
genss
Generic Schreier-Sims

1.6.8

26 September 2022

Max Neunhöffer

Felix Noeske

Max Neunhöffer
Email: max@9hoeffer.de
Homepage: http://www-groups.mcs.st-and.ac.uk/~neunhoef
Address: Gustav-Freytag-Straße 40

50354 Hürth
Germany

Felix Noeske
Email: felix.noeske@math.rwth-aachen.de
Homepage: http://www.math.rwth-aachen.de/~Felix.Noeske
Address: Felix Noeske

Lehrstuhl D fuer Mathematik, RWTH Aachen
Templergraben 64
52056 Aachen
Germany

mailto://max@9hoeffer.de
http://www-groups.mcs.st-and.ac.uk/~neunhoef
mailto://felix.noeske@math.rwth-aachen.de
http://www.math.rwth-aachen.de/~Felix.Noeske

genss 2

Copyright
© 2006-2014 by Max Neunhöffer and Felix Noeske

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
higher.

Contents

1 Introduction 4
1.1 Philosophy . 4
1.2 Overview over this manual . 4
1.3 Feedback . 4

2 Installation of the genss-Package 5

3 Stabiliser Chains 6
3.1 Computing stabiliser chains . 6
3.2 Options for the computation of stabiliser chains . 6
3.3 How base points are chosen . 11
3.4 Using stabiliser chains . 12

4 Backtrack search methods 17
4.1 Setwise stabilisers . 17
4.2 Generic backtrack search . 17

5 Examples 20

References 21

Index 22

3

Chapter 1

Introduction

1.1 Philosophy

This package is about the Schreier-Sims algorithm and base and strong generating sets for arbitrary
finite groups.

1.2 Overview over this manual

Chapter 2 describes the installation of this package. Chapter 3 desribes the core functionality of the
package, namely the computation and usage of stabiliser chains. Chapter 4 describes some methods
using backtrack search. This part of the package is not yet fully developed and is subject to change in
later versions. Finally, Chapter 5 shows instructive examples for the usage of this package. As of now,
the number of shown examples is zero.

1.3 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.

4

https://github.com/gap-packages/genss/issues

Chapter 2

Installation of the genss-Package

To install this package just extract the package’s archive file to the GAP pkg directory.
By default the genss package is not automatically loaded by GAP when it is installed. You must

load the package with LoadPackage("genss"); before its functions become available.
Please, send us an e-mail if you have any questions, remarks, suggestions, etc. concerning this

package. Also, I would like to hear about applications of this package.
Max Neunhöffer and Felix Noeske

5

Chapter 3

Stabiliser Chains

This chapter describes the core functionality of the package. It mainly covers how to use genss to
compute stabiliser chains for GAP groups and use them to do sifting.

3.1 Computing stabiliser chains

The main tool to compute a stabiliser chain is the following operation. It has many options and can be
customised in a very flexible way.

3.1.1 StabilizerChain

. StabilizerChain(G[, opt]) (operation)

Returns: a stabiliser chain object or fail
This operation computes a stabiliser chain for the group G using a randomised Schreier-Sims

algorithm. The second argument opt is an optional options record. See Section 3.2 below for an
explanation of the possible components.

Note that this is a Monte Carlo algorithm in most cases, so there is a small error probability. How-
ever, the only error possible is that some of the subgroups in the stabiliser chain are proper subgroups
of the actual point stabilisers. So the resulting group order is always a divisor of the actual group order
and if the two are equal, then the stabiliser chain is proved to be correct. In particular, if the group
object G for some reason already knows the group order, then this procedure always returns a correct
and proven stabiliser chain for G .

3.2 Options for the computation of stabiliser chains

The options record for the StabilizerChain (3.1.1) can contain the following components, which
are used to control the behaviour of the computation of a stabiliser chain for the group G . Note that
for most of these components there are default values to be found in the global GENSS record. You can
change these defaults there if you want but you should know what you are doing. An explicitly given
value in the options record always takes precedence over the default value.

