Burkhard Höfling

CRISP

Version 1.4.6

Computing with Radicals, Injectors
Schunck classes and Projectors
of finite soluble groups
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copyright</td>
<td>3</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>4</td>
</tr>
<tr>
<td>2 Set theoretical classes</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Creating set theoretical classes</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Properties of classes</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Lattice operations for classes</td>
<td>6</td>
</tr>
<tr>
<td>3 Generic group classes</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Creating group classes</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Properties of group classes</td>
<td>8</td>
</tr>
<tr>
<td>3.3 Additional properties of group classes</td>
<td>9</td>
</tr>
<tr>
<td>3.4 Attributes of group classes</td>
<td>10</td>
</tr>
<tr>
<td>4 Schunck classes and formations</td>
<td>11</td>
</tr>
<tr>
<td>4.1 Creating Schunck classes</td>
<td>11</td>
</tr>
<tr>
<td>4.2 Attributes and operations for Schunck classes</td>
<td>11</td>
</tr>
<tr>
<td>4.3 Additional attributes for primitive soluble groups</td>
<td>12</td>
</tr>
<tr>
<td>4.4 Creating formations</td>
<td>13</td>
</tr>
<tr>
<td>4.5 Attributes and operations for formations</td>
<td>15</td>
</tr>
<tr>
<td>4.6 Low level functions for normal subgroups related to residuals</td>
<td>15</td>
</tr>
<tr>
<td>5 Fitting classes and Fitting sets</td>
<td>18</td>
</tr>
<tr>
<td>5.1 Creating Fitting classes</td>
<td>18</td>
</tr>
<tr>
<td>5.2 Creating Fitting formations</td>
<td>19</td>
</tr>
<tr>
<td>5.3 Creating Fitting sets</td>
<td>19</td>
</tr>
<tr>
<td>5.4 Attributes and operations for Fitting classes and Fitting sets</td>
<td>21</td>
</tr>
<tr>
<td>5.5 Low level functions for normal subgroups related to radicals</td>
<td>22</td>
</tr>
<tr>
<td>6 Examples of group classes</td>
<td>23</td>
</tr>
<tr>
<td>6.1 Pre-defined group classes</td>
<td>23</td>
</tr>
<tr>
<td>6.2 Pre-defined projector functions</td>
<td>23</td>
</tr>
<tr>
<td>6.3 Pre-defined sets of primes</td>
<td>24</td>
</tr>
<tr>
<td>7 Lists of normal subgroups</td>
<td>25</td>
</tr>
<tr>
<td>7.1 Functions for normal and characteristic subgroups</td>
<td>25</td>
</tr>
<tr>
<td>7.2 Functions for the socle of finite groups</td>
<td>25</td>
</tr>
<tr>
<td>A Version History</td>
<td>27</td>
</tr>
<tr>
<td>Bibliography</td>
<td>29</td>
</tr>
<tr>
<td>Index</td>
<td>30</td>
</tr>
</tbody>
</table>
CRISP is Copyright (C) 2000 — 2016 Burkhard Höfling (burkhard@hoefling.name)
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
The GAP package CRISP provides algorithms for computing subgroups of finite soluble groups related to a group class C. In particular, it allows to compute C-radicals and C-injectors for Fitting classes (and Fitting sets) C, C-residuals for formations C, and C-projectors for Schunck classes C. In order to carry out these computations, the group class C must be represented by an algorithm which can decide membership in the group class. Moreover, additional information about the class can be supplied to speed up computations, sometimes considerably. This information may consist of other classes (such as the characteristic of the class), or of additional algorithms, for instance for the computation of residuals and local residuals, radicals, or for testing membership in related classes (such as the basis or boundary of a Schunck class).

Moreover, the present package contains algorithms for the computation of normal subgroups belonging to a given group class, including an improved method to compute the set of all normal subgroups of a finite soluble group, and methods to compute the socle and p-socles of a finite soluble group, as well as the abelian socle of any finite group. CRISP also provides basic support for classes (in the set theoretical sense). The algorithms used are described in [Höf01].

C-projectors and C-injectors of finite soluble groups arise as generalisations of Sylow and Hall subgroups, and have attracted considerable interest. They were first studied by Gaschütz [Gas63], Schunck [Sch67], and Fischer, Gaschütz and Hartley [FGH67]. In particular, C-injectors only exist in any finite soluble group if the group class C is a Fitting class. Similarly, C-projectors exist in any finite group G if and only if C is a Schunck class. An extensive account of the subject can be found in [DH92].

In the case when the class C in question is a local formation (which is a special kind of Schunck class), algorithms for dealing with C-projectors and related subgroups of finite soluble groups are available also in the GAP package FORMAT by Eick and Wright; see also [EW02]. In order to use their methods, C has to be described in terms of algorithms for the computation of residuals with respect to an integrated local function for C.

The author would like to thank J. Neubüser and the Lehrstuhl D für Mathematik, RWTH Aachen, for an invitation, which made it possible to develop a first version of the algorithm for the computation of projectors. He is indebted to the GAP team, particularly Bettina Eick and Alexander Hulpke, for its advice, and to the anonymous referee, J. Neubüser, and C. R. B. Wright for their detailed comments on previous versions of CRISP.
2 Set theoretical classes

In CRISP, a class (in the set-theoretical sense) is usually represented by an algorithm which decides membership in that class. Wherever this makes sense, sets (see GAP Reference Manual, 30.3.7) may also be used as classes.

2.1 Creating set theoretical classes

1 ▶ IsClass(C)
returns true if C is a class object. The category of class objects is a subcategory of the category IsListOrCollection.

2 ▶ Class(rec)
returns a class C. In the first form, rec must be a record having a component \in and an optional component name. The values of these components, if present, are bound to the attributes MemberFunction and Name (see GAP Reference Manual, 12.8.2) of the class created. The value bound to \in must be a function $func$ which returns true if a GAP object belongs to C, and false otherwise; cf. 2.2.2 below. The second form is equivalent to $\text{Class}(rec(\in := func))$. It is the user’s responsibility to ensure that $func$ returns the same result for different GAP objects representing the same mathematical object (or element, in the GAP sense; see GAP Reference Manual, 12 in the GAP reference manual).

```
gap> FermatPrimes := Class(p -> IsPrime(p) and p = 2*LogInt(p, 2) + 1);  
Class(in:=function( p ) ... end)
```

3 ▶ View(class)
If the class does not have a name, this produces a brief description of the information defining $class$ which has been supplied by the user. If the class has a name, only its name will be printed.

```
gap> View(FermatPrimes);  
Class(in:=function( p ) ... end)
```

4 ▶ Print(class)
Print behaves very similarly to View, except that the defining information is being printed in a more explicit way if possible.

```
gap> Print(FermatPrimes);  
Class(rec( in = function( p )  
    return IsPrime( p ) and p = 2 ^ LogInt( p, 2 ) + 1;  
end))
```

5 ▶ Display(class)
For classes, Display works exactly as Print.

6 ▶ obj in class
returns true or false, depending upon whether obj belongs to $class$ or not. If obj can store attributes, the outcome of the membership test is stored in an attribute ComputedIsMembers of obj.
Since it is not possible to compare classes given by membership algorithms, two classes are equal in GAP if and only if they are the same GAP object (see GAP Reference Manual, 12.5.1 in the GAP reference manual).

The operation < for classes has no mathematical meaning; it only exists so that one can form sorted lists of classes.

2.2 Properties of classes

1. **IsEmpty(C)**

 This property may be set to true or false if the class C is empty resp. not empty.

2. **MemberFunction(C)**

 This attribute, if bound, stores a function with one argument, obj, which decides if obj belongs to C or not, and returns true and false accordingly. If present, this function is called by the default method for \(\in \). MemberFunction is part of the definition of C and should not be called directly by the user.

2.3 Lattice operations for classes

1. **Complement(C)**

 returns the unary complement of the class C, that is, the class consisting of all objects not in C. C may also be a set.

   ```
   gap> cmpl := Complement([1,2]);
   Complement([ 1, 2 ])
   gap> Complement(cmpl);
   [ 1, 2 ]
   ```

2. **Intersection(list)**

 returns the intersection of the groups in list, resp. of the classes C1, C2, If one of the classes is a list with fewer than INTERSECTION_LIMIT elements, then the result will be a sublist of that list. By default, INTERSECTION_LIMIT is 1000.

