
DESIGN
A Package for GAP

by

Leonard H. Soicher

School of Mathematical Sciences
Queen Mary University of London

Contents

1 Design 3

1.1 Installing the DESIGN Package . . . 3

1.2 Loading DESIGN 3

1.3 The structure of a block design in DESIGN 4

1.4 Example of the use of DESIGN . . . 4

2 Information from block design
parameters 7

2.1 Information from t-design parameters . 7

2.2 Block intersection polynomials . . . 9

3 Constructing block designs 11

3.1 Functions to construct block designs . 11

4 Determining basic properties of block
designs 19

4.1 The functions for basic properties . . 19

5 Matrices and efficiency measures for
block designs 23

5.1 Matrices associated with a block design 23

5.2 The function BlockDesignEfficiency . 25

5.3 Computing an interval for a certain real
zero of a rational polynomial 26

6 Automorphism groups and isomorphism
testing for block designs 27

6.1 Computing automorphism groups . . 27

6.2 Testing isomorphism 27

7 Classifying block designs 29

7.1 The function BlockDesigns 29

8 Classifying semi-Latin squares 32

8.1 Semi-Latin squares and SOMAs . . 32

8.2 The function SemiLatinSquareDuals . 32

9 Partitioning block designs 34

9.1 Partitioning a block design into block
designs 34

9.2 Computing resolutions 37

10 XML I/O of block designs 38

10.1 Writing lists of block designs and their
properties in XML-format 38

10.2 Reading lists of block designs in
XML-format 39

Bibliography 40

Index 41

1 Design

This manual describes the DESIGN 1.7 package for GAP. The DESIGN package is for constructing, classifying,
partitioning, and studying block designs.

The DESIGN package is Copyright c© Leonard H. Soicher 2003–2019. DESIGN is part of a wider project, which
received EPSRC funding under grant GR/R29659/01, to provide a web-based resource for design theory; see

http://designtheory.org and [BCD+06].

DESIGN is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
For details, see

http://www.gnu.org/licenses/gpl.html

Please reference your use of the DESIGN package in a published work as follows:

L.H. Soicher, The DESIGN package for GAP, Version 1.7, 2019,

https://gap-packages.github.io/design .

Any comments or bug reports should go to L.H.Soicher@qmul.ac.uk.

1.1 Installing the DESIGN Package

The DESIGN package is included in the standard GAP distribution. You only need to download and install DESIGN
if you need to install the package locally or are installing an upgrade of DESIGN to an existing installation of GAP
(see the main GAP reference section 76.1). If you do need to download DESIGN, you can find archive files for the
package in various formats at

http://www.gap-system.org/Packages/design.html , and then your archive file of choice should be
downloaded and unpacked in the pkg subdirectory of an appropriate GAP root directory (see the main GAP reference
section 9.2).

The DESIGN package is written entirely in GAP code, and requires no further installation. However, DESIGN makes
use of the GRAPE package [Soi19], which must be fully installed.

1.2 Loading DESIGN

Before using DESIGN you must load the package within GAP by calling the statement

LoadPackage("design");

4 Chapter 1. Design

1.3 The structure of a block design in DESIGN

A block design is an ordered pair (X,B), where X is a non-empty finite set whose elements are called points, and B
is a non-empty finite multiset whose elements are called blocks, such that each block is a non-empty finite multiset of
points.

DESIGN deals with arbitrary block designs. However, at present, some DESIGN functions only work for binary
block designs (i.e. those with no repeated element in any block of the design), but these functions will check if an
input block design is binary.

In DESIGN, a block design D is stored as a record, with mandatory components isBlockDesign, v, and blocks.
The points of a block design D are always 1,2,...,D.v, but they may also be given names in the optional component
pointNames, with D.pointNames[i] the name of point i. The blocks component must be a sorted list of the blocks
of D (including any repeats), with each block being a sorted list of points (including any repeats).

A block design record may also have some optional components which store information about the design. At present
these optional components include isSimple, isBinary, isConnected, r, blockSizes, blockNumbers, res-
olutions, autGroup, autSubgroup, tSubsetStructure, allTDesignLambdas, efficiency, id, statisti-
cal propertiesXML, and pointNames.

A non-expert user should only use functions in the DESIGN package to create block design records and their compo-
nents.

1.4 Example of the use of DESIGN

To give you an idea of the capabilities of this package, we now give an extended example of an application of the
DESIGN package, in which a nearly resolvable non-simple 2-(21,4,3) design is constructed (for Donald Preece) via
a pairwise-balanced design. All the DESIGN functions used here are described in this manual.

The program first discovers the unique (up to isomorphism) pairwise-balanced 2-(21,{4, 5},1) design D invariant
under H = 〈(1, 2, . . . , 20)〉, and then applies the ∗-construction of [MS07] to this design D to obtain a non-simple
2-(21,4,3) design Dstar with automorphism group of order 80. The program then classifies the near-resolutions of
Dstar invariant under the subgroup of order 5 of H, and finds exactly two such (up to the action of Aut (Dstar)).
Finally, Dstar is printed.

gap> H:=CyclicGroup(IsPermGroup,20);

Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)])

gap> D:=BlockDesigns(rec(v:=21,blockSizes:=[4,5],

> tSubsetStructure:=rec(t:=2,lambdas:=[1]),

> requiredAutSubgroup:=H));;

gap> Length(D);

1

gap> D:=D[1];;

gap> BlockSizes(D);

[4, 5]

gap> BlockNumbers(D);

[20, 9]

gap> Size(AutGroupBlockDesign(D));

80

gap> Dstar:=TDesignFromTBD(D,2,4);;

gap> AllTDesignLambdas(Dstar);

[105, 20, 3]

gap> IsSimpleBlockDesign(Dstar);

false

gap> Size(AutGroupBlockDesign(Dstar));

80

Section 4. Example of the use of DESIGN 5

gap> near_resolutions:=PartitionsIntoBlockDesigns(rec(

> blockDesign:=Dstar,

> v:=21,blockSizes:=[4],

> tSubsetStructure:=rec(t:=0,lambdas:=[5]),

> blockIntersectionNumbers:=[[[0]]],

> requiredAutSubgroup:=SylowSubgroup(H,5)));;

gap> Length(near_resolutions);

2

gap> List(near_resolutions,x->Size(x.autGroup));

[5, 20]

gap> Print(Dstar,"\n");

rec(

isBlockDesign := true,

v := 21,

blocks := [[1, 2, 4, 15], [1, 2, 4, 15], [1, 2, 4, 15],

[1, 3, 14, 20], [1, 3, 14, 20], [1, 3, 14, 20], [1, 5, 9, 13],

[1, 5, 9, 17], [1, 5, 13, 17], [1, 6, 11, 16], [1, 6, 11, 21],

[1, 6, 16, 21], [1, 7, 8, 10], [1, 7, 8, 10], [1, 7, 8, 10],

[1, 9, 13, 17], [1, 11, 16, 21], [1, 12, 18, 19],

[1, 12, 18, 19], [1, 12, 18, 19], [2, 3, 5, 16], [2, 3, 5, 16],

[2, 3, 5, 16], [2, 6, 10, 14], [2, 6, 10, 18], [2, 6, 14, 18],

[2, 7, 12, 17], [2, 7, 12, 21], [2, 7, 17, 21], [2, 8, 9, 11],

[2, 8, 9, 11], [2, 8, 9, 11], [2, 10, 14, 18], [2, 12, 17, 21],

[2, 13, 19, 20], [2, 13, 19, 20], [2, 13, 19, 20],

[3, 4, 6, 17], [3, 4, 6, 17], [3, 4, 6, 17], [3, 7, 11, 15],

[3, 7, 11, 19], [3, 7, 15, 19], [3, 8, 13, 18], [3, 8, 13, 21],

[3, 8, 18, 21], [3, 9, 10, 12], [3, 9, 10, 12], [3, 9, 10, 12],

[3, 11, 15, 19], [3, 13, 18, 21], [4, 5, 7, 18], [4, 5, 7, 18],

[4, 5, 7, 18], [4, 8, 12, 16], [4, 8, 12, 20], [4, 8, 16, 20],

[4, 9, 14, 19], [4, 9, 14, 21], [4, 9, 19, 21], [4, 10, 11, 13],

[4, 10, 11, 13], [4, 10, 11, 13], [4, 12, 16, 20],

[4, 14, 19, 21], [5, 6, 8, 19], [5, 6, 8, 19], [5, 6, 8, 19],

[5, 9, 13, 17], [5, 10, 15, 20], [5, 10, 15, 21],

[5, 10, 20, 21], [5, 11, 12, 14], [5, 11, 12, 14],

[5, 11, 12, 14], [5, 15, 20, 21], [6, 7, 9, 20], [6, 7, 9, 20],

[6, 7, 9, 20], [6, 10, 14, 18], [6, 11, 16, 21],

[6, 12, 13, 15], [6, 12, 13, 15], [6, 12, 13, 15],

[7, 11, 15, 19], [7, 12, 17, 21], [7, 13, 14, 16],

[7, 13, 14, 16], [7, 13, 14, 16], [8, 12, 16, 20],

[8, 13, 18, 21], [8, 14, 15, 17], [8, 14, 15, 17],

[8, 14, 15, 17], [9, 14, 19, 21], [9, 15, 16, 18],

[9, 15, 16, 18], [9, 15, 16, 18], [10, 15, 20, 21],

[10, 16, 17, 19], [10, 16, 17, 19], [10, 16, 17, 19],

[11, 17, 18, 20], [11, 17, 18, 20], [11, 17, 18, 20]],

autGroup := Group([(2,14,10,18)(3, 7,19,15)(4,20, 8,12)(5,13,17, 9),

(1,17, 5, 9)(2,10,14, 6)(4,16,12,20)(7,15,19,11),

(1,18,19,12)(2,11, 8, 9)(3, 4,17, 6)(5,10,15,20)(7,16,13,14)]),

blockSizes := [4],

isBinary := true,

allTDesignLambdas := [105, 20, 3],

isSimple := false)

6 Chapter 1. Design

2
Information from

block design
parameters

2.1 Information from t-design parameters

For t a non-negative integer and v, k, λ positive integers with t ≤ k ≤ v, a t-design with parameters t, v, k, λ , or a
t-(v, k, λ) design, is a binary block design with exactly v points, such that each block has size k and each t-subset of
the points is contained in exactly λ blocks.

1 I TDesignLambdas(t, v, k, lambda)

A t-(v, k, λ) design is also an s-(v, k, λs) design for 0 ≤ s ≤ t, where λs = λ
(v−s

t−s

)
/
(k−s

t−s

)
.

Given a non-negative integer t, and positive integers v, k, lambda, with t ≤ k ≤ v, this function returns a length t + 1
list whose (s + 1)-st element is λs as defined above, if all the λs are integers. Otherwise, fail is returned.

gap> TDesignLambdas(5,24,8,1);

[759, 253, 77, 21, 5, 1]

2 I TDesignLambdaMin(t, v, k)

Given a non-negative integer t, and positive integers v and k, with t ≤ k ≤ v, this function returns the minimum
positive lambda such that TDesignLambdas(t, v, k, lambda) does not return fail.

See 2.1.1.

gap> TDesignLambdaMin(5,24,8);

1

gap> TDesignLambdaMin(2,12,4);

3

3 I TDesignIntersectionTriangle(t, v, k, lambda)

Suppose D is a t-(v,k,lambda) design, let i and j be non-negative integers with i + j ≤ t, and suppose X and Y are
disjoint subsets of the points of D, such that X and Y have respective sizes i and j. The (i, j)-intersection number is
the number of blocks of D that contain X and are disjoint from Y (this number depends only on t, v, k, lambda, i and
j).

Given a non-negative integer t, and positive integers v, k and lambda, with t ≤ k ≤ v, this function returns the t-design
intersection triangle, which is a two dimensional array whose (i+ 1, j+ 1)-entry is the (i, j)-intersection number for
a t-(v,k,lambda) design (assuming such a design exists), such that i, j ≥ 0, i + j ≤ t. This function returns fail if
TDesignLambdas(t,v,k,lambda) does. When lambda = 1, then more information can be obtained using 2.1.4.

8 Chapter 2. Information from block design parameters

gap> TDesignLambdas(2,12,4,3);

[33, 11, 3]

gap> TDesignIntersectionTriangle(2,12,4,3);

[[33, 22, 14], [11, 8], [3]]

gap> TDesignLambdas(2,12,4,2);

fail

gap> TDesignIntersectionTriangle(2,12,4,2);

fail

4 I SteinerSystemIntersectionTriangle(t, v, k)

A Steiner system is a t-(v,k,1) design, and in this case it is possible to extend the notion of intersection triangle defined
in 2.1.3.