Base
This component can either be bound to an existing stabilizer chain object or to a list of points. In
both cases this indicates that the base of the stabilizer chain or the list of points respectively are

6

genss 7

known to be a base for the group G . In the first case the corresponding action functions are taken
from the stabiliser chain, in the second case one should usually bind the component BaseOps to
a list of equal length containing the action functions corresponding to the base points.

BaseOps
If the Base component is bound to a list of points the BaseOps component must be a list of equal
length containing the corresponding action functions. If the BaseOps component is unbound, a
list with identical entries OnLines is used in projective mode and OnPoints in non-projective
mode (see component Projective below).

Cand
The Cand component can be bound to a record rwhich contains candidates for base points in
the following way. The r.points component contains the list of points, the r.ops component
contains a list of equal length with the corresponding action functions. The points and actions
specified in the Cand component are tried as possible base points for G (and its stabilisers) first
before other points are guessed (see FindBasePointCandidates (3.3.1)). If a point is fixed
under all generators it is not used, unless the component Reduced is explicitly set to false
(see below). If the component StrictlyUseCandidates is false (the default, see below),
the algorithm tries to use other points of an already found orbit before considering the next
candidate specified by Cand. This is usually sensible because for an already enumerated orbit
we have a natural bound on the length of the suborbits for the point stabiliser in this orbit.

DeterministicVerification
Set this component to true to switch on a deterministic verification routine after the randomised
Schreier-Sims procedure. This is not yet implemented.

ErrorBound
Set this component to a rational number between 0 and 1. It will be an upper bound for the error
probability. That is, the error probability of the Monte Carlo verification at the end will be less
than this rational number. This component overrides everything you specify in the random or
VerifyElements components.

FailInsteadOfError
If no short enough orbit is found during the computation, the procedure stops with an error
message. If you would rather like it to return fail then set this component to true. This option
can be used to try an stabiliser chain computation automatically and give up before you run out
of memory.

ImmediateVerificationElements
Whenever the randomised Schreier-Sims procedure has first computed generators for a stabiliser
in the chain and has computed a stabiliser chain for that stabiliser recursively, an immediate
verification is done. This is to spot early on that the group found is in fact a proper subgroup of
the stabiliser. This verification is done by creating a few more random elements of that stabiliser
and sifting them through the newly created stabiliser chain. Each such element has a chance of
at least 1/2 to spot this. The number of random elements used is stored in the component
ImmediateVerificationElements.

InitialHashSize
Set this component to the initial tree hash size for orbit computations in the stabiliser chain.

genss 8

IsOne
The default for this computation is the IsOne (Reference: IsOne) operation in the GAP library.
Whenever in the stabiliser chain computation it has to be tested whether or not a group element
is equal to the identity, the function stored in the IsOne component is called. The rationale
behind this is that you can compute a stabiliser chain for a factor group of the group object G .
For example, if you set the IsOne component to GENSS_IsOneProjective (3.2.1) for a matrix
group G , scalar multiples of the identity are considered to be equal to the identity. You will have
to specify the base points explicitly using the Cand and StrictlyUseCandidates component
(see above and below) to only use actions having the normal subgroup in its kernel. A shortcut
for computing stabiliser chains of projective groups (matrix group modulo scalars) is to set the
Projective component (see below) and switch to projective mode.

LimitShortOrbCandidates
The integer value of this component limits the number of candidates considered for the finding
of short orbits. See the TryShortOrbit and TryBirthdayParadox components.

NrRandElsBirthdayParadox
The method using the birthday paradox to find short orbits uses at most as many random group
elements to estimate the orbit size as this component says. See the TryBirthdayParadox
component.

NumberPrevOrbitPoints
After an orbit for the stabiliser chain has been enumerated, the randomised Schreier-Sims
method first tries NumberPrevOrbitPoints from this orbit as next base points. Note that this
is not done if the StrictlyUseCandidates component is set to true.

OrbitLengthLimit
This component is an absolute upper bound for the length of all orbits in the stabiliser chain. If
an orbit enumeration reaches this limit, the stabiliser chain computation is aborted.

OrbitLimitBirthdayParadox
During the method to find short orbits using the birthday paradox (see compo-
nent TryBirthdayParadox) only orbits whose final estimated length is less than
OrbitLimitBirthdayParadox are used.