   ```
   gap> Intersection(Class(IsPrimeInt), [1..10]);
   [ 2, 3, 5, 7 ]
   gap> Intersection(Class(IsPrimeInt), Class(n -> n = 2^LogInt(n+1, 2) - 1));
   Intersection([ Class(in:=function( N ) ... end),
   Class(in:=function( n ) ... end ) ])
   ```

3. **Union(C, D)**

 returns the union of C and D.

   ```
   gap> Union(Class(n -> n mod 2 = 0), Class(n -> n mod 3 = 0));
   Union([ Class(in:=function( n ) ... end), Class(in:=function( n ) ... end) ])
   ```

4. **Difference(C, D)**

 returns the difference of C and D. If C is a list, then the result will be a sublist of C.

   ```
   gap> Difference(Class(IsPrimePowerInt), Class(IsPrimeInt));
   Intersection([ Class(in:=function( n ) ... end),
   Complement(Class(in:=function( N ) ... end)) ])
   gap> Difference([1..10], Class(IsPrimeInt));
   [ 1, 4, 6, 8, 9, 10 ]
   ```
3 Generic group classes

In this chapter, we describe how group classes can be defined by assigning basic attributes and properties, in particular closure properties.

A class (see 2) is a **group class** if it consists of groups, and if it is closed under isomorphisms of groups. Thus if G and H are isomorphic groups, then G is in the group class grpclass if and only if H is. Groups belonging to the same group class may be regarded as sharing a group theoretical property (a property shared by isomorphic groups), and groups sharing a group theoretical property form a class of groups. It not empty, group classes are genuinely infinite objects, so GAP sets can never form group classes. Some authors require every group class to contain the trivial groups. Here we do not make this assumption; in particular every empty class is a group class.

The following sections describe how to create group classes and declare some of their basic properties.

Note that, for common types of group classes, there are additional functions available to accomplish this task; see the following Chapters 4 and 5. There are also a number of pre-defined group classes; see Chapter 6.

3.1 Creating group classes

Group classes can either be defined by a function deciding membership, or alternatively by a (finite) list of groups containing at least one representative of each isomorphism type of groups contained in the class.

\begin{align*}
\text{GroupClass}(rec) & \quad \text{O} \\
\text{GroupClass}(func) & \quad \text{O} \\
\text{GroupClass}(\text{group-list}) & \quad \text{O} \\
\text{GroupClass}(\text{group-list}, \text{iso-func}) & \quad \text{O}
\end{align*}

The function \text{GroupClass} returns a new group class \text{class}, specified by its argument(s).

In the first form, \text{rec} must be a record which has a component \text{\in}, and may have further components \text{name}, and \text{char}. \text{\in} must be a function having one argument. When called with a group G as its argument, it must return \text{true} or \text{false}, depending upon whether G is in \text{class} or not. It is the user’s responsibility to ensure that the function supplied returns the same value when called with isomorphic groups. If \text{rec} has components \text{name} or \text{char}, their values are stored in the attributes \text{Name} (see GAP Reference Manual, 12.8.2) and \text{Characteristic} (see 3.4.1) of \text{class}.

\text{GroupClass}(\text{func}) is a shorthand for \text{GroupClass}(\text{rec(\text{\in} := \text{func})}).

In the other cases, \text{GroupClass} returns the group class consisting of the isomorphism classes of the groups in the list \text{group-list}. If \text{iso-func} is given, \text{iso-func} is used to check whether a given group G is isomorphic with one of the groups in the defining list. \text{iso-func} must have two arguments, and must return true if two groups, one of which is in \text{group-list}, passed as arguments are isomorphic, and false otherwise. If \text{iso-func} is not given, the GAP function \text{IsomorphismGroups} is used for the isomorphism test. Note that even for relatively small groups, \text{IsomorphismGroups} tends to be very slow.
Chapter 3. Generic group classes

gap> GroupClass(IsNilpotent);
GroupClass(in:=<Operation "IsNilpotent">)
gap> GroupClass([CyclicGroup(2), CyclicGroup(3)]);
GroupClass([<pc group of size 2 with 1 generators>,
 <pc group of size 3 with 1 generators>])
gap> AbelianIsomorphismTest := function(A,B)
 > if IsAbelian(A) then
 > if IsAbelian(B) then
 > return AbelianInvariants(A) = AbelianInvariants(B);
 > else
 > return false;
 > fi;
 > else
 > return false;
 > fi;
> end;
function(A, B) ... end
gap> cl := GroupClass([AbelianGroup([2,2]), AbelianGroup([3,5])],
 > AbelianIsomorphismTest);
GroupClass([<pc group of size 4 with 2 generators>,
 <pc group of size 15 with 2 generators>], function(A, B) ... end)
gap> Group((1,2),(3,4)) in cl;
true

The intersection of a list \(\text{list} \) of group classes resp. of the group classes \(C_1, C_2, \ldots, C_n \) is again a group class. The intersection automatically has those closure properties (see 3.2) which all of the intersected classes have.

3.2 Properties of group classes

Since nonempty group classes are infinite, CRISP cannot, in general, decide whether a group class has a certain property. Therefore the user is required to set the appropriate properties and attributes. See Sections GAP Reference Manual, 13.5 and GAP Reference Manual, 13.7. To facilitate this task, there are special functions available to create common types of group classes such as formations (see 4.4), Fitting classes (see 5.1), and Schunck classes (see 4.1).

However, CRISP knows about the implications between the closure properties listed below; for instance it knows that a group class which has IsResiduallyClosed also has IsDirectProductClosed, and that a class having IsSchunckClass also has IsDirectProductClosed and IsSaturated. Moreover, the intersection of group classes all having one of the closure properties in common also has that closure property.

The following basic properties are defined for group classes.

1. **IsGroupClass(grpclass)**
 A generic class (see Chapter 2) is considered a group class if it has the property IsGroupClass. There is no way for CRISP to know that a given class defined by a membership function is a group class, i.e., consists of groups and is closed under group isomorphisms.

2. **ContainsTrivialGroup(grpclass)**
 This property, if bound, indicates whether \(\text{grpclass} \) contains the trivial group or not.
Section 3. Additional properties of group classes

3 ▶ IsSubgroupClosed(grpclass)
if true, then for every G in grpclass, the subgroups of G likewise belong to grpclass.

4 ▶ IsNormalSubgroupClosed(grpclass)
if true, then for every G in grpclass, the (sub)normal subgroups of G likewise belong to grpclass.

5 ▶ IsQuotientClosed(grpclass)
if true, then for every G in grpclass, the factor groups of G likewise belong to grpclass.

6 ▶ IsResiduallyClosed(grpclass)
if true and G is a group such that G/N_1 and G/N_2 belong to grpclass for two normal subgroups N_1 and N_2 of G which intersect trivially, then G belongs to grpclass.

7 ▶ IsNormalProductClosed(grpclass)
if true and G is a group which is generated by subnormal subgroups in grpclass, then G belongs to grpclass.

8 ▶ IsDirectProductClosed(grpclass)
if true and the group G is the direct product of N_1 and N_2 belonging to grpclass, then G likewise belongs to grpclass.

9 ▶ IsSchunckClass(grpclass)
if true, then G belongs to grpclass if and only if its primitive factor groups lie in grpclass. A (finite) group is primitive if it has a faithful primitive permutation representation, or equivalently, if it has a maximal subgroup with trivial core. A Schunck class contains every trivial group.

10 ▶ IsSaturated(grpclass)
if true, G belongs to X whenever $G/\text{FrattiniSubgroup}(G)$ belongs to X.

3.3 Additional properties of group classes

Note that the following “properties” are not properties but only filters in the GAP sense (cf. GAP Reference Manual, 13.7 and GAP Reference Manual, 13.2 in the GAP reference manual).

1 ▶ HasIsFittingClass(obj)
is true if obj knows if it is a Fitting class, that is, if it lies in the filters HasIsGroupClass, HasContainsTrivialGroup, HasIsNormalSubgroupClosed and HasIsNormalProductClosed.

2 ▶ IsFittingClass(obj)
is true if obj is a Fitting class, that is, if it has the properties IsGroupClass, ContainsTrivialGroup, IsNormalSubgroupClosed and IsNormalProductClosed.