Suppose D is a t-(v,k,1) design, with B a block of D, let i and j be non-negative integers with i + j ≤ k, and suppose X
and Y are disjoint subsets of B, such that X and Y have respective sizes i and j. The (i, j)-intersection number is the
number of blocks of D that contain X and are disjoint from Y (this number depends only on t, v, k, i and j). Note that
when i + j ≤ t, this intersection number is the same as that defined in 2.1.3 for the general t-design case.

Given a non-negative integer t, and positive integers v and k, with t ≤ k ≤ v, this function returns the Steiner system
intersection triangle, which is a two dimensional array whose (i + 1, j + 1)-entry is the (i, j)-intersection number
for a t-(v,k,1) design (assuming such a design exists), such that i, j ≥ 0, i + j ≤ k. This function returns fail if
TDesignLambdas(t,v,k,1) does.

See also 2.1.3.

gap> SteinerSystemIntersectionTriangle(5,24,8);

[[759, 506, 330, 210, 130, 78, 46, 30, 30],

[253, 176, 120, 80, 52, 32, 16, 0], [77, 56, 40, 28, 20, 16, 16],

[21, 16, 12, 8, 4, 0], [5, 4, 4, 4, 4], [1, 0, 0, 0], [1, 0, 0],

[1, 0], [1]]

gap> TDesignIntersectionTriangle(5,24,8,1);

[[759, 506, 330, 210, 130, 78], [253, 176, 120, 80, 52],

[77, 56, 40, 28], [21, 16, 12], [5, 4], [1]]

5 I TDesignBlockMultiplicityBound(t, v, k, lambda)

Given a non-negative integer t, and positive integers v, k and lambda, with t ≤ k ≤ v, this function returns a non-
negative integer which is an upper bound on the multiplicity of any block in any t-(v,k,lambda) design (the multiplicity
of a block in a block design is the number of times that block occurs in the block list). In particular, if the value 0 is
returned, then this implies that a t-(v,k,lambda) design does not exist.

Although our bounds are reasonably good, we do not claim that the returned bound m is always achieved; that is, there
may not exist a t-(v,k,lambda) design having a block with multiplicity m.

See also 2.1.6.

gap> TDesignBlockMultiplicityBound(5,16,7,5);

2

gap> TDesignBlockMultiplicityBound(2,36,6,1);

0

gap> TDesignBlockMultiplicityBound(2,36,6,2);

2

gap> TDesignBlockMultiplicityBound(2,15,5,2);

0

gap> TDesignBlockMultiplicityBound(2,15,5,4);

2

gap> TDesignBlockMultiplicityBound(2,11,4,6);

3

Section 2. Block intersection polynomials 9

6 I ResolvableTDesignBlockMultiplicityBound(t, v, k, lambda)

A resolution of a block design is a partition of the blocks into subsets, each of which forms a partition of the point
set, and a block design is resolvable if it has a resolution.

Given a non-negative integer t, and positive integers v, k and lambda, with t ≤ k ≤ v, this function returns a non-
negative integer which is an upper bound on the multiplicity of any block in any resolvable t-(v,k,lambda) design (the
multiplicity of a block in a block design is the number of times that block occurs in the block list). In particular, if
the value 0 is returned, then this implies that a resolvable t-(v,k,lambda) design does not exist.

Although our bounds are reasonably good, we do not claim that the returned bound m is always achieved; that is, there
may not exist a resolvable t-(v,k,lambda) design having a block with multiplicity m.

See also 2.1.5.

gap> ResolvableTDesignBlockMultiplicityBound(5,12,6,1);

1

gap> ResolvableTDesignBlockMultiplicityBound(2,21,7,3);

0

gap> TDesignBlockMultiplicityBound(2,21,7,3);

1

gap> ResolvableTDesignBlockMultiplicityBound(2,12,4,3);

1

gap> TDesignBlockMultiplicityBound(2,12,4,3);

2

2.2 Block intersection polynomials

In [CS07], Cameron and Soicher introduce block intersection polynomials and their applications to the study of block
designs. Here we give functions to construct and analyze block intersection polynomials.

1 I BlockIntersectionPolynomial(x, m, lambdavec)

For k a non-negative integer, define the polynomial P(x, k) = x(x − 1) · · · (x − k + 1). Let s and t be non-negative
integers, with s ≥ t, and let m0, . . . ,ms and λ0, . . . , λt be rational numbers. Then the block intersection polynomial
for the sequences [m0, . . . ,ms], [λ0, . . . , λt] is defined to be

t

∑
j=0

(
t
j

)
P(−x, t − j)[P(s, j)λj −

s

∑
i=j

P(i, j)mi],

and is denoted by B(x, [m0, . . . ,ms], [λ0, . . . , λt])·
Now suppose x is an indeterminate over the rationals, and m and lambdavec are non-empty lists of rational numbers,
such that the length of lambdavec is not greater than that of m. Then this function returns the block intersection
polynomial B(x,m, lambdavec).

The importance of a block intersection polynomial is as follows. Let D = (V,B) be a block design, let S ⊆ V , with
s = |S|, and for i = 0, . . . , s, suppose that mi is a non-negative integer with mi ≤ ni, where ni is the number of blocks
intersecting S in exactly i points. Let t be a non-negative even integer with t ≤ s, and suppose that, for j = 0 . . . , t,
we have λj = 1/

(s
j

)
∑T⊆S,|T|=j λT , where λT is the number of blocks of D containing T . Then the block intersection

polynomial B(x) = B(x, [m0, . . . ,ms], [λ0, . . . , λt]) is a polynomial with integer coefficients, and B(n) ≥ 0 for every
integer n. (These conditions can be checked using the function 2.2.2.) In addition, if B(n) = 0 for some integer n, then
mi = ni for i 6∈ {n, n + 1, . . . , n + t − 1}.
For more information on block intersection polynomials and their applications, see [CS07] and [Soi10].

10 Chapter 2. Information from block design parameters

gap> x:=Indeterminate(Rationals,1);

x_1

gap> m:=[0,0,0,0,0,0,0,1];;

gap> lambdavec:=TDesignLambdas(6,14,7,4);

[1716, 858, 396, 165, 60, 18, 4]

gap> B:=BlockIntersectionPolynomial(x,m,lambdavec);

1715*x_1^6-10269*x_1^5+34685*x_1^4-69615*x_1^3+84560*x_1^2-56196*x_1+15120

gap> Factors(B);

[1715*x_1-1715,

x_1^5-1222/245*x_1^4+3733/245*x_1^3-6212/245*x_1^2+5868/245*x_1-432/49]

gap> Value(B,1);

0

2 I BlockIntersectionPolynomialCheck(m, lambdavec)

Suppose m is a list of non-negative integers, and lambdavec is a list of non-negative rational numbers, with the length
of lambdavec odd and not greater than the length of m.

Then, for x an indeterminate over the rationals, this function checks whether BlockIntersectionPolynomial(x,m,lambdavec)
is a polynomial over the integers and has a non-negative value at each integer. The function returns true if this is so;
else false is returned.

See also 2.2.1.

gap> m:=[0,0,0,0,0,0,0,1];;

gap> lambdavec:=TDesignLambdas(6,14,7,4);

[1716, 858, 396, 165, 60, 18, 4]

gap> BlockIntersectionPolynomialCheck(m,lambdavec);

true

gap> m:=[1,0,0,0,0,0,0,1];;

gap> BlockIntersectionPolynomialCheck(m,lambdavec);

false

3 Constructing
block designs

3.1 Functions to construct block designs
1 I BlockDesign(v, B)
I BlockDesign(v, B, G)

Let v be a positive integer and B a non-empty list of non-empty sorted lists of elements of {1, . . . , v}.
The first version of this function returns the block design with point-set {1, . . . , v} and block multiset C, where C is
SortedList(B).

For the second version of this function, we require G to be a group of permutations of {1, . . . , v}, and the function
returns the block design with point-set {1, . . . , v} and block multiset C, where C is the sorted list of the concatenation
of the G-orbits of the elements of B.

gap> BlockDesign(2, [[1,2],[1],[1,2]]);

rec(isBlockDesign := true, v := 2, blocks := [[1], [1, 2], [1, 2]])

gap> D:=BlockDesign(7, [[1,2,4]], Group((1,2,3,4,5,6,7)));

rec(isBlockDesign := true, v := 7,

blocks := [[1, 2, 4], [1, 3, 7], [1, 5, 6], [2, 3, 5],

[2, 6, 7], [3, 4, 6], [4, 5, 7]],

autSubgroup := Group([(1,2,3,4,5,6,7)]))

gap> AllTDesignLambdas(D);

[7, 3, 1]

2 I AGPointFlatBlockDesign(n, q, d)

Let n be positive integer, q a prime-power, and d a non-negative integer less than or equal to n. Then this function
returns the block design whose points are the points of the affine space AG(n, q), and whose blocks are the d-flats of
AG(n, q), considering a d-flat as a set of points.

Note that the affine space AG(n, q) consists of all the cosets of all the subspaces of the vector space V(n, q), with the
points being the cosets of the 0-dimensional subspace and the d-flats being the cosets of the d-dimensional subspaces.
As is usual, we identify the points with the vectors in V(n, q), and these vectors are given as the point-names.

gap> D:=AGPointFlatBlockDesign(2,4,1);

rec(isBlockDesign := true, v := 16,

blocks := [[1, 2, 3, 4], [1, 5, 9, 13], [1, 6, 11, 16],

[1, 7, 12, 14], [1, 8, 10, 15], [2, 5, 12, 15], [2, 6, 10, 14],

[2, 7, 9, 16], [2, 8, 11, 13], [3, 5, 10, 16], [3, 6, 12, 13],

[3, 7, 11, 15], [3, 8, 9, 14], [4, 5, 11, 14], [4, 6, 9, 15],

[4, 7, 10, 13], [4, 8, 12, 16], [5, 6, 7, 8], [9, 10, 11, 12],

[13, 14, 15, 16]],

autSubgroup := Group([(5,9,13)(6,10,14)(7,11,15)(8,12,16),

(2,5,6)(3,9,11)(4,13,16)(7,14,12)(8,10,15),

(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16),

(3,4)(7,8)(9,13)(10,14)(11,16)(12,15)]),

12 Chapter 3. Constructing block designs

pointNames := [[0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0], [0*Z(2), Z(2^2)],

[0*Z(2), Z(2^2)^2], [Z(2)^0, 0*Z(2)], [Z(2)^0, Z(2)^0],

[Z(2)^0, Z(2^2)], [Z(2)^0, Z(2^2)^2], [Z(2^2), 0*Z(2)],

[Z(2^2), Z(2)^0], [Z(2^2), Z(2^2)], [Z(2^2), Z(2^2)^2],

[Z(2^2)^2, 0*Z(2)], [Z(2^2)^2, Z(2)^0], [Z(2^2)^2, Z(2^2)],

[Z(2^2)^2, Z(2^2)^2]])

gap> AllTDesignLambdas(D);

[20, 5, 1]

3 I PGPointFlatBlockDesign(n, q, d)

Let n be a non-negative integer, q a prime-power, and d a non-negative integer less than or equal to n. Then this
function returns the block design whose points are the (projective) points of the projective space PG(n, q), and whose
blocks are the d-flats of PG(n, q), considering a d-flat as a set of projective points.

Note that the projective space PG(n, q) consists of all the subspaces of the vector space V(n+ 1, q), with the projec-
tive points being the 1-dimensional subspaces and the d-flats being the (d + 1)-dimensional subspaces.

gap> D:=PGPointFlatBlockDesign(3,2,1);

rec(isBlockDesign := true, v := 15,

blocks := [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],

[1, 10, 11], [1, 12, 13], [1, 14, 15], [2, 4, 6], [2, 5, 7],

[2, 8, 10], [2, 9, 11], [2, 12, 14], [2, 13, 15], [3, 4, 7],

[3, 5, 6], [3, 8, 11], [3, 9, 10], [3, 12, 15], [3, 13, 14],

[4, 8, 12], [4, 9, 13], [4, 10, 14], [4, 11, 15], [5, 8, 13],

[5, 9, 12], [5, 10, 15], [5, 11, 14], [6, 8, 14], [6, 9, 15],

[6, 10, 12], [6, 11, 13], [7, 8, 15], [7, 9, 14],

[7, 10, 13], [7, 11, 12]],

autSubgroup := Group([(8,12)(9,13)(10,14)(11,15),

(1,2,4,8)(3,6,12,9)(5,10)(7,14,13,11)]),

pointNames := [<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>])

gap> AllTDesignLambdas(D);

[35, 7, 1]

4 I WittDesign(n)

Suppose n ∈ {9, 10, 11, 12, 21, 22, 23, 24}.
If n = 24 then this function returns the large Witt design W24, the unique (up to isomorphism) 5-(24,8,1) design.
If n = 24 − i, where i ∈ {1, 2, 3}, then the i-fold point-derived design of W24 is returned; this is the unique (up to
isomorphism) (5− i)-(24− i, 8− i, 1) design.