OrbitLimitImmediatelyTake
During the method to find short orbits using the birthday paradox (see component
TryBirthdayParadox) an orbit is immediately used if its currently estimated length is less
than OrbitLimitImmediatelyTake, even if the estimate is not yet very reliable.

OrbitsWithLog
This component defaults to true in which case the orbit objects for the stabiliser chain have a
log to allow to make the Schreier trees shallow by adding generators. If you set this to false, no
logs are written and the Schreier trees could potentially be deep. This will make sifting slower.
Usually you should not touch this option. The only reason for setting it to false could be if you
need that the Schreier trees are not changed after their initial creation, even if new generators
are added to the stabiliser chain.

Projective
Set this component to true if you want to compute a stabiliser chain for a projective group

genss 9

given as a matrix group. Elements which are scalar multiples of each other will be considered
to be equal. This is achieved by only considering projective actions. Note that in this case a
known size of the group object cannot be used, since this size is the order of the matrix group!

random
The random component is there as a compatibility option. It behaves exactly as for the stabiliser
chain methods in the GAP library. It must be set to a number between 0 and 1000 indicating
a lower bound for the probability of a correct answer, where the value a means a/10%. Note
that currently 1000 is not yet implemented since there is no working deterministic verification
routine.

RandomElmFunc
If this component is bound then it must be bound to a function taking no arguments and return-
ing uniformly distributed random elements in the group for which the stabiliser chain is to be
computed. All random elements used for the stabiliser chain will then be created by calling this
function.

RandomStabGens
This component contains the number of random stabiliser elements that are generated initially
to generate a new stabiliser in the chain.

Reduced
If this component is bound to true, then no orbits of length 1 are allowed in the stabiliser chain.
That is, no points are taken as base points that are fixed under all generators of the current
stabiliser. Set this component to false to allow for orbits of length 1, for example if you want
the stabiliser chain to run through a prescribed base.

Report
The number in the Report component is taken as the Report component in all orbit enumera-
tions. That is, every Report newly found elements in the orbit a message is printed saying how
far the computation has gone.

ShortOrbitsInitialLimit
See the TryShortOrbit component.

ShortOrbitsNrRandoms
See the TryShortOrbit component.

ShortOrbitsOrbLimit
See the TryShortOrbit component.

Size
If the Size component is set to a positive integer it is taken as the size of the group G . This
information allows to verify the stabiliser chain simply by looking at its size. If the group object
knows its size already (and the Projective component was not set to true), then the stored
size of the group is automatically taken into account, such that one does not have to use this
option.

StabGenAddSlots
The value of the StabGenAddSlots component is directly handed over to the product replacer
object which is used to generate random elements to find stabiliser generators.

genss 10

StabGenMaxDepth
The value of the StabGenMaxDepth component is directly handed over to the product replacer
object which is used to generate random elements to find stabiliser generators.

StabGenScrambleFactor
The value of the StabGenScrambleFactor component is directly handed over to the product
replacer object which is used to generate random elements to find stabiliser generators.

StabGenScramble
The value of the StabGenScramble component is directly handed over to the product replacer
object which is used to generate random elements to find stabiliser generators.

StrictlyUseCandidates
If this component is set to true (default is false) then only the given candidate points are
taken as possible base points. In particular, the procedure does not take additional points of the
previous orbit as candidates for base points (see component NumberPrevOrbitPoints). Use
this option in combination to Reduced set to false to enforce a certain known base.

TryBirthdayParadox
The method to try to find short orbits using the birthday paradox is used up to
TryBirthdayParadox times for each new base point. This method uses the Murray/O’Brien
heuristics to find candidates for short orbits and then uses statistics using the birthday paradox
to estimate the orbit lengths. As soon as a point is found whose orbit is either estimated to be
smaller than OrbitLimitBirthdayParadox with a solid statistical estimate or is estimated to
be smaller than OrbitLimitImmediatelyTake with a weak statistical estimate, this point is
taken as the next base point.