3 ▶ SetIsFittingClass(group class, bool)
If bool is true, this fake setter function sets the properties IsNormalSubgroupClosed and IsNormalProductClosed of group class to true. It is the user’s responsibility to ensure that group class is indeed a Fitting class.

```gap
gap> nilp := GroupClass(IsNilpotent);
GroupClass(in:=<Operation "IsNilpotent">)
gap> SetIsFittingClass(nilp, true);
gap> nilp;
FittingClass(in:=<Operation "IsNilpotent">)
```
Chapter 3. Generic group classes

4 ▶ HasIsOrdinaryFormation(obj)
is true if obj knows if it is a formation, that is, if it lies in the filters HasIsGroupClass, HasContainsTrivialGroup, HasIsQuotientClosed and HasIsResiduallyClosed.

5 ▶ IsOrdinaryFormation(obj)
is true if obj is a formation, that is, if it has the properties IsGroupClass, ContainsTrivialGroup, IsQuotient-Closed and IsResiduallyClosed.

6 ▶ SetIsOrdinaryFormation(class, bool)
If bool is true, this sets the attributes IsQuotientClosed, ContainsTrivialGroup, and IsResiduallyClosed of class, making it a formation.

7 ▶ HasIsSaturatedFormation(obj)
returns true if obj knows if it is a saturated formation, that is, if it lies in the filters HasIsOrdinaryFormation and HasIsSaturated.

8 ▶ IsSaturatedFormation(obj)
returns true if obj is a saturated formation, that is, if it has the properties IsOrdinaryFormation and IsSaturated.

9 ▶ SetIsSaturatedFormation(class, bool)
If bool is true, this sets the attributes IsQuotientClosed, ContainsTrivialGroup, and IsResiduallyClosed and IsSaturated of class, making it a saturated formation.

10 ▶ HasIsFittingFormation(obj)
returns true if obj knows whether it is a Fitting formation, that is, if it lies in the filters HasIsOrdinaryFormation and HasIsFittingClass (see 3.3.4 and 3.3.1).

11 ▶ IsFittingFormation(obj)
returns true if obj is both a formation and a Fitting class.

12 ▶ SetIsFittingFormation(class, bool)
If bool is true, this function sets the attributes of class to indicate that it is a Fitting formation.

13 ▶ HasIsSaturatedFittingFormation(obj)
returns true if obj knows whether it is a saturated Fitting formation, that is, if it lies in the filters HasIsSaturatedFormation and HasIsFittingClass (see 3.3.7 and 3.3.1).

14 ▶ IsSaturatedFittingFormation(obj)
returns true if obj is both a saturated formation and a Fitting class, that is, if it lies in the filters IsSaturatedFormation and IsFittingClass (see 3.3.8 and 3.3.2).

15 ▶ SetIsSaturatedFittingFormation(class, bool)
If bool is true, this sets the attributes of class to indicate that it is a saturated Fitting formation.

3.4 Attributes of group classes

In addition to the attribute MemberFunction which has the same meaning as for generic classes, a group class may have the following attribute.

1 ▶ Characteristic(grpclass)
This attribute, if present, stores a class containing all primes p such that grpclass contains a cyclic group of order p. There is a pre-defined class AllPrimes which should be assigned to Characteristic if grpclass contains a cyclic group of order p for every prime p.
4 Schunck classes and formations

In principle, any group class can be created as generic (group) class, followed by setting the required properties and attributes described in the preceding chapters. For certain standard kinds of group classes, there are additional functions available to accomplish this task, which are described in this and the following chapter.

4.1 Creating Schunck classes

A class \mathcal{C} of finite groups is a **Schunck class** if a finite group G belongs to \mathcal{C} if and only if all its primitive factor groups belong to \mathcal{C}. In particular, a Schunck class is nonempty and closed with respect to factor groups. By definition, a Schunck class \mathcal{C} is determined by the primitive groups which it contains (the basis of \mathcal{C}), or by the primitive groups not in \mathcal{C} but all of whose proper factor groups belong to \mathcal{C} (the boundary of \mathcal{C}).

1 ▶ SchunckClass(rec)

returns a Schunck class defined by the information stored in the record rec. Note that it is the user’s responsibility to ensure that rec really defines a Schunck class. rec may have the following components: \in, $proj$, $bound$, $char$, and $name$. The values bound to these entries, if present, are stored, respectively, in the attributes $MemberFunction$, $ProjectorFunction$, $BoundaryFunction$, $Characteristic$, and $Name$, see 2.2.2, 4.2.6, 4.2.5m, 3.4.1, and GAP Reference Manual, 12.8.2 for the meaning of these attributes.

At least one of the attributes $MemberFunction$, $ProjectorFunction$, or $BoundaryFunction$ must be present in order to be able to compute with a Schunck class.

```gap
gap> nilp := SchunckClass(rec(bound := G -> not IsCyclic(G),
> name := "class of all nilpotent groups"));
class of all nilpotent groups
gap> DihedralGroup(8) in nilp;
true
gap> SymmetricGroup(3) in nilp;
false
```

4.2 Attributes and operations for Schunck classes

In addition to the attributes and operations for generic group classes, for Schunck classes also the following are available:

1 ▶ Boundary($class$)

computes the boundary of $class$, i.e., the class of all primitive groups which do not belong to $class$ but whose proper factor groups do. The result is a group class.

2 ▶ Basis($class$)

The basis of $class$ consists of the primitive soluble groups in $class$. The result is a group class.
3 ▶ Projector(grp, class)

This function returns a class-projector of grp. Note that, at present, methods are only available for finite soluble groups grp, or when class has an attribute ProjectorFunction.

A subgroup H of the group G is a class-projector of G if HN/N is class-maximal in G/N for all normal subgroups N of G. A subgroup H of G is class-maximal in G if H belongs to class, and there is no subgroup L of G which contains H and lies in class. Note that if class consists of finite soluble groups, then class-projectors exist in every finite soluble group if and only if class is a Schunck class, and in this case all class-projectors of G are conjugate. See [DH92], III, 3.21.

```
gap> H := SchunckClass(rec(bound := G -> Size(G) = 6));
SchunckClass(bound:=function( G ) ... end)
gap> Size(Projector(GL(2,3), H));
16
```

gap> # H-projectors coincide with Sylow subgroups

```
gap> U := SchunckClass(rec(# class of all supersoluble groups
  > bound := G -> not IsPrimeInt( Size(Socle(G))
  > ));
SchunckClass(bound:=function( G ) ... end)
gap> Size(Projector(SymmetricGroup(4), U));
6
```

gap> # the projectors are the point stabilizers

4 ▶ CoveringSubgroup(grp, class)

A subgroup H of G is a class-covering subgroup of G if H is a class-projector of L for every subgroup L with $H \leq L \leq G$. Note that projectors and covering subgroups coincide for Schunck classes of finite soluble groups. At present, methods are only available for finite soluble groups grp.

5 ▶ BoundaryFunction(grpclass)

If bound, this attribute stores a function func which has been set by the user to define grpclass. func must be a function taking one argument. If the argument is a finite primitive soluble group G, func must return true if G is in the boundary of grpclass, and false if G belongs to grpclass. The behaviour for arguments which are not primitive soluble groups, or which belong neither to grpclass nor to the boundary of grpclass need not be defined. Note that BoundaryFunction should not be used to test whether a given group belongs to the boundary of grpclass. Boundary and/or Basis (see 4.2.1 and 4.2.2), which are defined independently of the way grpclass is defined and will work for all finite soluble groups.

6 ▶ ProjectorFunction(grpclass)

If bound, ProjectorFunction stores a function func supplied by the user as part of the definition of grpclass. func must be a function taking a group G as the only argument, and returns a grpclass-projector of G. Note that Projector (see 4.2.3), rather than ProjectorFunction, should be used by the user to compute grpclass-projectors.

4.3 Additional attributes for primitive soluble groups

1 ▶ IsPrimitiveSolubleGroup(grp)

returns true if grp is primitive and soluble, and false otherwise. An abstract finite group G is primitive if it has a faithful primitive permutation representation, or equivalently, if it has a maximal subgroup M with trivial core. If G is soluble, M complements the unique minimal normal subgroup N of G. Therefore N is the socle as well as the Fitting
subgroup of G. A permutation group may be primitive as an abstract group while it is not primitive as a permutation group (cf. GAP Reference Manual, 41.10.7).