Section 1. Functions to construct block designs 13

If n = 12 then this function returns the small Witt design W12, the unique (up to isomorphism) 5-(12,6,1) design.
If n = 12 − i, where i ∈ {1, 2, 3}, then the i-fold point-derived design of W12 is returned; this is the unique (up to
isomorphism) (5− i)-(12− i, 6− i, 1) design.

gap> W24:=WittDesign(24);;

gap> AllTDesignLambdas(W24);

[759, 253, 77, 21, 5, 1]

gap> DisplayCompositionSeries(AutomorphismGroup(W24));

G (3 gens, size 244823040)

M(24)

1 (0 gens, size 1)

gap> W10:=WittDesign(10);;

gap> AllTDesignLambdas(W10);

[30, 12, 4, 1]

gap> DisplayCompositionSeries(AutomorphismGroup(W10));

G (4 gens, size 1440)

Z(2)

S (4 gens, size 720)

Z(2)

S (3 gens, size 360)

A(6) ~ A(1,9) = L(2,9) ~ B(1,9) = O(3,9) ~ C(1,9) = S(2,9) ~ 2A(1,9) = U(2,\

9)

1 (0 gens, size 1)

5 I DualBlockDesign(D)

Suppose D is a block design for which every point lies on at least one block. Then this function returns the dual of D,
the block design in which the roles of points and blocks are interchanged, but incidence (including repeated incidence)
stays the same. Note that, since the list of blocks of a block design is always sorted, the block list of the dual of the
dual of D may not be equal to the block list of D.

gap> D:=BlockDesign(4,[[1,3],[2,3,4],[3,4]]);;

gap> dualD:=DualBlockDesign(D);

rec(isBlockDesign := true, v := 3,

blocks := [[1], [1, 2, 3], [2], [2, 3]],

pointNames := [[1, 3], [2, 3, 4], [3, 4]])

gap> DualBlockDesign(dualD).blocks;

[[1, 2], [2, 3, 4], [2, 4]]

6 I ComplementBlocksBlockDesign(D)

Suppose D is a binary incomplete-block design. Then this function returns the block design on the same point-set as
D, whose blocks are the complements of those of D (complemented with respect to the point-set).

gap> D:=PGPointFlatBlockDesign(2,2,1);

rec(isBlockDesign := true, v := 7,

pointNames := [<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>],

blocks := [[1, 2, 3], [1, 4, 5], [1, 6, 7], [2, 4, 6],

[2, 5, 7], [3, 4, 7], [3, 5, 6]])

14 Chapter 3. Constructing block designs

gap> AllTDesignLambdas(D);

[7, 3, 1]

gap> C:=ComplementBlocksBlockDesign(D);

rec(isBlockDesign := true, v := 7,

blocks := [[1, 2, 4, 7], [1, 2, 5, 6], [1, 3, 4, 6], [1, 3, 5, 7],

[2, 3, 4, 5], [2, 3, 6, 7], [4, 5, 6, 7]],

pointNames := [<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>])

gap> AllTDesignLambdas(C);

[7, 4, 2]

7 I DeletedPointsBlockDesign(D, Y)

Suppose D is a block design and Y is a proper subset of the point-set of D.

Then this function returns the block design DP obtained from D by deleting the points in Y from the point-set, and
from each block. It is an error if the resulting design contains an empty block. The points of DP are relabelled 1, 2, · · ·,
preserving the order of the corresponding points of D; the point-names of DP (listed in DP.pointNames) are those
of these corresponding points of D.

gap> D:=BlockDesigns(rec(v:=11,blockSizes:=[5],

> tSubsetStructure:=rec(t:=2,lambdas:=[2])))[1];

rec(isBlockDesign := true, v := 11,

blocks := [[1, 2, 3, 4, 5], [1, 2, 9, 10, 11], [1, 3, 6, 7, 9],

[1, 4, 7, 8, 10], [1, 5, 6, 8, 11], [2, 3, 6, 8, 10],

[2, 4, 6, 7, 11], [2, 5, 7, 8, 9], [3, 4, 8, 9, 11],

[3, 5, 7, 10, 11], [4, 5, 6, 9, 10]],

tSubsetStructure := rec(t := 2, lambdas := [2]), isBinary := true,

isSimple := true, blockSizes := [5], blockNumbers := [11], r := 5,

autGroup := Group([(2,4)(3,5)(7,11)(8,9), (1,3)(2,5)(7,9)(10,11),

(1,5,3)(6,11,7)(8,10,9), (1,10,5,2,11,3)(4,9,7)(6,8)]))

gap> AllTDesignLambdas(D);

[11, 5, 2]

gap> DP:=DeletedPointsBlockDesign(D,[5,8]);

rec(isBlockDesign := true, v := 9,

blocks := [[1, 2, 3, 4], [1, 2, 7, 8, 9], [1, 3, 5, 6, 7],

[1, 4, 6, 8], [1, 5, 9], [2, 3, 5, 8], [2, 4, 5, 6, 9],

[2, 6, 7], [3, 4, 7, 9], [3, 6, 8, 9], [4, 5, 7, 8]],

pointNames := [1, 2, 3, 4, 6, 7, 9, 10, 11])

gap> PairwiseBalancedLambda(DP);

2

8 I DeletedBlocksBlockDesign(D, Y)

Suppose D is a block design, and Y is a proper sublist of the block-list of D (Y need not be sorted).

Then this function returns the block design obtained from D by deleting the blocks in Y (counting repeats) from the
block-list of D.

Section 1. Functions to construct block designs 15

gap> D:=BlockDesign(7,[[1,2,4],[1,2,4]],Group((1,2,3,4,5,6,7)));

rec(isBlockDesign := true, v := 7,

blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 3, 5], [2, 3, 5], [2, 6, 7],

[2, 6, 7], [3, 4, 6], [3, 4, 6], [4, 5, 7], [4, 5, 7]],

autSubgroup := Group([(1,2,3,4,5,6,7)]))

gap> DeletedBlocksBlockDesign(D,[[2,3,5],[2,3,5],[4,5,7]]);

rec(isBlockDesign := true, v := 7,

blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 6, 7], [2, 6, 7], [3, 4, 6],

[3, 4, 6], [4, 5, 7]])

9 I AddedPointBlockDesign(D, Y)
I AddedPointBlockDesign(D, Y, pointname)

Suppose D is a block design, and Y is a sublist of the block-list of D (Y need not be sorted).

Then this function returns the block design obtained from D by adding the new point D.v+1 to the point-set, and
adding this new point (once) to each block of Y (where repeats count).

The optional parameter pointname specifies a point-name for the new point.

gap> D:=BlockDesign(7,[[1,2,4],[1,2,4]],Group((1,2,3,4,5,6,7)));

rec(isBlockDesign := true, v := 7,

blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 3, 5], [2, 3, 5], [2, 6, 7],

[2, 6, 7], [3, 4, 6], [3, 4, 6], [4, 5, 7], [4, 5, 7]],

autSubgroup := Group([(1,2,3,4,5,6,7)]))

gap> AddedPointBlockDesign(D,[[2,3,5],[2,3,5],[4,5,7]],"infinity");

rec(isBlockDesign := true, v := 8,

blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 3, 5, 8], [2, 3, 5, 8], [2, 6, 7],

[2, 6, 7], [3, 4, 6], [3, 4, 6], [4, 5, 7], [4, 5, 7, 8]],

pointNames := [1, 2, 3, 4, 5, 6, 7, "infinity"])

10 I AddedBlocksBlockDesign(D, Y)

Suppose Y is a list of multisets of points of the block design D. Then this function returns a new block design, whose
point-set is that of D, and whose block list is that of D with the elements of Y (including repeats) added.

gap> D:=BlockDesign(7,[[1,2,4]],Group((1,2,3,4,5,6,7)));

rec(isBlockDesign := true, v := 7,

blocks := [[1, 2, 4], [1, 3, 7], [1, 5, 6], [2, 3, 5],

[2, 6, 7], [3, 4, 6], [4, 5, 7]],

autSubgroup := Group([(1,2,3,4,5,6,7)]))

gap> AddedBlocksBlockDesign(D,D.blocks);

rec(isBlockDesign := true, v := 7,

blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 3, 5], [2, 3, 5], [2, 6, 7],

[2, 6, 7], [3, 4, 6], [3, 4, 6], [4, 5, 7], [4, 5, 7]])

11 I DerivedBlockDesign(D, x)

Suppose D is a block design, and x is a point or block of D. Then this function returns the derived design DD of D,
with respect to x.

16 Chapter 3. Constructing block designs

If x is a point then DD is the block design whose blocks are those of D containing x, but with x deleted from these
blocks, and the points of DD are those which occur in some block of DD.

If x is a block, then the points of DD are the points in x, and the blocks of DD are the blocks of D other than x
containing at least one point of x, but with all points not in x deleted from these blocks. Note that any repeat of x, but
not x itself, is a block of DD.

It is an error if the resulting block design DD has no blocks or an empty block.

The points of DD are relabelled 1, 2, · · ·, preserving the order of the corresponding points of D; the point-names of
DD (listed in DD.pointNames) are those of these corresponding points of D.

gap> D:=BlockDesigns(rec(v:=11,blockSizes:=[5],

> tSubsetStructure:=rec(t:=2,lambdas:=[2])))[1];

rec(isBlockDesign := true, v := 11,

blocks := [[1, 2, 3, 4, 5], [1, 2, 9, 10, 11], [1, 3, 6, 7, 9],

[1, 4, 7, 8, 10], [1, 5, 6, 8, 11], [2, 3, 6, 8, 10],

[2, 4, 6, 7, 11], [2, 5, 7, 8, 9], [3, 4, 8, 9, 11],

[3, 5, 7, 10, 11], [4, 5, 6, 9, 10]],

tSubsetStructure := rec(t := 2, lambdas := [2]), isBinary := true,

isSimple := true, blockSizes := [5], blockNumbers := [11], r := 5,

autGroup := Group([(2,4)(3,5)(7,11)(8,9), (1,3)(2,5)(7,9)(10,11),

(1,5,3)(6,11,7)(8,10,9), (1,10,5,2,11,3)(4,9,7)(6,8)]))

gap> AllTDesignLambdas(D);

[11, 5, 2]

gap> DD:=DerivedBlockDesign(D,6);

rec(isBlockDesign := true, v := 10,

blocks := [[1, 3, 6, 8], [1, 5, 7, 10], [2, 3, 7, 9],

[2, 4, 6, 10], [4, 5, 8, 9]],

pointNames := [1, 2, 3, 4, 5, 7, 8, 9, 10, 11])

gap> AllTDesignLambdas(DD);

[5, 2]

gap> DD:=DerivedBlockDesign(D,D.blocks[6]);

rec(isBlockDesign := true, v := 5,

blocks := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4],

[2, 5], [3, 4], [3, 5], [4, 5]],

pointNames := [2, 3, 6, 8, 10])

gap> AllTDesignLambdas(DD);

[10, 4, 1]

12 I ResidualBlockDesign(D, x)

Suppose D is a block design, and x is a point or block of D. Then this function returns the residual design RD of D,
with respect to x.

If x is a point then RD is the block design whose blocks are those of D not containing x, and the points of RD are those
which occur in some block of RD.

If x is a block, then the points of RD are those of D not in x, and the blocks of RD are the blocks of D (including
repeats) containing at least one point not in x, but with all points in x deleted from these blocks.

It is an error if the resulting block design RD has no blocks.

The points of RD are relabelled 1, 2, · · ·, preserving the order of the corresponding points of D; the point-names of
RD (listed in RD.pointNames) are those of these corresponding points of D.

