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Copyright

CRISP is Copyright (C) 2000 — 2016 Burkhard Höfling (burkhard@hoefling.name)

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the fol-
lowing disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.



1 Introduction
The GAP package CRISP provides algorithms for computing subgroups of finite soluble groups related to a group
class C . In particular, it allows to compute C -radicals and C -injectors for Fitting classes (and Fitting sets) C , C -
residuals for formations C , and C -projectors for Schunck classes C . In order to carry out these computations, the
group class C must be represented by an algorithm which can decide membership in the group class. Moreover,
additional information about the class can be supplied to speed up computations, sometimes considerably. This infor-
mation may consist of other classes (such as the characteristic of the class), or of additional algorithms, for instance
for the computation of residuals and local residuals, radicals, or for testing membership in related classes (such as the
basis or boundary of a Schunck class).

Moreover, the present package contains algorithms for the computation of normal subgroups belonging to a given
group class, including an improved method to compute the set of all normal subgroups of a finite soluble group, and
methods to compute the socle and p-socles of a finite soluble group, as well as the abelian socle of any finite group.
CRISP also provides basic support for classes (in the set theoretical sense). The algorithms used are described in
[Höf01].

C -projectors and C -injectors of finite soluble groups arise as generalisations of Sylow and Hall subgroups, and have
attracted considerable interest. They were first studied by Gaschütz [Gas63], Schunck [Sch67], and Fischer, Gaschütz
and Hartley [FGH67]. In particular, C -injectors only exist in any finite soluble group if the group class C is a Fitting
class. Similarly, C -projectors exist in any finite group G if and only if C is a Schunck class. An extensive account of
the subject can be found in [DH92].

In the case when the class C in question is a local formation (which is a special kind of Schunck class), algorithms
for dealing with C -projectors and related subgroups of finite soluble groups are available also in the GAP package
FORMAT by Eick and Wright; see also [EW02]. In order to use their methods, C has to be described in terms of
algorithms for the computation of residuals with respect to an integrated local function for C .

The author would like to thank J. Neubüser and the Lehrstuhl D für Mathematik, RWTH Aachen, for an invitation,
which made it possible to develop a first version of the algorithm for the computation of projectors. He is indebted
to the GAP team, particularly Bettina Eick and Alexander Hulpke, for its advice, and to the anonymous referee,
J. Neubüser, and C. R. B. Wright for their detailed comments on previous versions of CRISP.



2 Set theoretical classes
In CRISP, a class (in the set-theoretical sense) is usually represented by an algorithm which decides membership in
that class. Wherever this makes sense, sets (see GAP Reference Manual, 30.3.7) may also be used as classes.

2.1 Creating set theoretical classes

1 I IsClass(C) C

returns true if C is a class object. The category of class objects is a subcategory of the category IsListOrCollection.

2 I Class(rec) O
I Class(func) O

returns a class C. In the first form, rec must be a record having a component \in and an optional component name. The
values of these components, if present, are bound to the attributes MemberFunction and Name (see GAP Reference
Manual, 12.8.2) of the class created. The value bound to \in must be a function func which returns true if a GAP
object belongs to C, and false otherwise; cf. 2.2.2 below. The second form is equivalent to Class(rec(\in :=

func)). It is the user’s responsibility to ensure that func returns the same result for different GAP objects representing
the same mathematical object (or element, in the GAP sense; see GAP Reference Manual, 12 in the GAP reference
manual).

gap> FermatPrimes := Class(p -> IsPrime(p) and p = 2^LogInt(p, 2) + 1);

Class(in:=function( p ) ... end)

3 I View(class)

If the class does not have a name, this produces a brief description of the information defining class which has been
supplied by the user. If the class has a name, only its name will be printed.

gap> View(FermatPrimes);

Class(in:=function( p ) ... end)

4 I Print(class)

Print behaves very similarly to View, except that the defining information is being printed in a more explicit way if
possible.

gap> Print(FermatPrimes);

Class(rec( in = function( p )

return IsPrime( p ) and p = 2 ^ LogInt( p, 2 ) + 1;

end))

5 I Display(class)

For classes, Display works exactly as Print.

6 I obj in class

returns true or false, depending upon whether obj belongs to class or not. If obj can store attributes, the outcome of
the membership test is stored in an attribute ComputedIsMembers of obj.
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7 I C1 = C2

Since it is not possible to compare classes given by membership algorithms, two classes are equal in GAP if and only
if they are the same GAP object (see GAP Reference Manual, 12.5.1 in the GAP reference manual).

8 I C1 < C2

The operation < for classes has no mathematical meaning; it only exists so that one can form sorted lists of classes.

2.2 Properties of classes

1 I IsEmpty(C) P

This property may be set to true or false if the class C is empty resp. not empty.

2 I MemberFunction(C) A

This attribute, if bound, stores a function with one argument, obj, which decides if obj belongs to C or not, and returns
true and false accordingly. If present, this function is called by the default method for \in. MemberFunction is
part of the definition of C and should not be called directly by the user.

2.3 Lattice operations for classes

1 I Complement(C) O

returns the unary complement of the class C, that is, the class consisting of all objects not in C. C may also be a set.

gap> cmpl := Complement([1,2]);

Complement([ 1, 2 ])

gap> Complement(cmpl);

[ 1, 2 ]

2 I Intersection(list) F
I Intersection(C1, C2, . . . ) F

returns the intersection of the groups in list, resp. of the classes C1, C2, . . . . If one of the classes is a list with fewer
than INTERSECTION LIMIT elements, then the result will be a sublist of that list. By default, INTERSECTION LIMIT

is 1000.

gap> Intersection(Class(IsPrimeInt), [1..10]);

[ 2, 3, 5, 7 ]

gap> Intersection(Class(IsPrimeInt), Class(n -> n = 2^LogInt(n+1, 2) - 1));

Intersection([ Class(in:=function( N ) ... end),

Class(in:=function( n ) ... end) ])

3 I Union(C, D) F

returns the union of C and D.

gap> Union(Class(n -> n mod 2 = 0), Class(n -> n mod 3 = 0));

Union([ Class(in:=function( n ) ... end), Class(in:=function( n ) ... end)

])

4 I Difference(C, D) O

returns the difference of C and D. If C is a list, then the result will be a sublist of C.

gap> Difference(Class(IsPrimePowerInt), Class(IsPrimeInt));

Intersection([ Class(in:=function( n ) ... end),

Complement(Class(in:=function( N ) ... end)) ])

gap> Difference([1..10], Class(IsPrimeInt));

[ 1, 4, 6, 8, 9, 10 ]



3 Generic group classes

In this chapter, we describe how group classes can be defined by assigning basic attributes and properties, in particular
closure properties.

A class (see 2) is a group class if it consists of groups, and if it is closed under isomorphisms of groups. Thus if G and
H are isomorphic groups, then G is in the group class grpclass if and only if H is. Groups belonging to the same group
class may be regarded as sharing a group theoretical property (a property shared by isomorphic groups), and groups
sharing a group theoretical property form a class of groups. It not empty, group classes are genuinely infinite objects,
so GAP sets can never form group classes. Some authors require every group class to contain the trivial groups. Here
we do not make this assumption; in particular every empty class is a group class.