4.4 Creating formations

A nonempty group class is a formation if it is closed with respect to factor groups and residually closed. A saturated formation is, of course, a formation which is saturated. Note that by the Gaschütz-Lubeseder-Schmid theorem (see e.g. [DH92], IV, 4.6), every saturated formation is a local formation. Moreover, every saturated formation is a Schunck class. Therefore a saturated formation admits the operations Boundary, Basis, and Projector.

creates a formation from the record rec. Note that it is the user’s responsibility to ensure that rec really defines a formation. rec may have components \in, res, char, and name, whose values are stored in the attributes MemberFunction, ResidualFunction, Characteristic, and Name, respectively, of the new formation. See 2.2.2, 4.5.2, 3.4.1, and GAP Reference Manual, 12.8.2, respectively, for the meaning of these attributes.

The following example shows how to construct the formations of all groups of derived length at most 3 and of all groups of exponent dividing 6.

```
gap> der3 := OrdinaryFormation(rec(  
>     \in := G -> DerivedSubgroup(DerivedSubgroup(DerivedSubgroup(G)))  
> ));
gap> SymmetricGroup(4) in der3;  
true

gap> GL(2,3) in der3;  
false
```

2▶ SaturatedFormation(rec)

creates a saturated formation from the record rec. Note that it is the user’s responsibility to ensure that rec really defines a saturated formation. rec may have any components admissible for formations (see 4.4.1) or Schunck classes (see 4.1.1), that is, \in, res, char, proj, bound, locdef, and name, whose values, if bound, are stored in the attributes MemberFunction, ResidualFunction, Characteristic, ProjectorFunction, BoundaryFunction, LocalDefinitionFunction, and Name, respectively. Please refer to 2.2.2, 4.5.2, 3.4.1, 4.2.6, 4.2.5, 4.5.3, and GAP Reference Manual, 12.8.2 for the meaning of these attributes.

There are also functions FittingFormation and SaturatedFittingFormation to create Fitting formations and saturated Fitting formations; see 5.2.1 and 5.2.2 below for details.

The following example shows how to construct the saturated formations of all finite nilpotent groups and of all nilpotent-by-abelian groups whose order is not divisible by a prime congruent 3 mod 4, and whose 2-chief factors are central. In the first case, we choose $f(p) = (1)$ for all primes p, so that the $f(p)$-residual of G is generated by a generating set of G (see 4.5.3 below). In the second example, we let $f(2) = 1$, if $p \equiv 3 \pmod{4}$, and whose 2-chief factors are central. In the first case, we choose $f(p) = (1)$ for all primes p, so that the $f(p)$-residual of G is generated by a generating set of G (see 4.5.3 below). In the second example, we let $f(2) = 1$, if $p \equiv 3 \pmod{4}$, and $f(p) = \emptyset$, the class of all finite abelian groups, and set $f(p) = \emptyset$ otherwise.
Chapter 4. Schunck classes and formations

gap> nilp := SaturatedFormation(rec(
 locdef := function(G, p)
 return GeneratorsOfGroup(G);
 end));
SaturatedFormation(locdef:=function(G, p) ... end)

gap> form := SaturatedFormation(rec(
 locdef := function(G, p)
 if p = 2 then
 return GeneratorsOfGroup(G);
 elif p mod 4 = 3 then
 return GeneratorsOfGroup(DerivedSubgroup(G));
 else
 return fail;
 fi;
 end));
SaturatedFormation(locdef:=function(G, p) ... end)

gap> Projector(GL(2,3), form);
Group([[Z(3), 0*Z(3)], [0*Z(3), Z(3)^0]],
 [[Z(3)^0, Z(3)], [0*Z(3), Z(3)^0]],
 [[Z(3), 0*Z(3)], [0*Z(3), Z(3)]]])

The formation product \(prod \) of two formations \(form1 \) and \(form2 \) consists of the groups \(G \) such that the \(form2 \)-residual of \(G \) belongs to \(form1 \). The product \(prod \) is again a formation. If \(form1 \) and \(form2 \) are saturated formations, the result is a saturated formation. The same is true if the characteristic of \(form2 \) is contained in that of \(form1 \). This is automatically recognised if the characteristic of \(form1 \) is \texttt{AllPrimes} (see 6.3.1). In all other cases, you will have to set the attribute \texttt{IsSaturated} manually, if applicable. Note that in general it is not possible for \texttt{CRISP} to determine if two classes are contained in each other.

 gap> nilp := SaturatedFormation(rec(
 in := IsNilpotent, name := "nilp"));
nilp
 gap> FormationProduct(nilp, der3); # no characteristic known
FormationProduct(nilp, OrdinaryFormation(res:=function(G) ... end))
 gap> HasIsSaturated(last);HasCharacteristic(nilp);
false
false
 gap> SetCharacteristic(nilp, AllPrimes);
 gap> FormationProduct(nilp, der3); # try with characteristic
FormationProduct(nilp, OrdinaryFormation(res:=function(G) ... end))
 gap> IsSaturated(last);
true

If \(fitform1 \) and \(fitform2 \) are Fitting formations, the formation product equals the Fitting product (see 5.1.2) of \(fitform1 \) and \(fitform2 \), which, in turn, equals the class product of \(fitform1 \) and \(fitform2 \). The latter consists of all groups \(G \) having a normal subgroup \(N \) in \(fitform1 \) such that \(G/N \) belongs to \(fitform2 \).

Note that if \(fitform1 \) and \(fitform2 \) are Fitting formations, then FormationProduct\((fitform1, fitform2) \), FittingProduct\((fitform1, fitform2) \) and FittingFormationProduct\((fitform1, fitform2) \) all return the same mathematical object (but distinct GAP objects), which is, again, a Fitting formation.
gap> nilp := FittingFormation(rec(in := IsNilpotent, name := "nilp"));
gap> FormationProduct(nilp, nilp);
FittingFormationProduct(nilp, nilp)
gap> FittingProduct(nilp, nilp);
FittingFormationProduct(nilp, nilp)
gap> FittingFittingFormationProduct(nilp, nilp);
FittingFormationProduct(nilp, nilp)

4.5 Attributes and operations for formations

In addition to those available for generic group classes, formations also admit the following attributes and operations. See also 4.2 for additional operations for saturated formations.

1. `Residual(grp, form)`
 - `O`
 - return the form-residual (also called form-residuum) of the group `grp`. This is the smallest normal subgroup `res` of `grp` such that `grp/res` belongs to `form`. Note that, unless `form` has an attribute `ResidualFunction`, there are presently only methods available for finite soluble groups.

2. `ResidualFunction(form)`
 - `A`
 - This attribute is part of the definition of `form` supplied by the user. If present, it must contain a function which computes the form-residual of a given group. In general, such a residual only exists if `form` is residually closed; cf. 3.2.6. Note that `ResidualFunction`, if present, is called by `Residual` (see 4.5.1). Therefore `Residual`, which also works for formations without `ResidualFunction`, should be used by the user to compute form-residuals.

3. `LocalDefinitionFunction(form)`
 - `A`
 - Let `form` be a saturated formation with local function `f`. This attribute, if present, stores a function `func` supplied by the user as part of the definition of `form`. `func` must be a function taking two parameters, a group `G` and a prime `p`. If `p` is in the characteristic of `form`, this function must return a list `list` of elements of `G`, such that the smallest normal subgroup of `G` containing `list` is the `f(p)`-residual of `G`. If `p` is not in the characteristic of `form`, then `func(G, p)` must return `fail` for any group `G`. `LocalDefinitionFunction` is part of the definition of `form` and should not be called by the user.

4.6 Low level functions for normal subgroups related to residuals

Let `act` be a list or group whose elements act on `grp` via the caret operator, such that every subgroup of `grp` invariant under `act` is normal in `grp`. Assume that `\mathcal{X}` is a set of `act`-invariant subgroups of `grp` containing `grp`, and such that whenever `M` and `N` are `act`-invariant subgroups with `M \in \mathcal{X}` and `M` contained in `N`, then also `N \in \mathcal{X}`. Then `OneInvariantSubgroupMinWrtQProperty` computes an `act`-invariant subgroup `M \in \mathcal{X}` such that no `act`-invariant subgroup of `grp` contained in `M` belongs to `\mathcal{X}`. At present, there exist only methods for finite soluble groups `grp`.

The class `\mathcal{X}` is described by two functions, `pretest` and `test`.