Section 1. Functions to construct block designs 17

gap> D:=BlockDesigns(rec(v:=11,blockSizes:=[5],

> tSubsetStructure:=rec(t:=2,lambdas:=[2])))[1];

rec(isBlockDesign := true, v := 11,

blocks := [[1, 2, 3, 4, 5], [1, 2, 9, 10, 11], [1, 3, 6, 7, 9],

[1, 4, 7, 8, 10], [1, 5, 6, 8, 11], [2, 3, 6, 8, 10],

[2, 4, 6, 7, 11], [2, 5, 7, 8, 9], [3, 4, 8, 9, 11],

[3, 5, 7, 10, 11], [4, 5, 6, 9, 10]],

tSubsetStructure := rec(t := 2, lambdas := [2]), isBinary := true,

isSimple := true, blockSizes := [5], blockNumbers := [11], r := 5,

autGroup := Group([(2,4)(3,5)(7,11)(8,9), (1,3)(2,5)(7,9)(10,11),

(1,5,3)(6,11,7)(8,10,9), (1,10,5,2,11,3)(4,9,7)(6,8)]))

gap> AllTDesignLambdas(D);

[11, 5, 2]

gap> RD:=ResidualBlockDesign(D,6);

rec(isBlockDesign := true, v := 10,

blocks := [[1, 2, 3, 4, 5], [1, 2, 8, 9, 10], [1, 4, 6, 7, 9],

[2, 5, 6, 7, 8], [3, 4, 7, 8, 10], [3, 5, 6, 9, 10]],

pointNames := [1, 2, 3, 4, 5, 7, 8, 9, 10, 11])

gap> AllTDesignLambdas(RD);

[6, 3]

gap> RD:=ResidualBlockDesign(D,D.blocks[6]);

rec(isBlockDesign := true, v := 6,

blocks := [[1, 2, 3], [1, 2, 4], [1, 3, 6], [1, 4, 5],

[1, 5, 6], [2, 3, 5], [2, 4, 6], [2, 5, 6], [3, 4, 5],

[3, 4, 6]], pointNames := [1, 4, 5, 7, 9, 11])

gap> AllTDesignLambdas(RD);

[10, 5, 2]

13 I TDesignFromTBD(D, t, k)

For t a non-negative integer, K a set of positive integers, and v, λ positive integers with t ≤ v, a t-wise balanced
design, or a t-(v,K, λ) design, is a binary block design with exactly v points, such that each block has size in K and
each t-subset of the points is contained in exactly λ blocks.

Now let t and k be positive integers, D be a t-(v,K, λ) design (for some set K), and t ≤ k ≤ k1, where exactly s distinct
block-sizes k1 < · · · < ks occur in D. Then this function returns the t-design D∗ = D∗(t, k) described and studied in
[MS07].

The point set of D∗ is that of D, and the block multiset of D∗ consists of, for each i = 1, . . . , s and each block B of D
of size ki (including repeats), exactly n/

(ki−t
k−t

)
copies of every k-subset of B, where n := lcm (

(ki−t
k−t

)
: 1 ≤ i ≤ s).

It is shown in [MS07] that D∗ is a t-(v, k, nλ) design, that Aut (D) ⊆ Aut (D∗), and that if λ = 1 and t < k, then
Aut (D) = Aut (D∗).

gap> D:=BlockDesigns(rec(v:=10, blockSizes:=[3,4],

> tSubsetStructure:=rec(t:=2,lambdas:=[1])))[1];

rec(isBlockDesign := true, v := 10,

blocks := [[1, 2, 3, 4], [1, 5, 6, 7], [1, 8, 9, 10], [2, 5, 10],

[2, 6, 8], [2, 7, 9], [3, 5, 9], [3, 6, 10], [3, 7, 8],

[4, 5, 8], [4, 6, 9], [4, 7, 10]],

tSubsetStructure := rec(t := 2, lambdas := [1]), isBinary := true,

isSimple := true, blockSizes := [3, 4], blockNumbers := [9, 3],

autGroup := Group([(5,6,7)(8,9,10), (2,3)(5,7)(8,10),

(2,3,4)(5,7,6)(8,9,10), (2,3,4)(5,9,6,8,7,10), (2,6,9,3,7,10)(4,5,8)])

)

18 Chapter 3. Constructing block designs

gap> PairwiseBalancedLambda(D);

1

gap> Dstar:=TDesignFromTBD(D,2,3);

rec(isBlockDesign := true, v := 10,

blocks := [[1, 2, 3], [1, 2, 4], [1, 3, 4], [1, 5, 6],

[1, 5, 7], [1, 6, 7], [1, 8, 9], [1, 8, 10], [1, 9, 10],

[2, 3, 4], [2, 5, 10], [2, 5, 10], [2, 6, 8], [2, 6, 8],

[2, 7, 9], [2, 7, 9], [3, 5, 9], [3, 5, 9], [3, 6, 10],

[3, 6, 10], [3, 7, 8], [3, 7, 8], [4, 5, 8], [4, 5, 8],

[4, 6, 9], [4, 6, 9], [4, 7, 10], [4, 7, 10], [5, 6, 7],

[8, 9, 10]],

autGroup := Group([(5,6,7)(8,9,10), (2,3)(5,7)(8,10), (2,3,4)(5,7,6)(8,9,

10), (2,3,4)(5,9,6,8,7,10), (2,6,9,3,7,10)(4,5,8)]))

gap> AllTDesignLambdas(Dstar);

[30, 9, 2]

4
Determining basic

properties of
block designs

4.1 The functions for basic properties
1 I IsBlockDesign(obj)

This boolean function returns true if and only if obj, which can be an object of arbitrary type, is a block design.

gap> IsBlockDesign(5);

false

gap> IsBlockDesign(BlockDesign(2,[[1],[1,2],[1,2]]));

true

2 I IsBinaryBlockDesign(D)

This boolean function returns true if and only if the block design D is binary, that is, if no block of D has a repeated
element.

gap> IsBinaryBlockDesign(BlockDesign(2,[[1],[1,2],[1,2]]));

true

gap> IsBinaryBlockDesign(BlockDesign(2,[[1],[1,2],[1,2,2]]));

false

3 I IsSimpleBlockDesign(D)

This boolean function returns true if and only if the block design D is simple, that is, if no block of D is repeated.

gap> IsSimpleBlockDesign(BlockDesign(2,[[1],[1,2],[1,2]]));

false

gap> IsSimpleBlockDesign(BlockDesign(2,[[1],[1,2],[1,2,2]]));

true

4 I IsConnectedBlockDesign(D)

This boolean function returns true if and only if the block design D is connected, that is, if its incidence graph is a
connected graph.

gap> IsConnectedBlockDesign(BlockDesign(2,[[1],[2]]));

false

gap> IsConnectedBlockDesign(BlockDesign(2,[[1,2]]));

true

5 I BlockDesignPoints(D)

This function returns the set of points of the block design D, that is [1..D.v]. The returned result is immutable.

20 Chapter 4. Determining basic properties of block designs

gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);

rec(isBlockDesign := true, v := 3,

blocks := [[1, 2], [1, 3], [2, 3], [2, 3]])

gap> BlockDesignPoints(D);

[1 .. 3]

6 I NrBlockDesignPoints(D)

This function returns the number of points of the block design D.

gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);

rec(isBlockDesign := true, v := 3,

blocks := [[1, 2], [1, 3], [2, 3], [2, 3]])

gap> NrBlockDesignPoints(D);

3

7 I BlockDesignBlocks(D)

This function returns the (sorted) list of blocks of the block design D. The returned result is immutable.

gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);

rec(isBlockDesign := true, v := 3,

blocks := [[1, 2], [1, 3], [2, 3], [2, 3]])

gap> BlockDesignBlocks(D);

[[1, 2], [1, 3], [2, 3], [2, 3]]

8 I NrBlockDesignBlocks(D)

This function returns the number of blocks of the block design D.

gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);

rec(isBlockDesign := true, v := 3,

blocks := [[1, 2], [1, 3], [2, 3], [2, 3]])

gap> NrBlockDesignBlocks(D);

4

9 I BlockSizes(D)

This function returns the set of sizes (actually list-lengths) of the blocks of the block design D.

gap> BlockSizes(BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]));

[1, 3]

10 I BlockNumbers(D)

Let D be a block design. Then this function returns a list of the same length as BlockSizes(D), such that the i-th
element of this returned list is the number of blocks of D of size BlockSizes(D)[i].

gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]);

rec(isBlockDesign := true, v := 3,

blocks := [[1], [1, 2, 2], [1, 2, 3], [2], [3]])

gap> BlockSizes(D);

[1, 3]

gap> BlockNumbers(D);

[3, 2]

11 I ReplicationNumber(D)

If the block design D is equireplicate, then this function returns its replication number; otherwise fail is returned.

Section 1. The functions for basic properties 21

A block design D is equireplicate with replication number r if, for every point x of D, r is equal to the sum over
the blocks of the multiplicity of x in a block. For a binary block design this is the same as saying that each point x is
contained in exactly r blocks.

gap> ReplicationNumber(BlockDesign(4,[[1],[1,2],[2,3,3],[4,4]]));

2

gap> ReplicationNumber(BlockDesign(4,[[1],[1,2],[2,3],[4,4]]));

fail

12 I PairwiseBalancedLambda(D)

A binary block design D is pairwise balanced if D has at least two points and every pair of distinct points is contained
in exactly λ blocks, for some positive constant λ .

Given a binary block design D, this function returns fail if D is not pairwise balanced, and otherwise the positive
constant λ such that every pair of distinct points of D is in exactly λ blocks.

gap> D:=BlockDesigns(rec(v:=10, blockSizes:=[3,4],

> tSubsetStructure:=rec(t:=2,lambdas:=[1])))[1];

rec(isBlockDesign := true, v := 10,

blocks := [[1, 2, 3, 4], [1, 5, 6, 7], [1, 8, 9, 10], [2, 5, 10],

[2, 6, 8], [2, 7, 9], [3, 5, 9], [3, 6, 10], [3, 7, 8],

[4, 5, 8], [4, 6, 9], [4, 7, 10]],

tSubsetStructure := rec(t := 2, lambdas := [1]), isBinary := true,

isSimple := true, blockSizes := [3, 4], blockNumbers := [9, 3],

autGroup := Group([(5,6,7)(8,9,10), (2,3)(5,7)(8,10),

(2,3,4)(5,7,6)(8,9,10), (2,3,4)(5,9,6,8,7,10), (2,6,9,3,7,10)(4,5,8)])

)

gap> PairwiseBalancedLambda(D);

1

13 I TSubsetLambdasVector(D, t)

Let D be a block design, t a non-negative integer, and v=D.v. Then this function returns an integer vector L whose
positions correspond to the t-subsets of {1, . . . , v}. The i-th element of L is the sum over all blocks B of D of the num-
ber of times the i-th t-subset (in lexicographic order) is contained in B. (For example, if t = 2 and B = [1, 1, 2, 3, 3, 4],
then B contains [1, 2] twice, [1, 3] four times, [1, 4] twice, [2, 3] twice, [2, 4] once, and [3, 4] twice.) In particular, if D
is binary then L[i] is simply the number of blocks of D containing the i-th t-subset (in lexicographic order).

gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]);;

gap> TSubsetLambdasVector(D,0);

[5]

gap> TSubsetLambdasVector(D,1);

[3, 4, 2]

gap> TSubsetLambdasVector(D,2);

[3, 1, 1]

gap> TSubsetLambdasVector(D,3);

[1]

14 I AllTDesignLambdas(D)

If the block design D is not a t-design for some t ≥ 0 then this function returns an empty list. Otherwise D is a
binary block design with constant block size k, say, and this function returns a list L of length T + 1, where T is the
maximum t ≤ k such that D is a t-design, and, for i = 1, . . . ,T + 1, L[i] is equal to the (constant) number of blocks of
D containing an (i− 1)-subset of the point-set of D. The returned result is immutable.

22 Chapter 4. Determining basic properties of block designs

gap> AllTDesignLambdas(PGPointFlatBlockDesign(3,2,1));

[35, 7, 1]

15 I AffineResolvableMu(D)

A block design is affine resolvable if the design is resolvable and any two blocks not in the same parallel class of a
resolution meet in a constant number µ of points.

If the block design D is affine resolvable, then this function returns its value of µ; otherwise fail is returned.

The value 0 is returned if, and only if, D consists of a single parallel class.

gap> P:=PGPointFlatBlockDesign(2,3,1);; # projective plane of order 3

gap> AffineResolvableMu(P);

fail

gap> A:=ResidualBlockDesign(P,P.blocks[1]);; # affine plane of order 3

gap> AffineResolvableMu(A);

1

5
Matrices and

efficiency measures
for block designs

In this chapter we describe functions to calculate certain matrices associated with a block design, and the function
BlockDesignEfficiency which determines certain statistical efficiency measures of a 1-design.

We also document the utility function DESIGN IntervalForLeastRealZero, which is used in the calculation of
E-efficiency measures, but has much wider application.

5.1 Matrices associated with a block design
1 I PointBlockIncidenceMatrix(D)

This function returns the point-block incidence matrix N of the block design D. This matrix has rows indexed by the
points of D and columns by the blocks of D, with the (i, j)-entry of N being the number of times point i occurs in
D.blocks[j].