The following sections describe how to create group classes and declare some of their basic properties.

Note that, for common types of group classes, there are additional functions available to accomplish this task; see the
following Chapters 4 and 5. There are also a number of pre-defined group classes; see Chapter 6.

3.1 Creating group classes

Group classes can either be defined by a function deciding membership, or alternatively by a (finite) list of groups
containing at least one representative of each isomorphism type of groups contained in the class.

1 I GroupClass(rec) O
I GroupClass(func) O
I GroupClass(group-list) O
I GroupClass(group-list, iso-func) O

The function GroupClass returns a new group class class, specified by its argument(s).

In the first form, rec must be a record which has a component \in, and may have further components name, and char.
\in must be a function having one argument. When called with a group G as its argument, it must return true or
false, depending upon whether G is in class or not. It is the user’s responsibility to ensure that the function supplied
returns the same value when called with isomorphic groups. If rec has components name or char, their values are
stored in the attributes Name (see GAP Reference Manual, 12.8.2) and Characteristic (see 3.4.1) of class.

GroupClass(func) is a shorthand for GroupClass(rec(\in := func)).

In the other cases, GroupClass returns the group class consisting of the isomorphism classes of the groups in the
list group-list. If iso-func is given, iso-func is used to check whether a given group G is isomorphic with one of the
groups in the defining list. iso-func must have two arguments, and must return true if two groups, one of which is in
group-list, passed as arguments are isomorphic, and false otherwise. If iso-func is not given, the GAP function Iso-

morphismGroups is used for the isomorphism test. Note that even for relatively small groups, IsomorphismGroups
tends to be very slow.
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gap> GroupClass(IsNilpotent);

GroupClass(in:=<Operation "IsNilpotent">)

gap> GroupClass([CyclicGroup(2), CyclicGroup(3)]);

GroupClass([ <pc group of size 2 with 1 generators>,

<pc group of size 3 with 1 generators> ])

gap> AbelianIsomorphismTest := function(A,B)

> if IsAbelian(A) then

> if IsAbelian(B) then

> return AbelianInvariants(A) = AbelianInvariants(B);

> else

> return false;

> fi;

> elif IsAbelian(B) then

> return false;

> else # this will not happen if called from GroupClass

> Error("At least one of the groups <A> and <B> must be abelian");

> fi;

> end;

function( A, B ) ... end

gap> cl := GroupClass([AbelianGroup([2,2]), AbelianGroup([3,5])],

> AbelianIsomorphismTest);

GroupClass([ <pc group of size 4 with 2 generators>,

<pc group of size 15 with 2 generators> ], function( A, B ) ... end)

gap> Group((1,2),(3,4)) in cl;

true

2 I Intersection(list) F
I Intersection(C 1, C 2, . . . , C n) F

The intersection of a list list of group classes resp. of the group classes C 1, C 2, . . . , C n is again a group class. The
intersection automatically has those closure properties (see 3.2) which all of the intersected classes have.

3.2 Properties of group classes

Since nonempty group classes are infinite, CRISP cannot, in general, decide whether a group class has a certain
property. Therefore the user is required to set the appropriate properties and attributes. See Sections GAP Reference
Manual, 13.5 and GAP Reference Manual, 13.7. To facilitate this task, there are special functions available to create
common types of group classes such as formations (see 4.4), Fitting classes (see 5.1), and Schunck classes (see 4.1).

However, CRISP knows about the implications between the closure properties listed below; for instance it knows that
a group class which has IsResiduallyClosed also has IsDirectProductClosed, and that a class having IsS-

chunckClass also has IsDirectProductClosed and IsSaturated. Moreover, the intersection of group classes all
having one of the closure properties in common also has that closure property.

The following basic properties are defined for group classes.

1 I IsGroupClass(grpclass) P

A generic class (see Chapter 2) is considered a group class if it has the property IsGroupClass. There is no way for
CRISP to know that a given class defined by a membership function is a group class, i. e., consists of groups and is
closed under group isomorphisms.

2 I ContainsTrivialGroup(grpclass) P

This property, if bound, indicates whether grpclass contains the trivial group or not.
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3 I IsSubgroupClosed(grpclass) P

if true, then for every G in grpclass, the subgroups of G likewise belong to grpclass.

4 I IsNormalSubgroupClosed(grpclass) P

if true, then for every G in grpclass, the (sub)normal subgroups of G likewise belong to grpclass.

5 I IsQuotientClosed(grpclass) P

if true, then for every G in grpclass, the factor groups of G likewise belong to grpclass.

6 I IsResiduallyClosed(grpclass) P

if true and G is a group such that G/N1 and G/N2 belong to grpclass for two normal subgroups N1 and N2 of G which
intersect trivially, then G belongs to grpclass.

7 I IsNormalProductClosed(grpclass) P

if true and G is a group which is generated by subnormal subgroups in grpclass, then G belongs to grpclass.

8 I IsDirectProductClosed(grpclass) P

if true and the group G is the direct product of N1 and N2 belonging to grpclass, then G likewise belongs to grpclass.

9 I IsSchunckClass(grpclass) P

if true, then G belongs to grpclass if and only if its primitive factor groups lie in grpclass. A (finite) group is primitive
if it has a faithful primitive permutation representation, or equivalently, if it has a maximal subgroup with trivial core.
A Schunck class contains every trivial group.

10 I IsSaturated(grpclass) P

if true, G belongs to X whenever G/FrattiniSubgroup(G) belongs to X.

3.3 Additional properties of group classes

Note that the following “properties” are not properties but only filters in the GAP sense (cf. GAP Reference Manual,
13.7 and GAP Reference Manual, 13.2 in the GAP reference manual).

1 I HasIsFittingClass(obj) F

is true if obj knows if it is a Fitting class, that is, if it lies in the filters HasIsGroupClass, HasContainsTrivial-
Group, HasIsNormalSubgroupClosed and HasIsNormalProductClosed.

2 I IsFittingClass(obj) F

is true if obj is a Fitting class, that is, if it has the properties IsGroupClass, ContainsTrivialGroup, IsNormal-
SubgroupClosed and IsNormalProductClosed.

3 I SetIsFittingClass(group class, bool) F

If bool is true, this fake setter function sets the properties IsNormalSubgroupClosed and IsNormalProduct-

Closed of group class to true. It is the user’s responsibility to ensure that group class is indeed a Fitting class.

gap> nilp := GroupClass(IsNilpotent);

GroupClass(in:=<Operation "IsNilpotent">)

gap> SetIsFittingClass(nilp, true);

gap> nilp;

FittingClass(in:=<Operation "IsNilpotent">)
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4 I HasIsOrdinaryFormation(obj) F

is true if obj knows if it is a formation, that is, if it lies in the filters HasIsGroupClass, HasContainsTrivialGroup,
HasIsQuotientClosed and HasIsResiduallyClosed.

