design : a GAP 4 package - References

R. A. Bailey and P. E. Chigbu.
Enumeration of semi-latin squares.
Discrete Math., 167-168:73--84, 1997.
R. A. Bailey and P. J. Cameron.
Combinatorics of optimal designs.
In S. Huczynska, J. D. Mitchell, and C. M. Roney-Dougal, editors, Surveys in Combinatorics 2009, volume 365 of London Math. Soc. Lecture Notes, pages 19--73. Cambridge University Press, 2009.
R. A. Bailey, P. J. Cameron, P. Dobcsányi, J. P. Morgan, and L. H. Soicher.
Designs on the web.
Discrete Math., 306:3014--3027, 2006.
R. A. Bailey and G. Royle.
Optimal semi-latin squares with side six and block size two.
Proc. Roy. Soc. London, Ser. A, 453:1903--1914, 1997.
P. J. Cameron, P. Dobcsányi, J. P. Morgan, and L. H. Soicher.
The external representation of block designs, Version 2.0, 2004.
P. J. Cameron and L. H. Soicher.
Block intersection polynomials.
Bull. London Math. Soc., 39:559--564, 2007.
Tommi Juntilla and Petteri Kaski.
Engineering an efficient canonical labeling tool for large and sparse graphs.
In David Applegate et al., editor, Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments and the Fourth Workshop on Analytic Algorithmics and Combinatorics, pages 135--149. SIAM, 2007.
bliss homepage:
Brendan D. McKay.
nauty user's guide (version 1.5), Technical report TR-CS-90-02.
Australian National University, Computer Science Department, 1990.
nauty homepage:
Brendan D. McKay and Adolfo Piperno.
Practical graph isomorphism, ii.
J. Symbolic Comput., 60:94--112, 2014.
J. P. McSorley and L. H. Soicher.
Constructing t-designs from t-wise balanced designs.
European J. Combinatorics, 28:567--571, 2007.
L. H. Soicher.
More on block intersection polynomials and new applications to graphs and block designs.
J. Comb. Theory, Ser. A, 117:799--809, 2010.
L. H. Soicher.
The GRAPE package for GAP, Version 4.8.2, 2019.


design manual
March 2019