The returned matrix N is immutable.

gap> D:=DualBlockDesign(AGPointFlatBlockDesign(2,3,1));;

gap> BlockDesignBlocks(D);

[[1, 2, 3, 4], [1, 5, 6, 7], [1, 8, 9, 10], [2, 5, 8, 11],

[2, 7, 9, 12], [3, 5, 10, 12], [3, 6, 9, 11], [4, 6, 8, 12],

[4, 7, 10, 11]]

gap> PointBlockIncidenceMatrix(D);

[[1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 0, 0, 1, 1, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 1, 1, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 1],

[0, 1, 0, 1, 0, 1, 0, 0, 0], [0, 1, 0, 0, 0, 0, 1, 1, 0],

[0, 1, 0, 0, 1, 0, 0, 0, 1], [0, 0, 1, 1, 0, 0, 0, 1, 0],

[0, 0, 1, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 0, 1, 0, 0, 1],

[0, 0, 0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 0, 1, 1, 0, 1, 0]]

2 I ConcurrenceMatrix(D)

This function returns the concurrence matrix L of the block design D. This matrix is equal to NNT, where N is the
point-block incidence matrix of D (see 5.1.1) and NT is the transpose of N. If D is a binary block design then the
(i, j)-entry of its concurrence matrix is the number of blocks containing points i and j.

The returned matrix L is immutable.

24 Chapter 5. Matrices and efficiency measures for block designs

gap> D:=DualBlockDesign(AGPointFlatBlockDesign(2,3,1));;

gap> BlockDesignBlocks(D);

[[1, 2, 3, 4], [1, 5, 6, 7], [1, 8, 9, 10], [2, 5, 8, 11],

[2, 7, 9, 12], [3, 5, 10, 12], [3, 6, 9, 11], [4, 6, 8, 12],

[4, 7, 10, 11]]

gap> ConcurrenceMatrix(D);

[[3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],

[1, 3, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1],

[1, 1, 3, 1, 1, 1, 0, 0, 1, 1, 1, 1],

[1, 1, 1, 3, 0, 1, 1, 1, 0, 1, 1, 1],

[1, 1, 1, 0, 3, 1, 1, 1, 0, 1, 1, 1],

[1, 0, 1, 1, 1, 3, 1, 1, 1, 0, 1, 1],

[1, 1, 0, 1, 1, 1, 3, 0, 1, 1, 1, 1],

[1, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1],

[1, 1, 1, 0, 0, 1, 1, 1, 3, 1, 1, 1],

[1, 0, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1],

[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0],

[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 3]]

3 I InformationMatrix(D)

This function returns the information matrix C of the block design D.

This matrix is defined as follows. Suppose D has v points and b blocks, let R be the v × v diagonal matrix whose
(i, i)-entry is the replication number of the point i, let N be the point-block incidence matrix of D (see 5.1.1), and let
K be the b × b diagonal matrix whose (j, j)-entry is the length of D.blocks[j]. Then the information matrix of D
is C := R−NK−1NT. If D is a 1-(v, k, r) design then this expression for C simplifies to rI− k−1L, where I is the v× v
identity matrix and L is the concurrence matrix of D (see 5.1.2).

The returned matrix C is immutable.

gap> D:=DualBlockDesign(AGPointFlatBlockDesign(2,3,1));;

gap> BlockDesignBlocks(D);

[[1, 2, 3, 4], [1, 5, 6, 7], [1, 8, 9, 10], [2, 5, 8, 11],

[2, 7, 9, 12], [3, 5, 10, 12], [3, 6, 9, 11], [4, 6, 8, 12],

[4, 7, 10, 11]]

gap> InformationMatrix(D);

[[9/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, 0, 0],

[-1/4, 9/4, -1/4, -1/4, -1/4, 0, -1/4, -1/4, -1/4, 0, -1/4, -1/4],

[-1/4, -1/4, 9/4, -1/4, -1/4, -1/4, 0, 0, -1/4, -1/4, -1/4, -1/4],

[-1/4, -1/4, -1/4, 9/4, 0, -1/4, -1/4, -1/4, 0, -1/4, -1/4, -1/4],

[-1/4, -1/4, -1/4, 0, 9/4, -1/4, -1/4, -1/4, 0, -1/4, -1/4, -1/4],

[-1/4, 0, -1/4, -1/4, -1/4, 9/4, -1/4, -1/4, -1/4, 0, -1/4, -1/4],

[-1/4, -1/4, 0, -1/4, -1/4, -1/4, 9/4, 0, -1/4, -1/4, -1/4, -1/4],

[-1/4, -1/4, 0, -1/4, -1/4, -1/4, 0, 9/4, -1/4, -1/4, -1/4, -1/4],

[-1/4, -1/4, -1/4, 0, 0, -1/4, -1/4, -1/4, 9/4, -1/4, -1/4, -1/4],

[-1/4, 0, -1/4, -1/4, -1/4, 0, -1/4, -1/4, -1/4, 9/4, -1/4, -1/4],

[0, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, 9/4, 0],

[0, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, -1/4, 0, 9/4]]

Section 2. The function BlockDesignEfficiency 25

5.2 The function BlockDesignEfficiency
1 I BlockDesignEfficiency(D)
I BlockDesignEfficiency(D, eps)
I BlockDesignEfficiency(D, eps, includeMV)

Let D be a 1-(v, k, r) design with v > 1, let eps be a positive rational number (default: 10−6), and let includeMV
be a boolean (default: false). Then this function returns a record eff containing information on statistical efficiency
measures of D. These measures are defined below. See [CDMS04], [BC09] and [BR97] for further details. All returned
results are computed using exact algebraic computation.

The component eff.A contains the A-efficiency measure for D, eff.Dpowered contains the D-efficiency measure
of D raised to the power v − 1, and eff.Einterval is a list [a, b] of non-negative rational numbers such that if x
is the E-efficiency measure of D then a ≤ x ≤ b, b − a ≤eps, and if x is rational then a = x = b. Moreover
eff.CEFpolynomial contains the monic polynomial over the rationals whose zeros (counting multiplicities) are the
canonical efficiency factors of the design D. If includeMV=true then additional work is done to compute the MV-
(also called E′-) efficiency measure, and then eff.MV contains the value of this measure. (This component may be set
even if includeMV=false, as a byproduct of other computation.)

We now define the canonical efficiency factors and the A-, D-, E-, and MV-efficiency measures of a 1-design.

Let D be a 1-(v, k, r) design with v ≥ 2, let C be the information matrix of D (see 5.1.3), and let F := r−1C. The
eigenvalues of F are all real and lie in the interval [0, 1]. At least one of these eigenvalues is zero: an associated
eigenvector is the all-1 vector. The remaining eigenvalues δ1 ≤ δ2 ≤ · · · ≤ δv−1 of F are called the canonical
efficiency factors of D. These are all non-zero if and only if D is connected (that is, the point-block incidence graph
of D is a connected graph).

If D is not connected, then the A-, D-, E-, and MV-efficiency measures of D are all defined to be zero. Otherwise, the
A-efficiency measure is (v− 1)/∑

v−1
i=1 1/δi (the harmonic mean of the canonical efficiency factors), the D-efficiency

measure is (∏v−1
i=1 δi)

1/(v−1) (the geometric mean of the canonical efficiency factors), and the E-efficiency measure is
δ1 (the minimum of the canonical efficiency factors).

If D is connected, and the MV-efficiency measure is required, then it is computed as follows. Let F := r−1C be as
before, and let P := v−1J, where J is the v× v all-1 matrix. Set M := (F + P)−1 − P, making M the “Moore-Penrose
inverse” of F (see [BC09]). Then the MV-efficiency measure of D is the minimum value (over all i, j ∈ {1, . . . , v},
i 6= j) of 2/(Mii + Mjj −Mij −Mji).

gap> D:=DualBlockDesign(AGPointFlatBlockDesign(2,3,1));;

gap> BlockDesignBlocks(D);

[[1, 2, 3, 4], [1, 5, 6, 7], [1, 8, 9, 10], [2, 5, 8, 11],

[2, 7, 9, 12], [3, 5, 10, 12], [3, 6, 9, 11], [4, 6, 8, 12],

[4, 7, 10, 11]]

gap> BlockDesignEfficiency(D);

rec(A := 33/41,

CEFpolynomial := x_1^11-9*x_1^10+147/4*x_1^9-719/8*x_1^8+18723/128*x_1^7-106\

47/64*x_1^6+138159/1024*x_1^5-159813/2048*x_1^4+2067201/65536*x_1^3-556227/655\

36*x_1^2+89667/65536*x_1-6561/65536, Dpowered := 6561/65536,

Einterval := [3/4, 3/4])

gap> BlockDesignEfficiency(D,10^(-4),true);

rec(A := 33/41,

CEFpolynomial := x_1^11-9*x_1^10+147/4*x_1^9-719/8*x_1^8+18723/128*x_1^7-106\

47/64*x_1^6+138159/1024*x_1^5-159813/2048*x_1^4+2067201/65536*x_1^3-556227/655\

36*x_1^2+89667/65536*x_1-6561/65536, Dpowered := 6561/65536,

Einterval := [3/4, 3/4], MV := 3/4)

26 Chapter 5. Matrices and efficiency measures for block designs

5.3 Computing an interval for a certain real zero of a rational polynomial

We document a DESIGN package utility function used in the calculation of the Einterval component above, but is
more widely applicable.

1 I DESIGN IntervalForLeastRealZero(f, a, b, eps)

Suppose that f is a univariate polynomial over the rationals, a, b are rational numbers with a ≤ b, and eps is a positive
rational number.

If f has no real zero in the closed interval [a, b], then this function returns the empty list. Otherwise, let α be the least
real zero of f such that a ≤ α ≤ b. Then this function returns a list [c, d] of rational numbers, with c ≤ α ≤ d and
d − c ≤ eps. Moreover, c = d if and only if α is rational (in which case α = c = d).

gap> x:=Indeterminate(Rationals,1);

x_1

gap> f:=(x+3)*(x^2-3);

x_1^3+3*x_1^2-3*x_1-9

gap> L:=DESIGN_IntervalForLeastRealZero(f,-5,5,10^(-3));

[-3, -3]

gap> L:=DESIGN_IntervalForLeastRealZero(f,-2,5,10^(-3));

[-14193/8192, -7093/4096]

gap> List(L,Float);

[-1.73254, -1.73169]

gap> L:=DESIGN_IntervalForLeastRealZero(f,0,5,10^(-3));

[14185/8192, 7095/4096]

gap> List(L,Float);

[1.73157, 1.73218]

gap> L:=DESIGN_IntervalForLeastRealZero(f,0,5,10^(-5));

[454045/262144, 908095/524288]

gap> List(L,Float);

[1.73204, 1.73205]

gap> L:=DESIGN_IntervalForLeastRealZero(f,2,5,10^(-5));

[]

6
Automorphism

groups and
isomorphism testing

for block designs

The functions in this chapter depend on nauty [McK90], [MP14] or bliss [JK07] via the GRAPE package, which must
be fully installed in order for these functions to work.

6.1 Computing automorphism groups
1 I AutGroupBlockDesign(D)

This function returns the automorphism group of the block design D. The automorphism group Aut (D) of D is the
group consisting of all the permutations of the points {1, . . . ,D.v} which preserve the block-multiset of D.

This function is not yet implemented for non-binary block designs.

This function can also be called via AutomorphismGroup(D).

gap> D:=PGPointFlatBlockDesign(2,3,1);; # projective plane of order 3

gap> Size(AutGroupBlockDesign(D));

5616

6.2 Testing isomorphism
1 I IsIsomorphicBlockDesign(D1, D2)

This boolean function returns true if and only if block designs D1 and D2 are isomorphic, that is, there is a bijection
from the point-set of D1 to that of D2 which maps the block-multiset of D1 to that of D2.

This function is not yet implemented for non-binary block designs.