5 I IsOrdinaryFormation(obj) F

is true if obj is a formation, that is, if it has the properties IsGroupClass, ContainsTrivialGroup, IsQuotient-
Closed and IsResiduallyClosed.

6 I SetIsOrdinaryFormation(class, bool) F

If bool is true, this sets the attributes IsQuotientClosed, ContainsTrivialGroup, and IsResiduallyClosed

of class, making it a formation.

7 I HasIsSaturatedFormation(obj) F

returns true if obj knows if it is a saturated formation, that is, if it lies in the filters HasIsOrdinaryFormation and
HasIsSaturated.

8 I IsSaturatedFormation(obj) F

returns true if obj is a saturated formation, that is, if it has the properties IsOrdinaryFormation and IsSaturated

9 I SetIsSaturatedFormation(class, bool) F

If bool is true, this sets the attributes IsQuotientClosed, ContainsTrivialGroup, and IsResiduallyClosed

and IsSaturated of class, making it a saturated formation.

10 I HasIsFittingFormation(obj) F

returns true if obj knows whether it is a Fitting formation, that is, if it lies in the filters HasIsOrdinaryFormation
and HasIsFittingClass (see 3.3.4 and 3.3.1).

11 I IsFittingFormation(obj) F

returns true if obj is both a formation and a Fitting class.

12 I SetIsFittingFormation(class, bool) F

If bool is true, this function sets the attributes of class to indicate that it is a Fitting formation.

13 I HasIsSaturatedFittingFormation(obj) F

returns true if obj knows whether it is a saturated Fitting formation, that is, if it lies in the filters HasIsSaturated-
Formation and HasIsFittingClass (see 3.3.7 and 3.3.1).

14 I IsSaturatedFittingFormation(obj) F

returns true if obj is both a saturated formation and a Fitting class, that is, if it lies in the filters IsSaturatedForma-
tion and IsFittingClass (see 3.3.8 and 3.3.2).

15 I SetIsSaturatedFittingFormation(class, bool) F

If bool is true, this sets the attributes of class to indicate that it is a saturated Fitting formation.

3.4 Attributes of group classes
In addition to the attribute MemberFunction which has the same meaning as for generic classes, a group class may
have the following attribute.

1 I Characteristic(grpclass) A

This attribute, if present, stores a class containing all primes p such that grpclass contains a cyclic group of order p.
There is a pre-defined class AllPrimes which should be assigned to Characteristic if grpclass contains a cyclic
group of order p for every prime p.



4 Schunck classes
and formations

In principle, any group class can be created as generic (group) class, followed by setting the required properties
and attributes described in the preceding chapters. For certain standard kinds of group classes, there are additional
functions available to accomplish this task, which are described in this and the following chapter.

4.1 Creating Schunck classes

A class C of finite groups is a Schunck class if a finite group G belongs to C if and only if all its primitive factor
groups belong to C . In particular, a Schunck class is nonempty and closed with respect to factor groups. By definition,
a Schunck class C is determined by the primitive groups which it contains (the basis of C ), or by the primitive groups
not in C but all of whose proper factor groups belong to C (the boundary of C ).

1 I SchunckClass(rec) O

returns a Schunck class defined by the information stored in the record rec. Note that it is the user’s responsibility
to ensure that rec really defines a Schunck class. rec may have the following components: \in, proj, bound, char,
and name. The values bound to these entries, if present, are stored, respectively, in the attributes MemberFunction,
ProjectorFunction, BoundaryFunction, Characteristic, and Name, see 2.2.2, 4.2.6, 4.2.5m, 3.4.1, and GAP
Reference Manual, 12.8.2 for the meaning of these attributes.

At least one of the attributes MemberFunction, ProjectorFunction, or BoundaryFunction must be present in
order to be able to compute with a Schunck class.

gap> nilp := SchunckClass(rec(bound := G -> not IsCyclic(G),

> name := "class of all nilpotent groups"));

class of all nilpotent groups

gap> DihedralGroup(8) in nilp;

true

gap> SymmetricGroup(3) in nilp;

false

4.2 Attributes and operations for Schunck classes

In addition to the attributes and operations for generic group classes, for Schunck classes also the following are
available:

1 I Boundary(class) A

computes the boundary of class, i. e., the class of all primitive groups which do not belong to class but whose proper
factor groups do. The result is a group class.

2 I Basis(class) A

The basis of class consists of the primitive soluble groups in class. The result is a group class.
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3 I Projector(grp, class) O

This function returns a class-projector of grp. Note that, at present, methods are only available for finite soluble groups
grp, or when class has an attribute ProjectorFunction.

A subgroup H of the group G is a class-projector of G if HN/N is class-maximal in G/N for all normal subgroups
N of G. A subgroup H of G is class-maximal in G if H belongs to class, and there is no subgroup L of G which
contains H and lies in class. Note that if class consists of finite soluble groups, then class-projectors exist in every
finite soluble group if and only if class is a Schunck class, and in this case all class-projectors of G are conjugate. See
[DH92], III, 3.21.

gap> H := SchunckClass(rec(bound := G -> Size(G) = 6));

SchunckClass(bound:=function( G ) ... end)

gap> Size(Projector(GL(2,3), H));

16

gap> # H-projectors coincide with Sylow subgroups

gap> U := SchunckClass(rec( # class of all supersoluble groups

> bound := G -> not IsPrimeInt( Size(Socle(G)))

> ));

SchunckClass(bound:=function( G ) ... end)

gap> Size(Projector(SymmetricGroup(4), U));

6

gap> # the projectors are the point stabilizers

4 I CoveringSubgroup(grp, class) O

A subgroup H of G is a class-covering subgroup of G if H is a class-projector of L for every subgroup L with
H ≤ L ≤ G. Note that projectors and covering subgroups coincide for Schunck classes of finite soluble groups. At
present, methods are only available for finite soluble groups grp.

5 I BoundaryFunction(grpclass) A

If bound, this attribute stores a function func which has been set by the user to define grpclass. func must be a
function taking one argument. If the argument is a finite primitive soluble group G, func must return true if G is in
the boundary of grpclass, and false if G belongs to grpclass. The behaviour for arguments which are not primitive
soluble groups, or which belong neither to grpclass nor to the boundary of grpclass need not be defined. Note that
BoundaryFunction should not be used to test whether a given group belongs to the boundary of grpclass. Boundary
and/or Basis (see 4.2.1 and 4.2.2), which are defined independently of the way grpclass is defined and will work for
all finite soluble groups.

6 I ProjectorFunction(grpclass) A

If bound, ProjectorFunction stores a function func supplied by the user as part of the definition of grpclass. func
must be a function taking a group G as the only argument, and returns a grpclass-projector of G. Note that Projector
(see 4.2.3), rather than ProjectorFunction, should be used by the user to compute grpclass-projectors.