`pretest` is a function taking four arguments, `U`, `V`, `R`, and `data`, where `data` is just the argument passed to `OneInvariantSubgroupMinWrtQProperty` (see below for examples). `U/V` is a chief factor of `grp`, and `R` is an `act`-invariant subgroup of `grp` containing `U` which is known to belong to `\mathcal{X}`.

`pretest` may return the values `true`, `false`, or `fail`. If it returns `true`, every `act`-invariant subgroup `N` of `grp` such that `V` is contained in `N` and `R/N` is `G`-isomorphic with `U/V` must belong to `\mathcal{X}`. If it returns `false`, no such `act`-invariant subgroup `N` may belong to `\mathcal{X}`.
test is a function taking three arguments, S, R, and data, where data has been described above. R is a act-invariant subgroup of grp belonging to \(\mathcal{X} \), and \(R/S \) is a chief factor of grp. The function must return true if S belongs to \(\mathcal{X} \), and false otherwise.

Note that whenever test(S, R, data) is called, pretest(U, V, R, data) has been called before, and has returned fail, where U/V is a chief factor which is G-isomorphic with R/S. Thus test need not repeat tests which have been performed by pretest. In particular, if pretest always returns true or false, test will never be called.

data is never used or changed by OneInvariantSubgroupMinWrtQProperty, but exists only as a means for passing additional information to or between the functions pretest and test.

For example, if \(\mathcal{C} \) is a group class which is closed with respect to factor groups and \(\mathcal{X} \) is the set of all act-invariant subgroups N of grp with \(grp/N \in \mathcal{C} \), then \(\mathcal{X} \) satisfies the above properties. In particular, if \(\mathcal{C} \) is a formation, then OneInvariantSubgroupMinWrtQProperty will return the \(\mathcal{C} \)-residual of grp.

The following example shows how to use OneInvariantSubgroupMinWrtQProperty to compute the derived subgroup of a group G. (Note that in practice, this is not a particularly efficient way of computing the derived subgroup.)

```gap
gap> G := DirectProduct(SL(2,3), CyclicGroup(2));

gap> OneInvariantSubgroupMinWrtQProperty(G, G,
    function(U, V, R, data) # test if U/V is central in G
    if ForAny(ModuloPcgs(U, V), y ->
        ForAny(data.gens, x -> not Comm(x, y) in V)) then
        return false;
    else
        return fail;
    fi;
    end,
    function(S, R, data)
    return ForAll(data.comms, x -> x in S);
    end,
    data) = DerivedSubgroup(G); # compare results
true
```

AllInvariantSubgroupsQProperty returns a list consisting of all act-invariant subgroups in \(\mathcal{X} \), where \(\mathcal{X} \) is the class defined by pretest, test, and data, as described for OneInvariantSubgroupMinWrtQProperty (see 4.6.1). At present, there exist only methods for finite soluble groups grp.

```gap
gap> G := GL(2,3);
GL(2,3)

gap> AllInvariantSubgroupsQProperty(G, G,
    function(U, V, R, data)
    return IsPrimeInt(Index(U, V));
    end,
    ReturnFail, # pretest is sufficient
    fail); # no data required
[ GL(2,3),
  Group([ [ Z(3)^0, Z(3) ], [ 0*Z(3), Z(3)^0 ] ],
    [ [ Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0 ] ],
```
Section 6. Low level functions for normal subgroups related to residuals

\[
\begin{align*}
[& [0*Z(3), Z(3)^0], [Z(3), 0*Z(3)]], \\
& [[Z(3), 0*Z(3)], [0*Z(3), Z(3)]])], \\
\text{Group}([[& [[Z(3), Z(3)^0], [Z(3)^0, Z(3)^0]], \\
& [[0*Z(3), Z(3)^0], [Z(3), 0*Z(3)]], \\
& [[Z(3), 0*Z(3)], [0*Z(3), Z(3)]]]))
\end{align*}
\]

3 \textbf{OneNormalSubgroupMinWrtQProperty(grp, pretest, test, data)}

OneNormalSubgroupMinWrtQProperty is a special case of OneInvariantSubgroupMinWrtQProperty (see 4.6.1) where \(act = grp\).

4 \textbf{AllNormalSubgroupsWithQProperty(grp, pretest, test, data)}

AllNormalSubgroupsWithQProperty is a special case of AllInvariantSubgroupsWithQProperty (see 4.6.2) where \(act = grp\).
Fitting classes
and Fitting sets

In this chapter, you will find information on how to create Fitting classes and Fitting sets (see 5.1 and 5.3 below), and how to compute injectors and radicals with respect to these; see 5.4.

5.1 Creating Fitting classes

Recall that a Fitting class is a nonempty group class which is closed with respect to normal subgroups and joins of subnormal subgroups.

1 ▶ FittingClass(rec) returns the Fitting class fitclass defined by the entries of the record rec. Note that it is the user’s responsibility to ensure that rec really defines a Fitting class. rec may have components \[\text{in}, \text{inj}, \text{rad}, \text{char}, \text{and name}\]. The functions assigned to the components are stored in the attributes MemberFunction, InjectorFunction, RadicalFunction, Characteristic, and Name, of fitclass. Please refer to 2.2.2, 5.4.4, 5.4.3, 3.4.1, and GAP Reference Manual, 12.8.2 for the meaning of these attributes.

The third example below shows how to construct the Fitting class \(L_2(N)\) (see [DH92], IX, 1.14 and 1.15), where \(N\) is the class of all finite nilpotent groups.

\[
gap> \text{myNilpotentGroups := FittingClass(rec(in := IsNilpotentGroup, }\cr > \text{ rad := FittingSubgroup));} \cr > \text{FittingClass(in:=<Property "IsNilpotentGroup">, rad:=<Attribute "FittingSubgroup">)} \cr \text{gap> myTwoGroups := FittingClass(rec(}\cr > \text{ \text{in := G -> IsSubset([2], Set(Factors(Size(G))))), }\cr > \text{ \text{rad := G -> PCore(G,2), }\cr > \text{ \text{inj := G -> SylowSubgroup(G,2));} }\cr \text{FittingClass(in:=function(G) ... end, rad:=function(G) ... end, inj:=func\} \cr \text{tion(G) ... end)} \cr \text{gap> myL2_Nilp := FittingClass(rec(in := }\cr > \text{ \text{in := G -> IsSolvableGroup(G) }\cr > \text{ \text{and Index(G, Injector(G, myNilpotentGroups)) mod 2 <> 0));}\cr \text{FittingClass(in:=function(G) ... end)} \cr \text{gap> SymmetricGroup(3) in myL2_Nilp;} \cr \text{false} \cr \text{gap> SymmetricGroup(4) in myL2_Nilp;} \text{true} \cr\]

2 ▶ FittingProduct(fit1, fit2) returns the Fitting product prod of the Fitting classes fit1 and fit2, i.e., the class of all groups \(G\) such that \(G/R\) is a fit2-group, where \(R\) is the fit1-radical of \(G\). prod is again a Fitting class. Note that if fit1 and fit2 are also formations, then prod equals the formation product of fit1 and fit2; see 4.4.3 and 4.4.4.
Section 3. Creating Fitting sets

Fitting formations are Fitting classes which are also formations.

1. \textbf{FittingFormation(}rec\textbf{)}

creates a Fitting formation from the record \textit{rec}. Note that it is the user’s responsibility to ensure that \textit{rec} really defines a Fitting formation. \textit{rec} may have any components admissible for saturated formations (see 4.4.2) or Fitting classes (see 5.1.1), that is, \texttt{in}, \texttt{res}, \texttt{rad}, \texttt{inj}, \texttt{char}, and \texttt{name}, whose values are stored in the attributes \texttt{MemberFunction}, \texttt{ResidualFunction}, \texttt{RadicalFunction}, \texttt{InjectorFunction}, \texttt{Characteristic}, and \texttt{Name}, respectively. Please refer to 2.2.2, 4.5.2, 5.4.3, 5.4.4, 3.4.1, and GAP Reference Manual, 12.8.2, respectively, for the meaning of these attributes.

2. \textbf{SaturatedFittingFormation(}rec\textbf{)}

creates a saturated Fitting formation from the record \textit{rec}. Note that it is the user’s responsibility to ensure that \textit{rec} really defines a saturated Fitting formation. \textit{rec} may have any components admissible for saturated formations (see 4.4.2) or Fitting classes (see 5.1.1), that is, \texttt{in}, \texttt{res}, \texttt{proj}, \texttt{bound}, \texttt{locdef}, \texttt{rad}, \texttt{inj}, \texttt{char}, and \texttt{name}, whose values are stored in the attributes \texttt{MemberFunction}, \texttt{ResidualFunction}, \texttt{RadicalFunction}, \texttt{InjectorFunction}, \texttt{Characteristic}, and \texttt{Name}, respectively.