For pairwise isomorphism testing for three or more binary block designs, see 6.2.2.

gap> D1:=BlockDesign(3,[[1],[1,2,3],[2]]);;

gap> D2:=BlockDesign(3,[[1],[1,2,3],[3]]);;

gap> IsIsomorphicBlockDesign(D1,D2);

true

gap> D3:=BlockDesign(4,[[1],[1,2,3],[3]]);;

gap> IsIsomorphicBlockDesign(D2,D3);

false

gap> # block designs with different numbers of points are not isomorphic

28 Chapter 6. Automorphism groups and isomorphism testing for block designs

2 I BlockDesignIsomorphismClassRepresentatives(L)

Given a list L of binary block designs, this function returns a list consisting of pairwise non-isomorphic elements of
L, representing all the isomorphism classes of elements of L. The order of the elements in the returned list may differ
from their order in L.

gap> D1:=BlockDesign(3,[[1],[1,2,3],[2]]);;

gap> D2:=BlockDesign(3,[[1],[1,2,3],[3]]);;

gap> D3:=BlockDesign(4,[[1],[1,2,3],[3]]);;

gap> BlockDesignIsomorphismClassRepresentatives([D1,D2,D3]);

[rec(isBlockDesign := true, v := 4, blocks := [[1], [1, 2, 3], [3]],

isBinary := true),

rec(isBlockDesign := true, v := 3, blocks := [[1], [1, 2, 3], [2]],

isBinary := true)]

7 Classifying
block designs

This chapter describes the function BlockDesigns which can classify block designs with given properties. The pos-
sible properties a user can specify are many and varied, and are described below. Depending on the properties, this
function can handle block designs with up to about 20 points (sometimes more and sometimes less, depending on the
problem).

7.1 The function BlockDesigns
1 I BlockDesigns(param)

This function returns a list DL of block designs whose properties are specified by the user in the record param. The
precise interpretation of the output depends on param, described below. Only binary designs are generated by this
function, if param.blockDesign is unbound or is a binary design.

The required components of param are v, blockSizes, and tSubsetStructure.

param.v must be a positive integer, and specifies that for each block design in the list DL, the points are 1,...,param.v.

param.blockSizes must be a set of positive integers, and specifies that the block sizes of each block design in DL
will be contained in param.blockSizes.

param.tSubsetStructure must be a record, having components t, partition, and lambdas. Let t be equal to
param.tSubsetStructure.t, partition be param.tSubsetStructure.partition, and lambdas be param.tSubsetStructure.lambdas.
Then t must be a non-negative integer, partition must be a list of non-empty sets of t-subsets of [1..param.v], form-
ing an ordered partition of all the t-subsets of [1..param.v], and lambdas must be a list of distinct non-negative
integers (not all zero) of the same length as partition. This specifies that for each design in DL, each t-subset in
partition[i] will occur exactly lambdas[i] times, counted over all blocks of the design. For binary designs, this
means that each t-subset in partition[i] is contained in exactly lambdas[i] blocks. The partition component is
optional if lambdas has length 1. We require that t is less than or equal to each element of param.blockSizes, and
if param.blockDesign is bound, then each block of param.blockDesign must contain at least t distinct elements.
Note that if param.tSubsetStructure is equal to rec(t:=0,lambdas:=[b]), for some positive integer b, then all
that is being specified is that each design in DL must have exactly b blocks.

The optional components of param are used to specify additional constraints on the designs in DL or to change default
parameter values. These optional components are blockDesign, r, b, blockNumbers, blockIntersectionNum-
bers, blockMaxMultiplicities, isoGroup, requiredAutSubgroup, and isoLevel.

param.blockDesign must be a block design with param.blockDesign.v equal to param.v. Then each block
multiset of a design in DL will be a submultiset of param.blockDesign.blocks (that is, each block of a design
D in DL will be a block of param.blockDesign, and the multiplicity of a block of D will be less than or equal to
that block’s multiplicity in param.blockDesign). The blockDesign component is useful for the computation of
subdesigns, such as parallel classes.

param.r must be a positive integer, and specifies that in each design in DL, each point will occur exactly param.r

times in the list of blocks. In other words, each design in DL will have replication number param.r.

param.b must be a positive integer, and specifies that each design in DL will have exactly param.b blocks.

30 Chapter 7. Classifying block designs

param.blockNumbers must be a list of non-negative integers, the i-th element of which specifies the number of
blocks whose size is equal to param.blockSizes[i] (for each design in DL). The length of param.blockNumbers

must equal that of param.blockSizes, and at least one entry of param.blockNumbers must be positive.

param.blockIntersectionNumbers must be a symmetric matrix of sets of non-negative integers, the [i][j]-
element of which specifies the set of possible sizes for the intersection of a block B of size param.blockSizes[i]
with a different block (but possibly a repeat of B) of size param.blockSizes[j] (for each design in DL). In the case of
multisets, we take the multiplicity of an element in the intersection to be the minimum of its multiplicities in the multi-
sets being intersected; for example, the intersection of [1,1,1,2,2,3] with [1,1,2,2,2,4] is [1,1,2,2], having
size 4. The dimension of param.blockIntersectionNumbers must equal the length of param.blockSizes.

param.blockMaxMultiplicities must be a list of non-negative integers, the i-th element of which specifies an
upper bound on the multiplicity of a block whose size is equal to param.blockSizes[i] (for each design in DL).
The length of param.blockMaxMultiplicities must equal that of param.blockSizes.

Let G be the automorphism group of param.blockDesign if bound, and G be SymmetricGroup(param.v) other-
wise. Let H be the subgroup of G stabilizing param.tSubsetStructure.partition (as an ordered list of sets of
sets) if bound, and H be equal to G otherwise.

param.isoGroup must be a subgroup of H, and specifies that we consider two designs with the required properties to
be equivalent if their block multisets are in the same orbit of param.isoGroup (in its action on multisets of multisets
of [1..param.v]). The default for param.isoGroup is H. Thus, if param.blockDesign and param.isoGroup are
both unbound, equivalence is the same as block-design isomorphism for the required designs.

param.requiredAutSubgroup must be a subgroup of param.isoGroup, and specifies that each design in DL must
be invariant under param.requiredAutSubgroup (in its action on multisets of multisets of [1..param.v]). The
default for param.requiredAutSubgroup is the trivial permutation group.

param.isoLevel must be 0, 1, or 2 (the default is 2). The value 0 specifies that DL will contain at most one block
design, and will contain one block design with the required properties if and only if such a block design exists;
the value 1 specifies that DL will contain (perhaps properly) a list of param.isoGroup-orbit representatives of the
required designs; the value 2 specifies that DL will consist precisely of param.isoGroup-orbit representatives of the
required designs.

For an example, we classify up to isomorphism the 2-(15,3,1) designs invariant under a semi-regular group of auto-
morphisms of order 5, and then classify all parallel classes of these designs, up to the action of the automorphism
groups of these designs.

gap> DL:=BlockDesigns(rec(

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=2,lambdas:=[1]),

> requiredAutSubgroup:=

> Group((1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15))));;

gap> List(DL,AllTDesignLambdas);

[[35, 7, 1], [35, 7, 1], [35, 7, 1]]

gap> List(DL,D->Size(AutGroupBlockDesign(D)));

[20160, 5, 60]

gap> parclasses:=List(DL,D->

> BlockDesigns(rec(

> blockDesign:=D,

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=1,lambdas:=[1]))));

[[rec(isBlockDesign := true, v := 15,

blocks := [[1, 2, 6], [3, 4, 8], [5, 7, 14], [9, 12, 15],

[10, 11, 13]],

tSubsetStructure := rec(t := 1, lambdas := [1]),

isBinary := true, isSimple := true, blockSizes := [3],

Section 1. The function BlockDesigns 31

blockNumbers := [5], r := 1,

autSubgroup := Group([(2,6)(3,11)(4,10)(5,14)(8,13)(12,15),

(2,6)(4,8)(5,12)(7,9)(10,13)(14,15),

(2,6)(3,12)(4,9)(7,14)(8,15)(11,13),

(3,12,5)(4,15,7)(8,9,14)(10,11,13),

(1,6,2)(3,4,8)(5,7,14)(9,12,15)(10,11,13),

(1,8,11,2,3,10)(4,13,6)(5,15,14,9,7,12)]))],

[rec(isBlockDesign := true, v := 15,

blocks := [[1, 7, 12], [2, 8, 13], [3, 9, 14],

[4, 10, 15], [5, 6, 11]],

tSubsetStructure := rec(t := 1, lambdas := [1]),

isBinary := true, isSimple := true, blockSizes := [3],

blockNumbers := [5], r := 1,

autSubgroup := Group([(1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)]))

],

[rec(isBlockDesign := true, v := 15, blocks := [[1, 2, 6], [3, 10, 13

], [4, 11, 12], [5, 7, 15], [8, 9, 14]],

tSubsetStructure := rec(t := 1, lambdas := [1]),

isBinary := true, isSimple := true, blockSizes := [3],

blockNumbers := [5], r := 1,

autSubgroup := Group([(1,2)(3,5)(7,10)(8,9)(11,12)(13,15),

(1,11,8)(2,12,9)(3,13,10)(4,14,6)(5,15,7)])),

rec(isBlockDesign := true, v := 15,

blocks := [[1, 8, 11], [2, 9, 12], [3, 10, 13],

[4, 6, 14], [5, 7, 15]],

tSubsetStructure := rec(t := 1, lambdas := [1]),

isBinary := true, isSimple := true, blockSizes := [3],

blockNumbers := [5], r := 1,

autSubgroup := Group([(1,2)(3,5)(7,10)(8,9)(11,12)(13,15),

(1,3,4,2)(6,9,8,10)(11,13,14,12),

(1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14),

(1,11,8)(2,12,9)(3,13,10)(4,14,6)(5,15,7)]))]]

gap> List(parclasses,Length);

[1, 1, 2]

gap> List(parclasses,L->List(L,parclass->Size(parclass.autSubgroup)));

[[360], [5], [6, 60]]

8 Classifying
semi-Latin squares

This chapter describes the function SemiLatinSquareDuals which can classify semi-Latin squares with certain
given properties, and return a list of their duals as block designs.

8.1 Semi-Latin squares and SOMAs

Let n and k be positive integers. An (n × n)/k semi-Latin square is an n by n array A, whose entries are k-subsets
of a kn-set X (the symbol-set), such that each element of X occurs exactly once in each row and exactly once in each
column of A. (Thus an (n×n)/1 semi-Latin square is the same thing as a Latin square of order n.) For extensive useful
information on semi-Latin squares, see

http://www.maths.qmul.ac.uk/~rab/sls.html .

A SOMA(k, n) is an (n× n)/k semi-Latin square A, with n ≥ 2, in which no 2-subset of the symbol-set is contained
in more than one entry of A. For extensive useful information on SOMAs, see

http://www.maths.qmul.ac.uk/~lsoicher/soma/ .

Let A and B be (n×n)/k semi-Latin squares. We say that B is (weakly) isomorphic to A if B can be obtained from A by
applying one or more of: a row permutation; a column permutation; transposing; renaming the symbols. If transposing
is not allowed then we get the concept of strong isomorphism. More formally, B is strongly isomorphic to A if B can
be obtained from A by applying one or more of: a row permutation; a column permutation; renaming the symbols.

Let A be an (n × n)/k semi-Latin square. Then the dual of A can be represented as a binary block design as follows.
The point-set of D is taken to be the Cartesian square of {1, . . . , n}, with [x, y] representing the [x, y]-entry of A. The
blocks of D are in one-to-one correspondance with the symbols of A, with the i-th block of D consisting of the ordered
pairs [x, y] such that the i-th symbol of A is contained in the [x, y]-entry of A. Given D, the semi-Latin square A can be
recovered, up to the naming of its symbols.

8.2 The function SemiLatinSquareDuals
1 I SemiLatinSquareDuals(n, k)
I SemiLatinSquareDuals(n, k, maxmult)
I SemiLatinSquareDuals(n, k, maxmult, blockintsizes)
I SemiLatinSquareDuals(n, k, maxmult, blockintsizes, isolevel)

Let n and k be positive integers. Then this function (which makes heavy use of the function BlockDesigns) returns
a list DL of block designs which are the duals of the (n × n)/k semi-Latin squares whose properties are specified by
the given parameters, described below. In practice, depending on the specified properties, this function can be useful
for n up to about 6 or 7.

The parameter maxmult, if given, must be a positive integer or the string "default". If it is a positive integer, then
maxmult specifies an upper bound on the multiplicity of each block in each semi-Latin square dual in DL. The default
value for maxmult (if omitted or if given as "default") is k, which poses no constraint on the block multiplicities.

The parameter blockintsizes, if given, must be a set of non-negative integers or the string "default". If it is given as a
set, then blockintsizes specifies, for each semi-Latin square dual in DL, the set of possible sizes for the intersection of
a block B with a different block (but possibly a repeat of B). The default value for blockintsizes (if omitted or if given

Section 2. The function SemiLatinSquareDuals 33

as "default") is [0..n], which poses no constraint on the block intersection sizes. Note that block intersection
sizes in the dual of a semi-Latin square correspond to concurrencies of points in the semi-Latin square itself. Also
note that if n ≥ 2 and blockintsizes is specified to be [0,1] then the (n × n)/k semi-Latin squares being considered
are SOMA(k, n)s.