4.3 Additional attributes for primitive soluble groups

1 I IsPrimitiveSolubleGroup(grp) P
I IsPrimitiveSoluble(grp) P
I IsPrimitiveSolvableGroup(grp) P
I IsPrimitiveSolvable(grp) P

returns true if grp is primitive and soluble, and false otherwise. An abstract finite group G is primitive if it has a
faithful primitive permutation representation, or equivalently, if it has a maximal subgroup M with trivial core. If G is
soluble, M complements the unique minimal normal subgroup N of G. Therefore N is the socle as well as the Fitting
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subgroup of G. A permutation group may be primitive as an abstract group while it is not primitive as a permutation
group (cf. GAP Reference Manual, 41.10.7).

2 I SocleComplement(grp) A

If present, this attribute stores a complement of the socle of grp. Currently, there is only a method available for
SocleComplement if grp has the property IsPrimitiveSoluble.

4.4 Creating formations

A nonempty group class is a formation if it is closed with respect to factor groups and residually closed. A saturated
formation is, of course, a formation which is saturated. Note that by the Gaschütz-Lubeseder-Schmid theorem (see
e. g. [DH92], IV, 4.6), every saturated formation is a local formation. Moreover, every saturated formation is a Schunck
class. Therefore a saturated formation admits the operations Boundary, Basis, and Projector.

1 I OrdinaryFormation(rec) O

creates a formation from the record rec. Note that it is the user’s responsibility to ensure that rec really defines a
formation. rec may have components \in, res, char, and name, whose values are stored in the attributes Member-
Function, ResidualFunction, Characteristic, and Name, respectively, of the new formation. See 2.2.2, 4.5.2,
3.4.1, and GAP Reference Manual, 12.8.2, respectively, for the meaning of these attributes.

The following example shows how to construct the formations of all groups of derived length at most 3 and of all
groups of exponent dividing 6.

gap> der3 := OrdinaryFormation(rec(

> res := G -> DerivedSubgroup(DerivedSubgroup(DerivedSubgroup(G)))

> ));

OrdinaryFormation(res:=function( G ) ... end)

gap> SymmetricGroup(4) in der3;

true

gap> GL(2,3) in der3;

false

gap> exp6 := OrdinaryFormation(rec(

> \in := G -> 6 mod Exponent(G) = 0,

> char := [2,3]));

OrdinaryFormation(in:=function( G ) ... end)

2 I SaturatedFormation(rec) O

creates a saturated formation from the record rec. Note that it is the user’s responsibility to ensure that rec really
defines a saturated formation. rec may have any components admissible for formations (see 4.4.1) or Schunck classes
(see 4.1.1), that is, \in, res, char, proj, bound, locdef, and name, whose values, if bound, are stored in the
attributes MemberFunction, ResidualFunction, Characteristic, ProjectorFunction, BoundaryFunction,
LocalDefinitionFunction, and Name, respectively. Please refer to 2.2.2, 4.5.2, 3.4.1, 4.2.6, 4.2.5, 4.5.3, and GAP
Reference Manual, 12.8.2 for the meaning of these attributes.

There are also functions FittingFormation and SaturatedFittingFormation to create Fitting formations and
saturated Fitting formations; see 5.2.1 and 5.2.2 below for details.

The following example shows how to construct the saturated formations of all finite nilpotent groups and of all
nilpotent-by-abelian groups whose order is not divisible by a prime congruent 3 mod 4, and whose 2-chief factors
are central. In the first case, we choose f (p) = (1) for all primes p, so that the f (p)-residual of G is generated by
a generating set of G (see 4.5.3 below). In the second example, we let f (2) = 1, if p ≡ 3 (mod 4), we define
f (p) = A , the class of all finite abelian groups, and set f (p) = /0 otherwise.
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gap> nilp := SaturatedFormation(rec(

> locdef := function(G, p)

> return GeneratorsOfGroup(G);

> end));

SaturatedFormation(locdef:=function( G, p ) ... end)

gap> form := SaturatedFormation(rec(

> locdef := function(G, p)

> if p = 2 then

> return GeneratorsOfGroup(G);

> elif p mod 4 = 3 then

> return GeneratorsOfGroup(DerivedSubgroup(G));

> else

> return fail;

> fi;

> end));

SaturatedFormation(locdef:=function( G, p ) ... end)

gap> Projector(GL(2,3), form);

Group([ [ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ],

[ [ Z(3)^0, Z(3) ], [ 0*Z(3), Z(3)^0 ] ],

[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ])

3 I FormationProduct(form1, form2) O

The formation product prod of two formations form1 and form2 consists of the groups G such that the form2-residual
of G belongs to form1. The product prod is again a formation. If form1 and form2 are saturated formations, the result is
a saturated formation. The same is true if the characteristic of form2 is contained in that of form1. This is automatically
recognised if the characteristic of form1 is AllPrimes (see 6.3.1). In all other cases, you will have to set the attribute
IsSaturated manually, if applicable. Note that in general it is not possible for CRISP to determine if two classes
are contained in each other.

gap> nilp := SaturatedFormation(rec(\in := IsNilpotent, name := "nilp"));

nilp

gap> FormationProduct(nilp, der3); # no characteristic known

FormationProduct(nilp, OrdinaryFormation(res:=function( G ) ... end))

gap> HasIsSaturated(last);HasCharacteristic(nilp);

false

false

gap> SetCharacteristic(nilp, AllPrimes);

gap> FormationProduct(nilp, der3); # try with characteristic

FormationProduct(nilp, OrdinaryFormation(res:=function( G ) ... end))

gap> IsSaturated(last);

true

4 I FittingFormationProduct(fitform1, fitform2) O

If fitform1 and fitform2 are Fitting formations, the formation product equals the Fitting product (see 5.1.2) of fitform1
and fitform2, which, in turn, equals the class product of fitform1 and fitform2. The latter consists of all groups G having
a normal subgroup N in fitform1 such that G/N belongs to fitform2.

Note that if fitform1 and fitform2 are Fitting formations, then FormationProduct(fitform1, fitform2), Fitting-
Product(fitform1, fitform2) and FittingFormationProduct(fitform1, fitform2) all return the same mathemat-
ical object (but distinct GAP objects), which is, again, a Fitting formation.
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gap> nilp := FittingFormation(rec(\in := IsNilpotent, name := "nilp"));;

gap> FormationProduct(nilp, nilp);

FittingFormationProduct(nilp, nilp)

gap> FittingProduct(nilp, nilp);

FittingFormationProduct(nilp, nilp)

gap> FittingFormationProduct(nilp, nilp);

FittingFormationProduct(nilp, nilp)

4.5 Attributes and operations for formations

In addition to those available for generic group classes, formations also admit the following attributes and operations.
See also 4.2 for additional operations for saturated formations.

1 I Residual(grp, form) O
I Residuum(grp. form) O

return the form-residual (also called form-residuum) of the group grp. This is the smallest normal subgroup res of grp
such that grp/res belongs to form. Note that, unless form has an attribute ResidualFunction, there are presently
only methods available for finite soluble groups.