5.3 Creating Fitting sets

A nonempty set \mathcal{F} of subgroups of a group G is a Fitting set of G if it satisfies the following properties:

1. if H belongs to \mathcal{F} and K is normal in H, then K belongs to \mathcal{F};
2. if H and K belong to \mathcal{F}, and H and K are normal in $\langle H, K \rangle$, then $\langle H, K \rangle = HK$ belongs to \mathcal{F};
3. if H is in \mathcal{F} and $g \in G$, then H^g also belongs to \mathcal{F}.

Note that a Fitting set \textit{fitset} of the group G is a subset of the set of all subgroups of G. Therefore it is not closed under group isomorphisms, hence is not a group class. If H is a subgroup of G, then the subgroups of G in \textit{fitset} which are contained in H form a Fitting set of H. We will not distinguish between \textit{fitset} and the arising Fitting set of H. Moreover, if fit is a Fitting class and grp is a group, then the set of all subgroups of grp which belong to fit is a Fitting set of grp.

\begin{itemize}
 \item \textbf{IsFittingSet(}G, \textit{fitset}\textbf{)}
 \end{itemize}

tests whether \textit{fitset} (or, more precisely, the set of all subgroups of G which are contained in \textit{fitset}) is a Fitting set of the group G. Thus if \textit{fitset} is a Fitting class, or if G is a subgroup of the group H and \textit{fitset} is a Fitting set of H, then \textbf{IsFittingSet(}G, \textit{fitset}\textbf{)} will return true.

\begin{itemize}
 \item \textbf{FittingSet(}G, \textit{rec}\textbf{)}
 \end{itemize}

returns the Fitting set \textit{fitset} of the group G, defined by the entries of the record \textit{rec}. Note that, although it would be possible to test whether \textit{rec} defines a Fitting set, such a test is not performed, since it would be extremely expensive, even for relatively small groups.
rec may have components `\in`, `inj`, `rad`, and `name`. The functions assigned to the components are stored in the attributes MemberFunction, InjectorFunction, RadicalFunction, and Name, of `fitset`. Please see 2.2.2, 5.4.4 and 5.4.3 for the meaning of these arguments.

Note that at present, every Fitting set has to be a class (see 2). The second example below shows how to define a Fitting set from a list of subgroups.

\begin{verbatim}
gap> fitset := FittingSet(SymmetricGroup(4), rec(
> \in := S -> IsSubgroup(AlternatingGroup(4), S),
> rad := S -> Intersection(AlternatingGroup(4), S),
> inj := S -> Intersection(AlternatingGroup(4), S)));
FittingSet(SymmetricGroup([1 .. 4]), rec(in=:function(S) ... end, rad=:function(S) ... end, inj:
=function(S) ... end))
gap> FittingSet(SymmetricGroup(3), rec(
> \in := H -> H in [Group(()), Group((1,2)), Group((1,3)), Group((2,3))]);
FittingSet(SymmetricGroup([1 .. 3]), rec(in=:function(H) ... end))
\end{verbatim}

returns the image F_1 of the Fitting set `fitset` under the group homomorphism `alpha`, i.e. the Fitting set F_1 of `Image(alpha)` which consists of all subgroups `alpha(S)` of `Image(alpha)` such that `S` is a `fitset`-injector of `PreImage(alpha, S)`. `fitset` must be a Fitting set of `Image(alpha)` or a Fitting class. Note that the image of a Fitting class is a Fitting set but not a Fitting class.

\begin{verbatim}
gap> alpha := GroupHomomorphismByImages(SymmetricGroup(4), SymmetricGroup(3),
> [(1,2),(1,3),(1,4)], [(1,2),(1,3),(2,3)]);
gap> im := ImageFittingSet(alpha, fitset);
FittingSet(SymmetricGroup([1 .. 4]), rec(inj:=function(G) ... end))
gap> Injector(Source(alpha), im);
Group([(1,2,3), (1,2)(3,4)])
\end{verbatim}

returns the preimage `fitset_0` of the Fitting set `fitset` of `Image(alpha)` under the group homomorphism `alpha`. It consists of all subgroups `S` of `PreImage(alpha)` which are subnormal in `PreImage(alpha, T)` for some `T` in `fitset`. `fitset` must be a Fitting set of `Image(alpha)` or a Fitting class.

Note that the preimage of a Fitting class is just a Fitting set but not a Fitting class.

Moreover, `ImageFittingSet(PreImageFittingSet(fitset, alpha), alpha)` equals `fitset` but in general, `fitset` is not contained in `PreImageFittingSet(ImageFittingSet(fitset, alpha), alpha)`; see e.g. Example VIII, 2.16 of [DH92].

\begin{verbatim}
gap> pre := PreImageFittingSet(alpha, nilpotentGroups);
FittingSet(SymmetricGroup([1 .. 4]), rec(inj:=function(G) ... end))
gap> Injector(Source(alpha), pre);
Group([(1,2,3), (1,2)(3,4)])
\end{verbatim}

Let `fitset1` and `fitset2` be Fitting sets of the groups G_1 and G_2. Then the intersection of `fitset1` and `fitset2` will be a Fitting set of the intersection of G_1 and G_2. You will run into an error if GAP cannot compute the intersection of G_1 and G_2.

\begin{verbatim}
gap> Intersection(fitset1, fitset2)
\end{verbatim}
Section 4. Attributes and operations for Fitting classes and Fitting sets

In addition to operations applicable to classes, both Fitting sets and Fitting classes admit the following attributes and operations. Of course, Fitting classes, being group classes, also admit all properties and attributes for group classes.

1. **Radical*(G, fitset)*

returns the grpclass-radical of the group G, where fitset is a Fitting set of G (see 5.3.1), or a Fitting class. The fitset-radical of G is the unique largest normal subgroup of G belonging to fitset. Note that Radical(G) returns the soluble radical of a group G (see GAP Reference Manual, 39.12.9 in the GAP reference manual). The class myL2 Nilp in the example below has been defined in 5.1.1.

```gap
gap> Radical(SymmetricGroup(4), FittingClass(rec(in := IsNilpotentGroup))); Group([ (1,4)(2,3), (1,3)(2,4) ])
gap> Radical(SymmetricGroup(4), myL2_Nilp); Sym( [ 1 .. 4 ] )
gap> Radical(SymmetricGroup(3), myL2_Nilp); Group([ (1,2,3) ])
```

2. **Injector*(G, fitset)*

returns a fitset-injector of the group G, where fitset is a Fitting set of G (or a group containing G), or a Fitting class. A subgroup H of G is a fitset-injector of G if S ∩ H is fitset-maximal in S for every subnormal subgroup S of G. Note that by [DH92], VIII, 2.9, all fitset-injectors of G are conjugate in G, and it is not hard to see that every subgroup of G has fitset-injectors if and only if fitset is a Fitting set of G. In particular, if fitset is a group class, then every finite soluble group has fitset-injectors if and only if fitset is a Fitting class; see [DH92], IX, 1.4.

```gap
gap> Injector(SymmetricGroup(4), FittingClass(rec(in := IsNilpotentGroup))); Group([ (1,4)(2,3), (1,3)(2,4), (3,4) ])
```

3. **RadicalFunction*(class)*

This attribute, if present, forms part of the definition of class supplied by the user. It must contain a function which takes one argument, a group G, and returns the class-radical of G. This function will be used during subsequent calls to Radical. Therefore Radical (see 5.4.1), which is guaranteed to work for arbitrary Fitting sets class, should always be called by the user to compute class-radicals.

4. **InjectorFunction*(class)*

This attribute constitutes part of the definition of class supplied by the user. If present, it must contain a function taking a group G as the only argument and returning a class-injector of G. This function will then be used by Injector (see...
5.4.2). Since Injector will work for arbitrary Fitting sets, it should always be called by the user to compute class-injectors.

