 1]
Relators: [[z, y, x, w], []]

References

[1] I. C. Borge. A cohomological approach to the classification of p-groups.
http://eprints.maths.ox.ac.uk/40/, 2001. 12

[2] J. F. Carlson, L. Townsley, L. Valeri-Elizondo, and M. Zhang. Cohomology rings of finite groups,
volume 3 of Algebras and Applications. Kluwer Academic Publishers, Dordrecht, 2003. 7, 8, 9

[3] D. Kraines. Massey higher products. Trans. Amer. Math. Soc., 124:431–449, 1966. 12

17

Index

BoundaryMap, 7

CohomologyGenerators, 7
CohomologyObject, 6
CohomologyRelators, 8
CohomologyRing, 9

Degree, 9

InducedHomomorphismOnCohomology, 11
IsHomogeneous, 9

LocateGeneratorsInCohomologyRing, 10

MasseyProduct, 12

ProjectiveResolution, 7

SubgroupInclusion, 11

18

	Introduction
	Installation and Loading
	For Further Information

	Usage
	Cohomology Objects
	Minimal Projective Resolutions
	Cohomology Generators and Relators
	Tests for Completion
	Cohomology Rings
	What Happens if n Isn't Big Enough?
	Induced Maps
	Massey Products

	Some Benchmarks
	Leisure and Recreation: Cohomology Rings of all Groups of Size 16
	References
	Index