2 I ResidualFunction(form) A

This attribute is part of the definition of form supplied by the user. If present, it must contain a function which computes
the form-residual of a given group. In general, such a residual only exists if form is residually closed; cf. 3.2.6. Note
that ResidualFunction, if present, is called by Residual (see 4.5.1). Therefore Residual, which also works for
formations without ResidualFunction, should be used by the user to compute form-residuals.

3 I LocalDefinitionFunction(form) A

Let form be a saturated formation with local function f . This attribute, if present, stores a function func supplied by
the user as part of the definition of form. func must be a function taking two parameters, a group G and a prime p. If
p is in the characteristic of form, this function must return a list list of elements of G, such that the smallest normal
subgroup of G containing list is the f (p)-residual of G. If p is not in the characteristic of form, then func(G, p) must
return fail for any group G. LocalDefinitionFunction is part of the definition of form and should not be called
by the user.

4.6 Low level functions for normal subgroups related to residuals

1 I OneInvariantSubgroupMinWrtQProperty(act, grp, pretest, test, data) O

Let act be a list or group whose elements act on grp via the caret operator, such that every subgroup of grp invariant
under act is normal in grp. Assume that X is a set of act-invariant subgroups of grp containing grp, and such that
whenever M and N are act-invariant subgroups with M ∈ X and M contained in N, then also N ∈ X . Then
OneInvariantSubgroupMinWrtQProperty computes an act-invariant subgroup M ∈X such that no act-invariant
subgroup of grp contained in M belongs to X . At present, there exist only methods for finite soluble groups grp.

The class X is described by two functions, pretest and test.

pretest is a function taking four arguments, U, V , R, and data, where data is just the argument passed to OneInvari-

antSubgroupMinWrtQProperty (see below for examples). U/V is a chief factor of grp, and R is an act-invariant
subgroup of grp containing U which is known to belong to X .

pretest may return the values true, false, or fail. If it returns true, every act-invariant subgroup N of grp such that
V is contained in N and R/N is G-isomorphic with U/V must belong to X . If it returns false, no such act-invariant
subgroup N may belong to X .
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test is a function taking three arguments, S, R, and data, where data has been described above. R is a act-invariant
subgroup of grp belonging to X , and R/S is a chief factor of grp. The function must return true if S belongs to X ,
and false otherwise.

Note that whenever test(S, R, data) is called, pretest(U, V, R, data) has been called before, and has returned
fail, where U/V is a chief factor which is G-isomorphic with R/S. Thus test need not repeat tests which have been
performed by pretest. In particular, if pretest always returns true or false, test will never be called.

data is never used or changed by OneInvariantSubgroupMinWrtQProperty, but exists only as a means for passing
additional information to or between the functions pretest and test.

For example, if C is a group class which is closed with respect to factor groups and X is the set of all act-invariant
subgroups N of grp with grp/N ∈ C , then X satisfies the above properties. In particular, if C is a formation, then
OneInvariantSubgroupMinWrtQProperty will return the C -residual of grp.

The following example shows how to use OneInvariantSubgroupMinWrtQProperty to compute the derived sub-
group of a group G. (Note that in practice, this is not a particularly efficient way of computing the derived subgroup.)

gap> G := DirectProduct(SL(2,3), CyclicGroup(2));;

gap> data := rec(gens := GeneratorsOfGroup(G),

> comms := List(Combinations(GeneratorsOfGroup(G), 2),

> x -> Comm(x[1],x[2])));;

gap> OneInvariantSubgroupMinWrtQProperty(

> G, G,

> function(U, V, R, data) # test if U/V is central in G

> if ForAny(ModuloPcgs(U, V), y ->

> ForAny(data.gens, x -> not Comm(x, y) in V)) then

> return false;

> else

> return fail;

> fi;

> end,

> function(S, R, data)

> return ForAll(data.comms, x -> x in S);

> end,

> data) = DerivedSubgroup(G); # compare results

true

2 I AllInvariantSubgroupsWithQProperty(act, grp, pretest, test, data) O

AllInvariantSubgroupsWithQProperty returns a list consisting of all act-invariant subgroups in X , where X is
the class defined by pretest, test, and data, as described for OneInvariantSubgroupMinWrtQProperty (see 4.6.1).
At present, there exist only methods for finite soluble groups grp.

gap> G := GL(2,3);

GL(2,3)

gap> normsWithSupersolubleFactorGroups :=

> AllInvariantSubgroupsWithQProperty(G, G,

> function(U, V, R, data)

> return IsPrimeInt(Index(U, V));

> end,

> ReturnFail, # pretest is sufficient

> fail); # no data required

[ GL(2,3),

Group([ [ [ Z(3)^0, Z(3) ], [ 0*Z(3), Z(3)^0 ] ],

[ [ Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0 ] ],
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[ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ],

[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ]),

Group([ [ [ Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0 ] ],

[ [ 0*Z(3), Z(3)^0 ], [ Z(3), 0*Z(3) ] ],

[ [ Z(3), 0*Z(3) ], [ 0*Z(3), Z(3) ] ] ]) ]

3 I OneNormalSubgroupMinWrtQProperty(grp, pretest, test, data) O

OneNormalSubgroupMinWrtQProperty is a special case of OneInvariantSubgroupMinWrtQProperty (see
4.6.1) where act = grp.

4 I AllNormalSubgroupsWithQProperty(grp, pretest, test, data) O

AllNormalSubgroupsWithQProperty is a special case of AllInvariantSubgroupsWithQProperty (see 4.6.2)
where act = grp.



5 Fitting classes
and Fitting sets

In this chapter, you will find information on how to create Fitting classes and Fitting sets (see 5.1 and 5.3 below), and
how to compute injectors and radicals with respect to these; see 5.4.

5.1 Creating Fitting classes

Recall that a Fitting class is a nonempty group class which is closed with respect to normal subgroups and joins of
subnormal subgroups.

1 I FittingClass(rec) O

returns the Fitting class fitclass defined by the entries of the record rec. Note that it is the user’s responsibility to
ensure that rec really defines a Fitting class. rec may have components \in, inj, rad, char, and name. The functions
assigned to the components are stored in the attributes MemberFunction, InjectorFunction, RadicalFunction,
Characteristic, and Name, of fitclass. Please refer to 2.2.2, 5.4.4, 5.4.3, 3.4.1, and GAP Reference Manual, 12.8.2
for the meaning of these attributes.