5.5 Low level functions for normal subgroups related to radicals

Let \(act \) be a list or group whose elements act on \(grp \) via the caret operator, such that every subgroup of \(grp \) invariant under \(act \) is normal in \(grp \). Assume \(\mathcal{X} \) is a set of subgroups of \(grp \) such that \(\mathcal{X} \) contains the trivial group, and if \(M \) and \(N \) are \(act \)-invariant subgroups with \(M \in \mathcal{X} \) and \(M \) containing \(N \), then also \(N \in \mathcal{X} \). Then \(\text{OneInvariantSubgroupMaxWrtNProperty} \) computes an \(act \)-invariant subgroup \(M \in \mathcal{X} \) such that no \(act \)-invariant subgroup of \(grp \) properly containing \(M \) belongs to \(\mathcal{X} \).

For example, every Fitting set \(\mathcal{X} \) satisfies the above properties, where \(act = G \). In this case, \(\text{OneInvariantSubgroupMaxWrtNProperty} \) will return the \(\mathcal{X} \)-radical of \(grp \).

The class \(\mathcal{X} \) is described by two functions, \(\text{pretest} \) and \(\text{test} \).

\(\text{pretest} \) is a function taking four arguments, \(U, V, R, \) and \(data \), where \(data \) is just the argument passed to \(\text{OneInvariantSubgroupMaxWrtNProperty} \). \(U/V \) is an \(act \)-composition factor of \(grp \), and \(R \) is an \(act \)-invariant subgroup of \(grp \) contained in \(V \) which is known to belong to \(\mathcal{X} \).

\(\text{pretest} \) may return the values \(\text{true} \), \(\text{false} \), or \(\text{fail} \). If it returns \(\text{true} \), every \(act \)-invariant subgroup \(N \) of \(grp \) contained in \(U \) such that \(N/R \) is \(G \)-isomorphic with \(U/V \) must belong to \(\mathcal{X} \). If it returns \(\text{false} \), no such \(N \) may belong to \(\mathcal{X} \).

\(\text{test} \) is a function taking three arguments, \(S, R, \) and \(data \), where \(data \) has been described above. \(R \) is an \(act \)-invariant subgroup of \(grp \) belonging to \(\mathcal{X} \), and \(S/R \) is an \(act \)-composition factor of \(grp \). The function must return \(\text{true} \) if \(S \) belongs to \(\mathcal{X} \), and \(\text{false} \) otherwise.

Note that \(\text{test}(S, R, data) \) is only called if \(\text{pretest}(U, V, R, data) \) has returned \(\text{fail} \) for a chief factor \(U/V \) which is \(G \)-isomorphic with \(S/R \). Therefore \(\text{test} \) need not repeat tests already performed by \(\text{pretest} \). In particular, if \(\text{pretest} \) always returns \(\text{true} \) or \(\text{false} \), \(\text{test} \) will not be called at all.

\(data \) is never used or changed by \(\text{OneInvariantSubgroupMaxWrtNProperty} \), but exists only as a means for passing additional information to or between the functions \(\text{pretest} \) and \(\text{test} \).

\(\text{AllInvariantSubgroupsWithNProperty} \) returns a list consisting of all \(act \)-invariant subgroups of \(grp \) belonging to the class \(\mathcal{X} \) described by \(\text{pretest} \), \(\text{test} \), and \(data \). See the documentation of \(\text{OneInvariantSubgroupMaxWrtNProperty} \) (see 5.5.1) for details.

```gap
gap> D := DihedralGroup(8);
gap> AllInvariantSubgroupsWithNProperty(  
  D,  
  function(R, S, data)  
  return IsAbelian(R);  
end,  
fail);
```

3. \(\text{OneNormalSubgroupWithNProperty} \) and \(\text{AllNormalSubgroupsWithNProperty} \) are the same as \(\text{OneInvariantSubgroupMaxWrtNProperty} \) (see 5.5.1) and \(\text{AllInvariantSubgroupsWithNProperty} \) (see 5.5.2), where \(act = grp \), and thus the \(act \)-invariant subgroups of \(grp \) are just the normal subgroups of \(grp \).
This chapter describes some pre-defined group classes, namely the classes of all abelian, nilpotent, and supersoluble groups. Moreover, there are some functions constructing the classes of all \(p \)-groups, \(\pi \)-groups, and abelian groups whose exponent divides a given positive integer.

The definitions of these group classes can also serve as further examples of how group classes can be defined using the methods described in the preceding chapters.

6.1 Pre-defined group classes

1. TrivialGroups

 The global variable TrivialGroups contains the class of all trivial groups. It is a subgroup closed saturated Fitting formation.

2. NilpotentGroups

 This global variable contains the class of all finite nilpotent groups. It is a subgroup closed saturated Fitting formation.

3. SupersolubleGroups
 - SupersolvableGroups

 This global variable contains the class of all finite supersoluble groups. It is a subgroup closed saturated formation.

4. AbelianGroups

 is the class of all abelian groups. It is a subgroup closed formation.

5. AbelianGroupsOfExponent\((n)\)

 returns the class of all abelian groups of exponent dividing \(n \), where \(n \) is a positive integer. It is always a subgroup-closed formation.

6. PiGroups\((\pi)\)

 constructs the class of all \(\pi \)-groups. \(\pi \) may be a non-empty class or a set of primes. The result is a subgroup-closed saturated Fitting formation.

7. PGroups\((p)\)

 returns the class of all \(p \)-groups, where \(p \) is a prime. The result is a subgroup-closed saturated Fitting formation.

6.2 Pre-defined projector functions

1. NilpotentProjector\((grp)\)

 This function returns a projector for the class of all finite nilpotent groups. For a definition, see 4.2.3. Note that the nilpotent projectors of a finite soluble group equal its a Carter subgroups, that is, its self-normalizing nilpotent subgroups.

2. SupersolubleProjector\((grp)\)
 - SupersolvableProjector\((grp)\)

 These functions return a projector for the class of all finite supersoluble groups. For a definition, see 4.2.3.
6.3 Pre-defined sets of primes

\texttt{AllPrimes} is the set of all (integral) primes. This should be installed as value for \texttt{Characteristic(grpclass)} if the group class \texttt{grpclass} contains cyclic groups of prime order \(p \) for arbitrary primes \(p \).
The algorithms in CRISP can also be used to compute certain normal subgroups of a finite soluble group efficiently. In particular, CRISP provides fast methods for computing all normal subgroups, all minimal normal subgroups, and the socle of a finite soluble group.

7.1 Functions for normal and characteristic subgroups

1. **NormalSubgroups(grp)**

 For finite soluble groups `grp`, CRISP provides an efficient method to compute `NormalSubgroups` (see GAP Reference Manual, 39.19.8).

2. **CharacteristicSubgroups(grp)**

 Returns a list containing all characteristic subgroups of the finite soluble group `grp`. `CharacteristicSubgroups` calls `AllInvSgrsWithQPropUnderAction`.

3. **MinimalNormalSubgroups(grp)**

 CRISP provides an efficient method to compute a list of all minimal normal subgroups of `grp` (see GAP Reference Manual, 39.19.10).

4. **MinimalNormalPSubgroups(grp, p)**

 For a prime `p`, this function computes a list of all `p`-subgroups which are minimal among the nontrivial normal subgroups of `grp`.

5. **AbelianMinimalNormalSubgroups(grp)**

 This computes a list of all minimal normal subgroups of `grp` which are abelian. If `grp` is soluble, this list coincides with the list of all minimal normal subgroups of `grp`.

7.2 Functions for the socle of finite groups

1. **Socle(grp)**

 CRISP provides a method for `Socle` (see GAP Reference Manual, 39.12.10) for which works for all finite soluble groups `grp`. The socle of a group `grp` is the subgroup generated by all minimal normal subgroups of `grp`. See also 7.2.2 and 7.2.5 below.

   ```plaintext
gap> Size(Socle( DirectProduct(DihedralGroup(8), CyclicGroup(12))));
12
```

2. **AbelianSocle(grp)**

3. **SolubleSocle(grp)**

4. **SolvableSocle(grp)**

 This function computes the soluble socle of `grp`. The soluble socle of a group `grp` is the subgroup generated by all minimal normal soluble subgroups of `grp`.
Chapter 7. Lists of normal subgroups

This function returns a list of minimal normal subgroups of grp such that the socle of grp (see 7.2.1) is the direct product of these minimal normal subgroups. Note that, in general, this decomposition is not unique. Currently, this function is only implemented for finite soluble groups. See also 7.2.4 and 7.2.6.