The parameter isolevel, if given, must be 0, 1, 2, 3, 4 or the string "default" (the default value is 2). The value
0 specifies that DL will contain at most one (semi-Latin square dual given as a) block design, and will contain one
such block design if and only if a semi-Latin square with the required properties exists. The value 1 specifies that
DL will contain a list of duals representing all weak isomorphism classes of semi-Latin squares with the required
properties (possibly with some classes represented more than once) and the value 2 specifies that DL will contain
precisely one dual semi-Latin square representative for each weak isomorphism class of semi-Latin squares with the
required properties. The values 3 and 4 for isolevel play the roles of 1 and 2, respectively, but with weak isomorphism
replaced by strong isomorphism. Thus, isolevel = 3 specifies that DL will contain a list of duals representing all strong
isomorphism classes of semi-Latin squares with the required properties (possibly with some classes represented more
than once) and isolevel = 4 specifies that DL will contain precisely one dual semi-Latin square representative for each
strong isomorphism class of semi-Latin squares with the required properties.

For example, we determine the numbers of weak and strong isomorphism classes of (4× 4)/k semi-Latin squares for
k = 1, . . . , 6. (These numbers disagree with P. E. Chigbu’s classification for the cases k = 3, 4 [BC97].)

gap> List([1..6],k->Length(SemiLatinSquareDuals(4,k))); # weak

[2, 10, 40, 164, 621, 2298]

gap> List([1..6],k->Length(SemiLatinSquareDuals(4,k,"default","default",4))); # strong

[2, 11, 46, 201, 829, 3343]

Next, we determine one SOMA(3, 6).

gap> SemiLatinSquareDuals(6,3,"default",[0,1],0);

[rec(isBlockDesign := true, v := 36,

blocks := [[1, 8, 15, 22, 29, 36], [1, 9, 16, 23, 30, 32],

[1, 12, 14, 21, 28, 35], [2, 9, 17, 24, 25, 34],

[2, 11, 18, 22, 27, 31], [2, 12, 16, 19, 29, 33],

[3, 10, 14, 24, 29, 31], [3, 11, 16, 20, 25, 36],

[3, 12, 13, 23, 26, 34], [4, 7, 14, 23, 27, 36],

[4, 8, 17, 21, 30, 31], [4, 9, 18, 19, 26, 35],

[5, 7, 15, 20, 30, 34], [5, 8, 13, 24, 28, 33],

[5, 10, 18, 21, 25, 32], [6, 7, 17, 22, 26, 33],

[6, 10, 13, 20, 27, 35], [6, 11, 15, 19, 28, 32]],

tSubsetStructure := rec(t := 1, lambdas := [3]), isBinary := true,

isSimple := true, blockSizes := [6], blockNumbers := [18], r := 3,

autSubgroup := <permutation group of size 72 with 3 generators>,

pointNames := [[1, 1], [1, 2], [1, 3], [1, 4], [1, 5],

[1, 6], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5],

[2, 6], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5],

[3, 6], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5],

[4, 6], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5],

[5, 6], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5],

[6, 6]])]

9 Partitioning
block designs

This chapter describes the function PartitionsIntoBlockDesigns which can classify partitions of (the block mul-
tiset of) a given block design into (the block multisets of) block designs having user-specified properties. We also
describe MakeResolutionsComponent which is useful for the special case when the desired partitions are resolu-
tions.

9.1 Partitioning a block design into block designs
1 I PartitionsIntoBlockDesigns(param)

Let D equal param.blockDesign. This function returns a list PL of partitions of (the block multiset of) D. Each ele-
ment of PL is a record with one component partition, and, in most cases, a component autGroup. The partition
component gives a list P of block designs, all with the same point set as D, such that the list of (the block multisets of)
the designs in P.partition forms a partition of (the block multiset of) D. The component P.autGroup, if bound,
gives the automorphism group of the partition, which is the stabilizer of the partition in the automorphism group of
D. The precise interpretation of the output depends on param, described below.

The required components of param are blockDesign, v, blockSizes, and tSubsetStructure.

param.blockDesign is the block design to be partitioned.

param.v must be a positive integer, and specifies that for each block design in each partition in PL, the points are
1,...,param.v. It is required that param.v be equal to param.blockDesign.v.

param.blockSizes must be a set of positive integers, and specifies that the block sizes of each block design in each
partition in PL will be contained in param.blockSizes.

param.tSubsetStructure must be a record, having components t, partition, and lambdas. Let t be equal to
param.tSubsetStructure.t, partition be param.tSubsetStructure.partition, and lambdas be param.tSubsetStructure.lambdas.
Then t must be a non-negative integer, partition must be a list of non-empty sets of t-subsets of [1..param.v], form-
ing an ordered partition of all the t-subsets of [1..param.v], and lambdas must be a list of distinct non-negative
integers (not all zero) of the same length as partition. This specifies that for each design in each partition in PL, each
t-subset in partition[i] will occur exactly lambdas[i] times, counted over all blocks of the design. For binary designs,
this means that each t-subset in partition[i] is contained in exactly lambdas[i] blocks. The partition component
is optional if lambdas has length 1. We require that t is less than or equal to each element of param.blockSizes, and
that each block of param.blockDesign contains at least t distinct elements.

The optional components of param are used to specify additional constraints on the partitions in PL, or to change de-
fault parameter values. These optional components are r, b, blockNumbers, blockIntersectionNumbers, block-
MaxMultiplicities, isoGroup, requiredAutSubgroup, and isoLevel. Note that the last three of these optional
components refer to the partitions and not to the block designs in a partition.

param.r must be a positive integer, and specifies that in each design in each partition in PL, each point must occur
exactly param.r times in the list of blocks.

param.b must be a positive integer, and specifies that each design in each partition in PL has exactly param.b blocks.

param.blockNumbers must be a list of non-negative integers, the i-th element of which specifies the number of
blocks whose size is equal to param.blockSizes[i] (in each design in each partition in PL). The length of param.blockNumbers

must equal that of param.blockSizes, and at least one entry of param.blockNumbers must be positive.

Section 1. Partitioning a block design into block designs 35

param.blockIntersectionNumbers must be a symmetric matrix of sets of non-negative integers, the [i][j]-
element of which specifies the set of possible sizes for the intersection of a block B of size param.blockSizes[i]
with a different block (but possibly a repeat of B) of size param.blockSizes[j] (in each design in each partition in
PL). In the case of multisets, we take the multiplicity of an element in the intersection to be the minimum of its multi-
plicities in the multisets being intersected; for example, the intersection of [1,1,1,2,2,3] with [1,1,2,2,2,4]

is [1,1,2,2], having size 4. The dimension of param.blockIntersectionNumbers must equal the length of
param.blockSizes.

param.blockMaxMultiplicities must be a list of non-negative integers, the i-th element of which specifies an
upper bound on the multiplicity of a block whose size is equal to param.blockSizes[i] (for each design in each
partition in PL). The length of param.blockMaxMultiplicities must equal that of param.blockSizes.

param.isoGroup must be a subgroup of the automorphism group of param.blockDesign. We consider two ele-
ments of PL to be equivalent if they are in the same orbit of param.isoGroup (in its action on multisets of block
multisets). The default for param.isoGroup is the automorphism group of param.blockDesign.

param.requiredAutSubgroup must be a subgroup of param.isoGroup, and specifies that each partition in PL
must be invariant under param.requiredAutSubgroup (in its action on multisets of block multisets). The default
for param.requiredAutSubgroup is the trivial permutation group.

param.isoLevel must be 0, 1, or 2 (the default is 2). The value 0 specifies that PL will contain at most one partition,
and will contain one partition with the required properties if and only if such a partition exists; the value 1 specifies
that PL will contain (perhaps properly) a list of param.isoGroup orbit-representatives of the required partitions; the
value 2 specifies that PL will consist precisely of param.isoGroup-orbit representatives of the required partitions.

For an example, we first classify up to isomorphism the 2-(15,3,1) designs invariant under a semi-regular group of
automorphisms of order 5, and then use PartitionsIntoBlockDesigns to classify all the resolutions of these
designs, up to the actions of the respective automorphism groups of the designs.

gap> DL:=BlockDesigns(rec(

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=2,lambdas:=[1]),

> requiredAutSubgroup:=

> Group((1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15))));;

gap> List(DL,D->Size(AutGroupBlockDesign(D)));

[20160, 5, 60]

gap> PL:=PartitionsIntoBlockDesigns(rec(

> blockDesign:=DL[1],

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=1,lambdas:=[1])));

[rec(

partition := [rec(isBlockDesign := true, v := 15, blocks := [[1, 2,

6], [3, 4, 8], [5, 7, 14], [9, 12, 15],

[10, 11, 13]]),

rec(isBlockDesign := true, v := 15, blocks :=

[[1, 3, 11], [2, 4, 12], [5, 6, 8], [7, 13, 15],

[9, 10, 14]]),

rec(isBlockDesign := true, v := 15, blocks :=

[[1, 4, 14], [2, 5, 15], [3, 10, 12], [6, 7, 11],

[8, 9, 13]]),

rec(isBlockDesign := true, v := 15, blocks :=

[[1, 5, 10], [2, 9, 11], [3, 14, 15], [4, 6, 13],

[7, 8, 12]]),

rec(isBlockDesign := true, v := 15, blocks :=

[[1, 7, 9], [2, 8, 10], [3, 5, 13], [4, 11, 15],

[6, 12, 14]]),

36 Chapter 9. Partitioning block designs

rec(isBlockDesign := true, v := 15, blocks :=

[[1, 8, 15], [2, 13, 14], [3, 6, 9], [4, 7, 10],

[5, 11, 12]]),

rec(isBlockDesign := true, v := 15, blocks :=

[[1, 12, 13], [2, 3, 7], [4, 5, 9], [6, 10, 15],

[8, 11, 14]])],

autGroup := Group([(1,10)(2,11)(3,8)(6,13)(7,14)(12,15),

(1,13)(2,11)(3,14)(4,5)(6,10)(7,8),

(1,13,7)(2,11,5)(6,10,14)(9,12,15),

(2,11,5,15,4,9,12)(3,10,8,14,7,13,6)])),

rec(partition := [rec(isBlockDesign := true, v := 15,

blocks := [[1, 2, 6], [3, 4, 8], [5, 7, 14],

[9, 12, 15], [10, 11, 13]]),

rec(isBlockDesign := true, v := 15,

blocks := [[1, 3, 11], [2, 4, 12], [5, 6, 8],

[7, 13, 15], [9, 10, 14]]),

rec(isBlockDesign := true, v := 15,

blocks := [[1, 4, 14], [2, 5, 15], [3, 10, 12],

[6, 7, 11], [8, 9, 13]]),

rec(isBlockDesign := true, v := 15,

blocks := [[1, 5, 10], [2, 13, 14], [3, 6, 9],

[4, 11, 15], [7, 8, 12]]),

rec(isBlockDesign := true, v := 15,

blocks := [[1, 7, 9], [2, 8, 10], [3, 14, 15],

[4, 6, 13], [5, 11, 12]]),

rec(isBlockDesign := true, v := 15,

blocks := [[1, 8, 15], [2, 9, 11], [3, 5, 13],

[4, 7, 10], [6, 12, 14]]),

rec(isBlockDesign := true, v := 15,

blocks := [[1, 12, 13], [2, 3, 7], [4, 5, 9],

[6, 10, 15], [8, 11, 14]])],

autGroup := Group([(1,15)(2,9)(3,4)(5,7)(6,12)(10,13),

(1,12)(2,9)(3,5)(4,7)(6,15)(8,14),

(1,14)(2,5)(3,8)(6,7)(9,12)(10,13),

(1,8,10)(2,5,15)(3,14,13)(4,9,12)]))]

gap> List(PL,resolution->Size(resolution.autGroup));

[168, 168]

gap> PL:=PartitionsIntoBlockDesigns(rec(

> blockDesign:=DL[2],

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=1,lambdas:=[1])));

[]

gap> PL:=PartitionsIntoBlockDesigns(rec(

> blockDesign:=DL[3],

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=1,lambdas:=[1])));

[]

Section 2. Computing resolutions 37

9.2 Computing resolutions
1 I MakeResolutionsComponent(D)
I MakeResolutionsComponent(D, isolevel)

This function computes resolutions of the block design D, and stores the result in D.resolutions. If D.resolutions

already exists then it is ignored and overwritten. This function returns no value.

A resolution of a block design D is a partition of the blocks into subsets, each of which forms a partition of the point
set. We say that two resolutions R and S of D are isomorphic if there is an element g in the automorphism group of
D, such that the g-image of R is S. (Isomorphism defines an equivalence relation on the set of resolutions of D.)

The parameter isolevel (default 2) determines how many resolutions are computed: isolevel=2 means to classify up to
isomorphism, isolevel=1 means to determine at least one representative from each isomorphism class, and isolevel=0
means to determine whether or not D has a resolution.