The third example below shows how to construct the Fitting class L2(N ) (see [DH92], IX, 1.14 and 1.15), where N
is the class of all finite nilpotent groups.

gap> myNilpotentGroups := FittingClass(rec(\in := IsNilpotentGroup,

> rad := FittingSubgroup));

FittingClass(in:=<Property "IsNilpotentGroup">, rad:=<Attribute "FittingSubgr\

oup">)

gap> myTwoGroups := FittingClass(rec(

> \in := G -> IsSubset([2], Set(Factors(Size(G)))),

> rad := G -> PCore(G,2),

> inj := G -> SylowSubgroup(G,2)));

FittingClass(in:=function( G ) ... end, rad:=function( G ) ... end, inj:=func\

tion( G ) ... end)

gap> myL2_Nilp := FittingClass(rec(\in :=

> G -> IsSolvableGroup(G)

> and Index(G, Injector(G, myNilpotentGroups)) mod 2 <> 0));

FittingClass(in:=function( G ) ... end)

gap> SymmetricGroup(3) in myL2_Nilp;

false

gap> SymmetricGroup(4) in myL2_Nilp;

true

2 I FittingProduct(fit1, fit2) O

returns the Fitting product prod of the Fitting classes fit1 and fit2, i. e., the class of all groups G such that G/R is a
fit2-group, where R is the fit1-radical of G. prod is again a Fitting class. Note that if fit1 and fit2 are also formations,
then prod equals the formation product of fit1 and fit2; see 4.4.3 and 4.4.4.
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gap> FittingProduct(myNilpotentGroups, myTwoGroups);

FittingProduct(FittingClass(in:=<Property "IsNilpotentGroup">, rad:=<Attribu\

te "FittingSubgroup">), FittingClass(in:=function( G ) ... end, rad:=function\

( G ) ... end, inj:=function( G ) ... end))

gap> FittingProduct(myNilpotentGroups, myL2_Nilp);

FittingProduct(FittingClass(in:=<Property "IsNilpotentGroup">, rad:=<Attribu\

te "FittingSubgroup">), FittingClass(in:=function( G ) ... end))

5.2 Creating Fitting formations

Fitting formations are Fitting classes which are also formations.

1 I FittingFormation(rec) O

creates a Fitting formation from the record rec. Note that it is the user’s responsibility to ensure that rec really defines
a Fitting formation. rec may have any components admissible for saturated formations (see 4.4.2) or Fitting classes
(see 5.1.1), that is, \in, res, rad, inj, char, and name, whose values are stored in the attributes MemberFunction,
ResidualFunction, RadicalFunction, InjectorFunction, Characteristic, and Name, respectively. Please
refer to 2.2.2, 4.5.2, 5.4.3, 5.4.4, 3.4.1, and GAP Reference Manual, 12.8.2, respectively, for the meaning of these
attributes.

2 I SaturatedFittingFormation(rec) O

creates a saturated Fitting formation from the record rec. Note that it is the user’s responsibility to ensure that rec
really defines a saturated Fitting formation. rec may have any components admissible for saturated formations (see
4.4.2) or Fitting classes (see 5.1.1), that is, \in, res, proj, bound, locdef, rad, inj, char, and Name, whose values
are stored in the attributes MemberFunction (see 2.2.2), ResidualFunction (see 4.5.2), ProjectorFunction (see
4.2.6), BoundaryFunction (see 4.2.5), LocalDefinitionFunction (see 4.5.3), RadicalFunction (see 5.4.3),
InjectorFunction (see 5.4.4), Characteristic (see 3.4.1), and Name (see GAP Reference Manual, 12.8.2), re-
spectively.

5.3 Creating Fitting sets

A nonempty set F of subgroups of a group G is a Fitting set of G if it satisfies the following properties:

(1) if H belongs to F and K is normal in H, then K belongs to F ;

(2) if H and K belong to F , and H and K are normal in 〈H,K〉, then 〈H,K〉 = HK belongs to F ;

(3) if H is in F and g ∈ G, then Hg also belongs to F .

Note that a Fitting set fitset of the group G is a subset of the set of all subgroups of G. Therefore it is not closed under
group isomorphisms, hence is not a group class. If H is a subgroup of G, then the subgroups of G in fitset which
are contained in H form a Fitting set of H. We will not distinguish between fitset and the arising Fitting set of H.
Moreover, if fit is a Fitting class and grp is a group, then the set of all subgroups of grp which belong to fit is a Fitting
set of grp.

1 I IsFittingSet(G, fitset) O

tests whether fitset (or, more precisely, the set of all subgroups of G which are contained in fitset) is a Fitting set of
the group G. Thus if fitset is a Fitting class, or if G is a subgroup of the group H and fitset is a Fitting set of H, then
IsFittingSet(G, fitset) will return true.

2 I FittingSet(G, rec) O

returns the Fitting set fitset of the group G, defined by the entries of the record rec. Note that, although it would be
possible to test whether rec defines a Fitting set, such a test is not performed, since it would be extremely expensive,
even for relatively small groups.
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rec may have components \in, inj, rad, and name. The functions assigned to the components are stored in the
attributes MemberFunction, InjectorFunction, RadicalFunction, and Name, of fitset. Please see 2.2.2, 5.4.4
and 5.4.3 for the meaning of these arguments.

Note that at present, every Fitting set has to be a class (see 2). The second example below shows how to define a
Fitting set from a list of subgroups.

gap> fitset := FittingSet(SymmetricGroup(4), rec(

> \in := S -> IsSubgroup(AlternatingGroup(4), S),

> rad := S -> Intersection(AlternatingGroup(4), S),

> inj := S -> Intersection(AlternatingGroup(4), S)));

FittingSet(SymmetricGroup(

[ 1 .. 4 ] ), rec(in:=function( S ) ... end, rad:=function( S ) ... end, inj:\

=function( S ) ... end))

gap> FittingSet(SymmetricGroup(3), rec(

> \in := H -> H in [Group(()), Group((1,2)), Group((1,3)), Group((2,3))]));

FittingSet(SymmetricGroup( [ 1 .. 3 ] ), rec(in:=function( H ) ... end))

3 I ImageFittingSet(alpha, fitset) O

returns the image F 1 of the Fitting set fitset under the group homomorphism alpha, i.e. the Fitting set F 1 of Im-
age(alpha) which consists of all subgroups alpha(S) of Image(alpha) such that S is a fitset-injector of PreIm-
age(alpha, S). fitset must be a Fitting set of PreImage(alpha) or a Fitting class. Note that the image of a Fitting
class is a Fitting set but not a Fitting class.

gap> alpha := GroupHomomorphismByImages(SymmetricGroup(4), SymmetricGroup(3),

> [(1,2),(1,3),(1,4)], [(1,2),(1,3),(2,3)]);;

gap> im := ImageFittingSet(alpha, fitset);

FittingSet(Group( [(1,2),(1,3),(2,3)

] ), rec(inj:=function( G ) ... end))

gap> Radical(Image(alpha), im);

Group([ (), (), (1,2,3), (1,3,2) ])

4 I PreImageFittingSet(alpha, fitset) O

returns the preimage fitset 0 of the Fitting set fitset of Image(alpha) under the group homomorphism alpha. It consists
of all subgroups S of PreImage(alpha) which are subnormal in PreImage(alpha, T) for some T in fitset. fitset must
be a Fitting set of Image(alpha) or a Fitting class.

Note that the preimage of a Fitting class is just a Fitting set but not a Fitting class.