This function returns a list of soluble minimal normal subgroups of grp such that the socle of grp (see 7.2.1) is the direct product of these minimal normal subgroups. Note that, in general, this decomposition is not unique.

If p is a prime, the p-socle of a group grp is the subgroup generated by all minimal normal p-subgroups of grp.

For a prime p, this function returns a list of minimal normal p-subgroups of grp such that the p-socle of grp (see 7.2.5) is the direct product of these minimal normal subgroups. Note that, in general, this decomposition is not unique.

For a prime p, this function returns an ascending grp-composition series of the p-socle of grp.

AbelianSocleComponents(grp)
SolubleSocleComponents(grp)
SolvableSocleComponents(grp)

PSocle(grp, p)
A

PSocleComponents(grp, p)
A

PSocleSeries(grp, p)
A
Version History

The following list summarises the most important changes between different versions of CRISP.

Version 1.4.6
adds licensing information, fixes a problem with the html help system not showing appendices, fixes a few typos

Version 1.4.5
changes implementation of GroupClassByList, improves automatic builds, compatibility with future GAP versions

Version 1.4.4
improves test output, avoids diffs when recent versions of ResClasses is loaded

Version 1.4.3
removes union/intersection/difference methods not involving classes, improved html manual using TtH.

Version 1.4.2
performance improvement: avoid expensive calls to SmallGeneratingSet

Version 1.4.1
removes old assertion code which ran into an error

Version 1.4
improves socle/p-socle code

Version 1.3.9
fixes a bug which caused the creation of an invalid pcgs.

Version 1.3.8
adds licensing information to manual

Version 1.3.7
changes from three clause BSD license to two clause version

Version 1.3.6
fixes manual examples for GAP 4.5, improve efficiency of Assert statement

Version 1.3.5
makes some functions read-only, new server name

Version 1.3.4
makes tests more robust when other packages are present, remove dvi file from distribution

Version 1.3.3
new server address, change to UTF-8 encoding

Version 1.3.2
adds missing manual source file, removed .dvi file

Version 1.3.1
gets rid of resource forks in tar archive
Appendix A. Version History

Version 1.3
- installs NiceMonomorphism methods, moved pegs caching code into the main GAP library

Version 1.2.1
- improves web page

Version 1.2
- added MinimalNormalSubgroups, removed use of IndicesNormalSteps, changed to new PackageInfo.g

Version 1.1
- adds methods for socles, documentation for AllNormal... functions

Version 1.0
- first release of CRISP

This index covers only this manual. A page number in *italics* refers to a whole section which is devoted to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before “permutation group”.

A
- abelian groups, class of, 23
- abelian groups of bounded exponent, class of, 23
- AbelianGroups, 23
- AbelianGroupsOfExponent, 23
- AbelianMinimalNormalSubgroups, 25
- AbelianSocle, 25
- AbelianSocleComponents, 26
- AllInvariantSubgroupsWithNProperty, 22
- AllInvariantSubgroupsWithQProperty, 16
- AllNormalSubgroupsWithNProperty, 22
- AllNormalSubgroupsWithQProperty, 17
- AllPrimes, 24
- attributes, of Fitting classes, 21
 - of Fitting sets, 21
 - of formation, 15
 - of group classes, 10
 - of primitive soluble group, 12
 - of Schunck class, 11

B
- Basis, 11
- Boundary, 11
- BoundaryFunction, 12

C
- Carter subgroup, 23
- Characteristic, 10
- CharacteristicSubgroups, 25
- Class, 5
- class, of all π-groups, 23
 - of all p-groups, 23
 - of all abelian groups, 23
 - of all abelian groups of bounded exponent, 23
 - of all nilpotent groups, 23
 - of all supersoluble groups, 23
 - of all trivial groups, 23
- classes, creation of, 5
 - properties of, 6
 - closure properties, of group classes, 8
 - comparison, for classes, 6
 - Complement, 6
 - ContainsTrivialGroup, 8
 - CoveringSubgroup, 12

D
- Difference, 6
- Display, for classes, 5

E
- element test, for classes, 5
- equality, for classes, 6

F
- Fitting classes, attributes of, 21
 - creating, 18
 - creating Fitting formations, 19
 - operations for, 21
- Fitting formations, creating, 19
- Fitting sets, attributes of, 21
 - creating, 19
 - operations for, 21
- FittingClass, 18
- FittingFormation, 19
- FittingFormationProduct, 14, 18
- FittingProduct, 18
- FittingSet, 19
- FORMAT package, 4
- FormationProduct, 14
- formations, attributes for, 15
 - creating, 13
 - creating Fitting formations, 19
 - operations for, 15

G
- group classes, attributes of, 10
 - closure properties of, 8
 - creation of, 7
 - properties of, 9
GroupClass, 7

\textbf{H}
HasIsFittingClass, 9
HasIsFittingFormation, 10
HasIsFormation, 10
HasIsOrdinaryFormation, 10
HasIsSaturatedFittingFormation, 10
HasIsSaturatedFormation, 10

\textbf{I}
ImageFittingSet, 20
in, for classes, 5
Injector, 21
InjectorFunction, 21
Intersection, of classes, 6
of Fitting sets, 20
of group classes, 8
INTERSECTIONLIMIT, 6
invariant normal subgroups, with properties inherited by
normal subgroups, 22
with properties inherited by normal subgroups above, 15
IsClass, 5
IsDirectProductClosed, 9
IsEmpty, for classes, 6
IsFittingClass, 9
IsFittingFormation, 10
IsFittingSet, 19
IsFormation, 10
IsGroupClass, 8
IsNormalProductClosed, 9
IsNormalSubgroupClosed, 9
IsOrdinaryFormation, 10
IsPrimitiveSoluble, 12
IsPrimitiveSolubleGroup, 12
IsPrimitiveSolvable, 12
IsPrimitiveSolvableGroup, 12
IsQuotientClosed, 9
IsResiduallyClosed, 9
IsSaturated, 9
IsSaturatedFittingFormation, 10
IsSaturatedFormation, 10
IsSchunckClass, 9
IsSubgroupClosed, 9

\textbf{L}
lattice operations, for classes, 6
LocalDefinitionFunction, 15

\textbf{M}
MemberFunction, 6
membership test, for classes, 5
minimal normal \(p \)-subgroups, 25
minimal normal subgroups, 25
MinimalNormalPSubgroups, 25
MinimalNormalSubgroups, 25

\textbf{N}
nilpotent groups, class of, 23
NilpotentGroups, 23
NilpotentProjector, 23
normal subgroups, with properties inherited by factor
groups, 15
with properties inherited by normal subgroups, 22
with properties inherited by normal subgroups above, 15
with properties inherited by quotients, 15
NormalSubgroups, 25

\textbf{O}
OneInvariantSubgroupMaxWrtNProperty, 22
OneInvariantSubgroupMinWrtQProperty, 15
OneNormalSubgroupMinWrtQProperty, 17
OneNormalSubgroupWithNProperty, 22
operations, for Fitting classes, 21
for Fitting sets, 21
for formation, 15
for Schunck class, 11
OrdinaryFormation, 13

\textbf{P}
PGroups, 23
PiGroups, 23
PreImageFittingSet, 20
primes, set of all, 24
primitive soluble group, attributes of, 12
Print, for classes, 5
Projector, 12
ProjectorFunction, 12
properties, of classes, 6
of group classes, 9
PSocle, 26
PSocleComponents, 26
PSocleSeries, 26

\textbf{R}
Radical, 21
RadicalFunction, 21
Residual, 15
ResidualFunction, 15
Residuum, 15

S
SaturatedFittingFormation, 19
SaturatedFormation, 13
Schunck class, attributes of, 11
 creating, 11
 operations for, 11
SchunckClass, 11
set, of all primes, 24
SetIsFittingClass, 9
SetIsFittingFormation, 10
SetIsFormation, 10
SetIsOrdinaryFormation, 10
SetIsSaturatedFittingFormation, 10
SetIsSaturatedFormation, 10
Socle, 25
SocleComplement, 13
SocleComponents, 26
SolubleSocle, 25
SolubleSocleComponents, 26
SolvableSocle, 25
SolvableSocleComponents, 26
supersoluble groups, class of, 23
SupersolubleGroups, 23
SupersolubleProjector, 23
SupersolvableGroups, 23
SupersolvableProjector, 23
T
trivial groups, class of, 23
TrivialGroups, 23
U
Union, 6
V
View, for classes, 5