TryShortOrbit
The method to try to find short orbits using the standard Murray/O’Brien heuristics is used
up to TryShortOrbit times for each new base point. This method uses the heuristics to find
candicates for short orbits using ShortOrbitsNrRandoms random group elements. It then enu-
merates all these orbits up to the limit ShortOrbitsInitialLimit. If any of them closes the
corresponding candidate is taken as the next base point. Otherwise half of the points are thrown
away and the limit is doubled. This goes on until either an orbit closes or the limit grows over
ShortOrbitsOrbLimit.

VerifyElements
This component can be used to set it to the number of random elements that are used in
the end to verify the stabiliser chain statistically. Usually the user specifies the component
ErrorBound instead and VerifyElements is then computed automatically from that. How-
ever, if no ErrorBound is given, the VerifyElements component takes precedence over the
random component.

VeryShortOrbLimit
The very first method tried to find the next base point is to enumerate the orbit of the first and
the last basis vector and of one random vector up to the limit VeryShortOrbLimit. If the orbit
closes before this limit is reached, the corresponding vector is immediately taken.

genss 11

3.2.1 GENSS_IsOneProjective

. GENSS_IsOneProjective(x) (function)

Returns: true or false
This function tests whether or not the matrix x is a scalar multiple of the identity matrix. This

function is useful for projective action.

3.3 How base points are chosen

This section explains some internal details of how base points are chosen during a stabiliser chain
computations. As a user, you can probably safely skip this section and ignore it altogether. However,
in situations where thes stabiliser chain computation is more difficult (for example if it is difficult to
find short orbits), then it can be helpful to know about these details.

Whenever the stabiliser chain computation needs to set up a new layer in the stabiliser chain
it needs a new base point. The first method it tries is to take a point in the previous orbit one
layer up, since for these points we have a natural upper limit for the orbit length, namely the orbit
length in the layer above. If this does not work (either there is no higher layer or more than the first
NumberPrevOrbitPoints (see stabiliser chain options in Section 3.2) in that orbit are fixed by the
current group or StrictlyUseCandidates is true), it is checked whether or not there is another
known candidate for a base point.

Note that if the user supplies candidates for the base points and operations (see component Cand
in the stabiliser chain options in Section 3.2), then it is entirely possible that all base points come from
these candidates and the mechanisms described in this sections are not used at all.

However, if the procedure runs out of base points, it needs a way to find new candidates. This is
done using the following operation:

3.3.1 FindBasePointCandidates

. FindBasePointCandidates(g, opt, i, S) (operation)

Returns: a Cand record
This operation returns base point candidates in the form of a record as for the Cand option for

stabiliser chain computations (see Section 3.2).
There are various methods installed to this end which all might fail and call TryNextMethod();.

We do not document the details of these methods here but only give an overview. For permutation
groups the choice of candidates is very straightforward, one simply takes a few integers with the usual
action OnPoints. For matrix group finding a reasonably short orbit is more difficult. The system first
handles the case of a scalar group which is easy. Then it hopes to find a “very short orbit” defined
by the component VeryShortOrbLimit in the stabiliser chain computation options. If this fails the
birthday paradoxon method is used to find an estimate for a reasonably short orbit amoung candidates
coming from the Murray and O’Brien heuristics. If this fails the same heuristics are used but various
orbits are enumerated up to a certain point decreasing the number of orbits as the limit goes up. If
all fails some of the candidates from the heuristics are simply tried with brute force. The whole
computation can fail if some upper orbit length limit is reached (see component OrbitLengthLimit
in the stabiliser chain computation options).

genss 12

3.4 Using stabiliser chains

The most important thing one can do with a stabiliser chain is sifting. This is done with one of the
next to operations:

3.4.1 SiftGroupElement

. SiftGroupElement(S, el) (operation)

Returns: a record
The first argument S must be a stabiliser chain object and the second argument el a group ele-

ment (not necessarily contained in the group described by S). The result is a record describing the
result of the sifting process. The component rem contains the remainder of the sifting process. If
el is contained in the group described by S , then the remainder is equal to the identity. Note that
if the IsOne-component of the options record for the stabiliser chain S is different from the IsOne
(Reference: IsOne) operation then the rem component is equal to the identity according to that test.
The result of this test (true or false) is stored in the component isone of the resulting record. This
means, that this component indicates whether or not the sifting was successful. The component S is
bound to the stabiliser chain object corresponding to the layer in which the sifting stopped. If it ran
through the whole chain this component is bound to false. The component preS is always bound to
the previous layer, which is the lowest layer if the sifting was successful.