Moreover, ImageFittingSet(PreImageFittingSet(fitset, alpha), alpha) equals fitset but in general, fitset is
not contained in PreImageFittingSet(ImageFittingSet(fitset, alpha), alpha); see e.g. Example VIII, 2.16
of [DH92].

gap> pre := PreImageFittingSet(alpha, NilpotentGroups);

FittingSet(SymmetricGroup( [ 1 .. 4 ] ), rec(inj:=function( G ) ... end))

gap> Injector(Source(alpha), pre);

Group([ (1,2,3), (1,2)(3,4) ])

5 I Intersection(fitset1, fitset2)

Let fitset1 and fitset2 be Fitting sets of the groups G1 and G2. Then the intersection of fitset1 and fitset2 will be a
Fitting set of the intersection of G1 and G2. You will run into an error if GAP cannot compute the intersection of G1
and G2.
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gap> F1 := FittingSet(SymmetricGroup(3),

> rec(\in := IsNilpotentGroup, rad := FittingSubgroup));

FittingSet(SymmetricGroup(

[ 1 .. 3 ] ), rec(in:=<Property "IsNilpotentGroup">, rad:=<Attribute "Fitting\

Subgroup">))

gap> F2 := FittingSet(AlternatingGroup(4),

> rec(\in := ReturnTrue, rad := H -> H));

FittingSet(AlternatingGroup(

[ 1 .. 4 ] ), rec(in:=function( arg ) ... end, rad:=function( H ) ... end))

gap> F := Intersection(F1, F2);

FittingSet(Group(

[ (1,2,3) ] ), rec(in:=function( x ) ... end, rad:=function( G ) ... end))

gap> Intersection(F1, PiGroups([2,5]));

FittingSet(SymmetricGroup(

[ 1 .. 3 ] ), rec(in:=function( x ) ... end, rad:=function( G ) ... end))

5.4 Attributes and operations for Fitting classes and Fitting sets

In addition to operations applicable to classes, both Fitting sets and Fitting classes admit the following attributes and
operations. Of course, Fitting classes, being group classes, also admit all properties and attributes for group classes.

1 I Radical(G, fitset) O

returns the grpclass-radical of the group G, where fitset is a Fitting set of G (see 5.3.1), or a Fitting class. The fitset-
radical of G is the unique largest normal subgroup of G belonging to fitset. Note that Radical(G) returns the soluble
radical of a group G (see GAP Reference Manual, 39.12.9 in the GAP reference manual). The class myL2 Nilp in
the example below has been defined in 5.1.1.

gap> Radical(SymmetricGroup(4), FittingClass(rec(\in := IsNilpotentGroup)));

Group([(1,4)(2,3),(1,3)(2,4) ])

gap> Radical(SymmetricGroup(4), myL2_Nilp);

Sym( [ 1 .. 4 ] )

gap> Radical(SymmetricGroup(3), myL2_Nilp);

Group([ (1,2,3) ])

2 I Injector(G, fitset) O

returns a fitset-injector of the group G, where fitset is a Fitting set of G (or a group containing G), or a Fitting class.
A subgroup H of G is a fitset-injector of G if S ∩ H is fitset-maximal in S for every subnormal subgroup S of G. Note
that by [DH92], VIII, 2.9, all fitset-injectors of G are conjugate in G, and it is not hard to see that every subgroup of
G has fitset-injectors if and only if fitset is a Fitting set of G. In particular, if fitset is a group class, then every finite
soluble group has fitset-injectors if and only if fitset is a Fitting class; see [DH92], IX, 1.4.

gap> Injector(SymmetricGroup(4), FittingClass(rec(\in := IsNilpotentGroup)));

Group([ (1,4)(2,3), (1,3)(2,4), (3,4) ])

3 I RadicalFunction(class) A

This attribute, if present, forms part of the definition of class supplied by the user. It must contain a function which
takes one argument, a group G, and returns the class-radical of G. This function will be used during subsequent calls to
Radical. Therefore Radical (see 5.4.1), which is guaranteed to work for arbitrary Fitting sets class, should always
be called by the user to compute class-radicals.

4 I InjectorFunction(class) A

This attribute constitutes part of the definition of class supplied by the user. If present, it must contain a function taking
a group G as the only argument and returning a class-injector of G. This function will then be used by Injector (see
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5.4.2). Since Injector will work for arbitrary Fitting sets, it should always be called by the user to compute class-
injectors.

5.5 Low level functions for normal subgroups related to radicals

1 I OneInvariantSubgroupMaxWrtNProperty(act, grp, pretest, test, data) O

Let act be a list or group whose elements act on grp via the caret operator, such that every subgroup of grp invariant
under act is normal in grp. Assume X is a set of subgroups of grp such that X contains the trivial group, and if M
and N are act-invariant subgroups with M ∈ X and M containing N, then also N ∈ X . Then OneInvariantSub-

groupMaxWrtNProperty computes an act-invariant subgroup M ∈ X such that no act-invariant subgroup of grp
properly containing M belongs to X .

For example, every Fitting set X satisfies the above properties, where act = G. In this case, OneInvariantSub-
groupMaxWrtNProperty will return the X -radical of grp.

The class X is described by two functions, pretest and test.

pretest is a function taking four arguments, U, V , R, and data, where data is just the argument passed to OneInvari-

antSubgroupMaxWrtNProperty. U/V is an act-composition factor of grp, and R is an act-invariant subgroup of grp
contained in V which is known to belong to X .

pretest may return the values true, false, or fail. If it returns true, every act-invariant subgroup N of grp contained
in U such that N/R is G-isomorphic with U/V must belong to X . If it returns false, no such N may belong to X .

test is a function taking three arguments, S, R, and data, where data has been described above. R is an act-invariant
subgroup of grp belonging to X , and S/R is an act-composition factor of grp. The function must return true if S
belongs to X , and false otherwise.

Note that test(S, R, data) is only called if pretest(U, V, R, data) has returned fail for a chief factor U/V
which is G-isomorphic with S/R. Therefore test need not repeat tests already performed by pretest. In particular, if
pretest always returns true or false, test will not be called at all.

data is never used or changed by OneInvariantSubgroupMaxWrtNProperty, but exists only as a means for passing
additional information to or between the functions pretest and test.

2 I AllInvariantSubgroupsWithNProperty(act, grp, pretest, test, data) O

returns a list consisting of all act-invariant subgroups of grp belonging to the class X described by pretest, test, and
data. See the documentation of OneInvariantSubgroupMaxWrtNProperty (see 5.5.1) for details.

gap> D := DihedralGroup(8);;

gap> AllInvariantSubgroupsWithNProperty(

> D, D,

> ReturnFail,

> function(R, S, data)

> return IsAbelian(R);

> end,

> fail);

[ Group([ f3 ]), <pc group with 2 generators>, <pc group with 2 generators>,

Group([ f1, f3 ]), Group([ ]) ]

3 I OneNormalSubgroupWithNProperty(grp, pretest, test, data) O
I AllNormalSubgroupsWithNProperty(grp, pretest, test, data) O

are the same as OneInvariantSubgroupMaxWrtNProperty (see 5.5.1) and AllInvariantSubgroupsWithN-

Property (see 5.5.2), where act = grp, and thus the act-invariant subgroups of grp are just the normal subgroups of
grp.