When this function is finished, D.resolutions will have the following three components:

list: a list of distinct partitions into block designs forming resolutions of D;

pairwiseNonisomorphic: true, false or "unknown", depending on the resolutions in list and what is known.
If isolevel=0 or isolevel=2 then this component will be true;

allClassesRepresented: true, false or "unknown", depending on the resolutions in list and what is known.
If isolevel=1 or isolevel=2 then this component will be true.

Note that D.resolutions may be changed to contain more information as a side-effect of other functions in the
DESIGN package.

gap> L:=BlockDesigns(rec(v:=9,blockSizes:=[3],

> tSubsetStructure:=rec(t:=2,lambdas:=[1])));;

gap> D:=L[1];;

gap> MakeResolutionsComponent(D);

gap> D;

rec(isBlockDesign := true, v := 9,

blocks := [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],

[2, 4, 6], [2, 5, 8], [2, 7, 9], [3, 4, 9], [3, 5, 7],

[3, 6, 8], [4, 7, 8], [5, 6, 9]],

tSubsetStructure := rec(t := 2, lambdas := [1]), isBinary := true,

isSimple := true, blockSizes := [3], blockNumbers := [12], r := 4,

autGroup := Group([(1,2)(5,6)(7,8), (1,3,2)(4,8,7)(5,6,9), (1,2)(4,7)(5,9),

(1,2)(4,9)(5,7)(6,8), (1,4,8,6,9,2)(3,5,7)]),

resolutions := rec(list := [rec(partition :=

[rec(isBlockDesign := true, v := 9,

blocks := [[1, 2, 3], [4, 7, 8], [5, 6, 9]]),

rec(isBlockDesign := true, v := 9,

blocks := [[1, 4, 5], [2, 7, 9], [3, 6, 8]]),

rec(isBlockDesign := true, v := 9,

blocks := [[1, 6, 7], [2, 5, 8], [3, 4, 9]]),

rec(isBlockDesign := true, v := 9,

blocks := [[1, 8, 9], [2, 4, 6], [3, 5, 7]])],

autGroup := Group(

[(2,3)(4,5)(6,7)(8,9), (1,3,2)(4,8,7)(5,6,9),

(1,8,9)(2,4,6)(3,7,5), (1,2)(5,6)(7,8), (1,2)(4,7)(5,9),

(1,2,9,6,8,4)(3,7,5)]))], pairwiseNonisomorphic := true,

allClassesRepresented := true))

10 XML I/O of
block designs

This chapter describes functions to write and read lists of binary block designs in the

http://designtheory.org external representation XML-format (see [CDMS04]).

10.1 Writing lists of block designs and their properties in XML-format
1 I BlockDesignsToXMLFile(filename, designs)
I BlockDesignsToXMLFile(filename, designs, include)
I BlockDesignsToXMLFile(filename, designs, include, list id)

This function writes a list of (assumed distinct) binary block designs (given in DESIGN package format) to a file in
external representation XML-format (version 2.0).

The parameter filename is a string giving the name of the file, and designs is a record whose component list contains
the list of block designs (designs can also be a list, in which case it is replaced by rec(list:=designs)).

The record designs should have the following components:

list: the list of distinct binary block designs in DESIGN package format;

pairwiseNonisomorphic (optional): should be true or false or the string "unknown", specifying the pairwise-
nonisomorphism status of the designs in designs.list;

infoXML (optional): should contain a string in XML format for the info element of the list of designs which is written.

The combinatorial and group-theoretical properties output for each design depend on include (default: empty list),
which should be a list containing zero or more of the strings "indicators", "resolvable", "combinatorial properties",
"automorphism group", and "resolutions". A shorthand for the list containing all these strings is "all". The
strings "indicators", "combinatorial properties", "automorphism group", and "resolutions" are used
to specify that those subtrees of the external representation of each design are to be expanded and written out. In the
case of "resolutions" being in include, all resolutions up to isomorphism will be determined and written out. The
string "resolvable" is used to specify that the resolvable indicator must be set (usually this is not forced), if the
indicators subtree is written out, and also that if a design is resolvable but "resolutions" is not in include, then
one and only one resolution should be written out in the resolutions subtree.

If list id is given then the id’s of the output designs will be list id-0, list id-1, list id-2, ...

gap> D:=[BlockDesign(3, [[1,2],[1,3]]),

> BlockDesign(3, [[1,2],[1,2],[2,3]])];;

gap> designs:=rec(list:=D, pairwiseNonisomorphic:=true);;

gap> BlockDesignsToXMLFile("example.xml",designs,[],"example");

Section 2. Reading lists of block designs in XML-format 39

10.2 Reading lists of block designs in XML-format
1 I BlockDesignsFromXMLFile(filename)

This function reads a file with name filename, containing a list of distinct binary block designs in external represen-
tation XML-format, and returns a record designs in DESIGN package format containing the essential information in
this file.

The record designs contains the following components:

list: a list of block designs in DESIGN package format of the list of block designs in the file (certain elements such
as statistical properties are stored verbatim as strings; certain other elements are not stored since it is usually easier
and more reliable to recompute them – this can be done when the block designs are written out in XML format);

pairwiseNonisomorphic is set according to the attribute pairwise nonisomorphic of the XML element list of designs.
The component pairwiseNonisomorphic is false if this attribute is false, true if this attribute is true, and "un-
known" otherwise;

infoXML is bound iff the info element occurs as a child of the XML list of designs element, and if bound, contains
this info element in a string.

gap> BlockDesignsFromXMLFile("example.xml");

rec(

infoXML := "<info>\n<software>\n[DESIGN-1.7, GRAPE-4.8.2, GAPDoc-1.6.2, GAP\

-4.10.1]\n</software>\n</info>",

list :=

[

rec(blocks := [[1, 2], [1, 3]], id := "example-0",

isBinary := true, isBlockDesign := true, v := 3),

rec(blocks := [[1, 2], [1, 2], [2, 3]], id := "example-1",

isBinary := true, isBlockDesign := true, v := 3)],

pairwiseNonisomorphic := true)

Bibliography

[BC97] R. A. Bailey and P. E. Chigbu. Enumeration of semi-latin squares. Discrete Math., 167-168:73–84, 1997.

[BC09] R. A. Bailey and P. J. Cameron. Combinatorics of optimal designs. In S. Huczynska, J. D. Mitchell, and
C. M. Roney-Dougal, editors, Surveys in Combinatorics 2009, volume 365 of London Math. Soc. Lecture
Notes, pages 19–73. Cambridge University Press, 2009.

[BCD+06] R. A. Bailey, P. J. Cameron, P. Dobcsányi, J. P. Morgan, and L. H. Soicher. Designs on the web. Discrete
Math., 306:3014–3027, 2006.

http://dx.doi.org/10.1016/j.disc.2004.10.027.

[BR97] R. A. Bailey and G. Royle. Optimal semi-latin squares with side six and block size two. Proc. Roy. Soc.
London, Ser. A, 453:1903–1914, 1997.

[CDMS04] P. J. Cameron, P. Dobcsányi, J. P. Morgan, and L. H. Soicher. The external representation of block designs,
Version 2.0, 2004.

http://designtheory.org/library/extrep/.

[CS07] P. J. Cameron and L. H. Soicher. Block intersection polynomials. Bull. London Math. Soc., 39:559–564,
2007.

http://dx.doi.org/10.1112/blms/bdm034.

[JK07] Tommi Juntilla and Petteri Kaski. Engineering an efficient canonical labeling tool for large and sparse
graphs. In David Applegate et al., editor, Proceedings of the Ninth Workshop on Algorithm Engineering
and Experiments and the Fourth Workshop on Analytic Algorithmics and Combinatorics, pages 135–149.
SIAM, 2007. bliss homepage:

http://www.tcs.hut.fi/Software/bliss/.

[McK90] Brendan D. McKay. nauty user’s guide (version 1.5), Technical report TR-CS-90-02. Australian National
University, Computer Science Department, 1990. nauty homepage:

http://cs.anu.edu.au/people/bdm/nauty/.

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii. J. Symbolic Comput., 60:94–112,
2014.

[MS07] J. P. McSorley and L. H. Soicher. Constructing t-designs from t-wise balanced designs. European J.
Combinatorics, 28:567–571, 2007.

http://dx.doi.org/10.1016/j.ejc.2005.02.003.

[Soi10] L. H. Soicher. More on block intersection polynomials and new applications to graphs and block designs. J.
Comb. Theory, Ser. A, 117:799–809, 2010.

http://dx.doi.org/10.1016/j.jcta.2010.03.005.

[Soi19] L. H. Soicher. The GRAPE package for GAP, Version 4.8.2, 2019.

https://gap-packages.github.io/grape.

Index
This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before
“permutation group”.

A
AddedBlocksBlockDesign, 15
AddedPointBlockDesign, 15
AffineResolvableMu, 22
AGPointFlatBlockDesign, 11
AllTDesignLambdas, 21
AutGroupBlockDesign, 27

B
binary block design, 4
BlockDesign, 11
block design, 4
BlockDesignBlocks, 20
BlockDesignEfficiency, 25
BlockDesignIsomorphismClassRepresentatives,

28
BlockDesignPoints, 19
BlockDesigns, 29
BlockDesignsFromXMLFile, 39
BlockDesignsToXMLFile, 38
BlockIntersectionPolynomial, 9
BlockIntersectionPolynomialCheck, 10
Block intersection polynomials, 9
BlockNumbers, 20
BlockSizes, 20

C
ComplementBlocksBlockDesign, 13
Computing an interval for a certain real zero of a rational

polynomial, 26
Computing automorphism groups, 27
Computing resolutions, 37
ConcurrenceMatrix, 23

D
DeletedBlocksBlockDesign, 14
DeletedPointsBlockDesign, 14
DerivedBlockDesign, 15
derived design, 15
DESIGN IntervalForLeastRealZero, 26

DualBlockDesign, 13

E
Example of the use of DESIGN, 4

F
Functions to construct block designs, 11

I
Information from t-design parameters, 7
InformationMatrix, 24
Installing the DESIGN Package, 3
IsBinaryBlockDesign, 19
IsBlockDesign, 19
IsConnectedBlockDesign, 19
IsIsomorphicBlockDesign, 27
IsSimpleBlockDesign, 19

L
Loading DESIGN, 3

M
MakeResolutionsComponent, 37
Matrices associated with a block design, 23

N
NrBlockDesignBlocks, 20
NrBlockDesignPoints, 20

P
PairwiseBalancedLambda, 21
Partitioning a block design into block designs, 34
PartitionsIntoBlockDesigns, 34
PGPointFlatBlockDesign, 12
PointBlockIncidenceMatrix, 23

R
Reading lists of block designs in XML-format, 39
ReplicationNumber, 20
ResidualBlockDesign, 16
residual design, 16
ResolvableTDesignBlockMultiplicityBound, 9

42 Index

S
semi-latin square, 32
Semi-Latin squares and SOMAs, 32
SemiLatinSquareDuals, 32
soma, 32
SteinerSystemIntersectionTriangle, 8

T
t-design, 7
TDesignBlockMultiplicityBound, 8
TDesignFromTBD, 17
TDesignIntersectionTriangle, 7
TDesignLambdaMin, 7

TDesignLambdas, 7
Testing isomorphism, 27
The function BlockDesignEfficiency, 25
The function BlockDesigns, 29
The function SemiLatinSquareDuals, 32
The functions for basic properties, 19
The structure of a block design in DESIGN, 4
TSubsetLambdasVector, 21

W
WittDesign, 12
Writing lists of block designs and their properties in

XML-format, 38

	Contents
	Design
	Installing the DESIGN Package
	Loading DESIGN
	The structure of a block design in DESIGN
	Example of the use of DESIGN

	Information from block design parameters
	Information from t-design parameters
	Block intersection polynomials

	Constructing block designs
	Functions to construct block designs

	Determining basic properties of block designs
	The functions for basic properties

	Matrices and efficiency measures for block designs
	Matrices associated with a block design
	The function BlockDesignEfficiency
	Computing an interval for a certain real zero of a rational polynomial

	Automorphism groups and isomorphism testing for block designs
	Computing automorphism groups
	Testing isomorphism

	Classifying block designs
	The function BlockDesigns

	Classifying semi-Latin squares
	Semi-Latin squares and SOMAs
	The function SemiLatinSquareDuals

	Partitioning block designs
	Partitioning a block design into block designs
	Computing resolutions

	XML I/O of block designs
	Writing lists of block designs and their properties in XML-format
	Reading lists of block designs in XML-format

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	P
	R
	S
	T
	W