6 Examples of
group classes

This chapter describes some pre-defined group classes, namely the classes of all abelian, nilpotent, and supersoluble
groups. Moreover, there are some functions constructing the classes of all p-groups, π-groups, and abelian groups
whose exponent divides a given positive integer.

The definitions of these group classes can also serve as further examples of how group classes can be defined using
the methods described in the preceding chapters.

6.1 Pre-defined group classes
1 I TrivialGroups V

The global variable TrivialGroups contains the class of all trivial groups. It is a subgroup closed saturated Fitting
formation.

2 I NilpotentGroups V

This global variable contains the class of all finite nilpotent groups. It is a subgroup closed saturated Fitting formation.

3 I SupersolubleGroups V
I SupersolvableGroups V

This global variable contains the class of all finite supersoluble groups. It is a subgroup closed saturated formation.

4 I AbelianGroups V

is the class of all abelian groups. It is a subgroup closed formation.

5 I AbelianGroupsOfExponent(n) F

returns the class of all abelian groups of exponent dividing n, where n is a positive integer. It is always a subgroup-
closed formation.

6 I PiGroups(pi) F

constructs the class of all pi-groups. pi may be a non-empty class or a set of primes. The result is a subgroup-closed
saturated Fitting formation.

7 I PGroups(p) F

returns the class of all p-groups, where p is a prime. The result is a subgroup-closed saturated Fitting formation.

6.2 Pre-defined projector functions
1 I NilpotentProjector(grp) A

This function returns a projector for the class of all finite nilpotent groups. For a definition, see 4.2.3. Note that
the nilpotent projectors of a finite soluble group equal its a Carter subgroups, that is, its self-normalizing nilpotent
subgroups.

2 I SupersolubleProjector(grp) A
I SupersolvableProjector(grp) A

These functions return a projector for the class of all finite supersoluble groups. For a definition, see 4.2.3.
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6.3 Pre-defined sets of primes
1 I AllPrimes V

is the set of all (integral) primes. This should be installed as value for Characteristic(grpclass) if the group class
grpclass contains cyclic groups of prime order p for arbitrary primes p.



7 Lists of normal
subgroups

The algorithms in CRISP can also be used to compute certain normal subgroups of a finite soluble group efficiently.
In particular, CRISP provides fast methods for computing all normal subgroups, all minimal normal subgroups, and
the socle of a finite soluble group.

7.1 Functions for normal and characteristic subgroups
1 I NormalSubgroups(grp) A

For finite soluble groups grp, CRISP provides an efficient method to compute NormalSubgroups (see GAP Refer-
ence Manual, 39.19.8).

2 I CharacteristicSubgroups(grp) A

returns a list containing all characteristic subgroups of the finite soluble group grp. CharacteristicSubgroups
calls AllInvSgrsWithQPropUnderAction.

3 I MinimalNormalSubgroups(grp) A

CRISP provides an efficient method to compute a list of all minimal normal subgroups of grp (see GAP Reference
Manual, 39.19.10).

4 I MinimalNormalPSubgroups(grp, p) A

For a prime p, this function computes a list of all p-subgroups which are minimal among the nontrivial normal
subgroups of grp.

5 I AbelianMinimalNormalSubgroups(grp) A

This computes a list of all minimal normal subgroups of grp which are abelian. If grp is soluble, this list coincides
with the list of all minimal normal subgroups of grp.

7.2 Functions for the socle of finite groups
1 I Socle(grp) A

CRISP provides a method for Socle (see GAP Reference Manual, 39.12.10) for which works for all finite soluble
groups grp. The socle of a group grp is the subgroup generated by all minimal normal subgroups of grp. See also
7.2.2 and 7.2.5 below.

gap> Size(Socle( DirectProduct(DihedralGroup(8), CyclicGroup(12))));

12

2 I AbelianSocle(grp) A
I SolubleSocle(grp) A
I SolvableSocle(grp) A

This function computes the soluble socle of grp. The soluble socle of a group grp is the subgroup generated by all
minimal normal soluble subgroups of grp.
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3 I SocleComponents(grp) A

This function returns a list of minimal normal subgroups of grp such that the socle of grp (see 7.2.1) is the direct
product of these minimal normal subgroups. Note that, in general, this decomposition is not unique. Currently, this
function is only implemented for finite soluble groups. See also 7.2.4 and 7.2.6.

4 I AbelianSocleComponents(grp) A
I SolubleSocleComponents(grp) A
I SolvableSocleComponents(grp) A

This function returns a list of soluble minimal normal subgroups of grp such that the socle of grp (see 7.2.1) is the
direct product of these minimal normal subgroups. Note that, in general, this decomposition is not unique.

5 I PSocle(grp, p) A

If p is a prime, the p-socle of a group grp is the subgroup generated by all minimal normal p-subgroups of grp.

6 I PSocleComponents(grp, p) A

For a prime p, this function returns a list of minimal normal p-subgroups of grp such that the p-socle of grp (see 7.2.5)
is the direct product of these minimal normal subgroups. Note that, in general, this decomposition is not unique.

7 I PSocleSeries(grp, p) A

For a prime p, this function returns an ascending grp-composition series of the p-socle of grp.



A Version History

The following list summarises the most important changes between different versions of CRISP.

Version 1.4.6
adds licensing information, fixes a problem with the html help system not showing appendices, fixes a few
typos

Version 1.4.5
changes implementation of GroupClassByList, improves automatic builds, compatibility with future GAP
versions

Version 1.4.4
improves test output, avoids diffs when recent versions of ResClasses is loaded

Version 1.4.3
removes union/intersection/difference methods not involving classes, improved html manual using TtH.

Version 1.4.2
performance improvement: avoid expensive calls to SmallGeneratingSet

Version 1.4.1
removes old assertion code which ran into an error

Version 1.4
improves socle/p-socle code

Version 1.3.9
fixes a bug which caused the creation of an invalid pcgs.

Version 1.3.8
adds licensing information to manual

Version 1.3.7
changes from three clause BSD license to two clause version

Version 1.3.6
fixes manual examples for GAP 4.5, improve efficiency of Assert statement

Version 1.3.5
makes some functions read-only, new server name

Version 1.3.4
makes tests more robust when other packages are present, remove dvi file from distribution

Version 1.3.3
new server address, change to UTF-8 encoding

Version 1.3.2
adds missing manual source file, removed .dvi file

Version 1.3.1
gets rid of resource forks in tar archive



28 Appendix A. Version History

Version 1.3
installs NiceMonomorphism methods, moved pcgs caching code into the main GAP library

Version 1.2.1
improves web page

Version 1.2
added MinimalNormalSubgroups, removed use of IndicesNormalSteps, changed to new PackageInfo.g

Version 1.1
adds methods for socles, documentation for AllNormal. . . functions

Version 1.0
first release of CRISP
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