3.4.2 SiftGroupElementSLP

. SiftGroupElementSLP(S, el) (operation)

Returns: a record
This operation behaves exactly as SiftGroupElement (3.4.1) except that in the successful

case the component slp of the resulting record is additionally bound to a straight line program
which expresses the element el in terms of the strong generators of the stabiliser chain (see
StrongGenerators (3.4.3)).

3.4.3 StrongGenerators

. StrongGenerators(S) (operation)

Returns: a list of group elements
This operation returns the strong generators of the stabiliser chain S . This means that each sta-

biliser in the stabiliser chain is generated by the subset of the set of strong generators which fix the
corresponding points. Note that each layer of the stabiliser chain uses some subset of these strong
generators as generators for the orbit object of that layer.

Note further that this operation called for the objects describing the lower layers of the stabiliser
chain always returns all strong generators for the whole stabiliser chain (top layer).

3.4.4 NrStrongGenerators

. NrStrongGenerators(S) (operation)

Returns: a positive integer
This operation returns the number of strong generators of the stabiliser chain S (see

StrongGenerators (3.4.3)).

genss 13

3.4.5 BaseStabilizerChain

. BaseStabilizerChain(S) (operation)

Returns: a record
This operation returns the base of the stabiliser chain S in form of a record, which can be used

as the Cand component for a stabiliser chain computation. That is, two components are bound, the
points component is a list of base points and the ops component is a corresponding list of action
functions.

3.4.6 Size

. Size(S) (operation)

Returns: a positive integer
This operation returns the size (i.e. order) of the group described by the stabiliser chain S . This is

simply the product of the lengths of the orbits in the chain.

3.4.7 Random

. Random(S) (operation)

Returns: a group element
This operation can be called with a stabiliser chain object S or with a group object, if this group

object has a stored stabiliser chain (see SetStabilizerChain (3.4.11)). The method will randomly
choose transversal elements and thus produce a uniformly distributed random element of the group.

3.4.8 \in

. \in(x, S) (operation)

Returns: true or false
This operation tests whether or not the group element x lies in the group described by the stabiliser

chain S by sifting (see SiftGroupElement (3.4.1)). The argument S can also be a group object with
a stored stabiliser chain (see SetStabilizerChain (3.4.11)). Note that this operation can be called
with the in keyword using infix notation.

3.4.9 IsProved

. IsProved(S) (operation)

Returns: true or false
This operation returns whether or not the stabiliser chain S is proved to be correct. If it has only

been verified by randomised methods, false is returned. At the time of this writing the only possible
deterministic verification is if the size of the group is known before the stabiliser chain computation
begins.

3.4.10 GroupIteratorByStabilizerChain

. GroupIteratorByStabilizerChain(S) (operation)

Returns: an iterator
This operation returns an iterator object which runs through the elements of the group described

by the stabiliser chain object S . The usual operations NextIterator (Reference: NextIterator) and

genss 14

IsDoneIterator (Reference: IsDoneIterator) as well as the for loop construction can be used
with this object. The iterator is implemented using the stored transversals in the Schreier trees of the
stabiliser chain.

3.4.11 SetStabilizerChain

. SetStabilizerChain(g, S) (operation)

Returns: nothing
Once the user is convinced that the stabiliser chain S describes the group g correctly, he can call

this operation to store the stabiliser chain together with the group object. From then on, additional
methods using the stabiliser chain (for example Size (3.4.6), Random (3.4.7) and \in (3.4.8) above)
become applicable for the group object. Note that if a stabiliser chain is known to be correct (for
example if the group knew its size beforehand), then the stabiliser chain is stored with the group auto-
matically when it is constructed, which makes the explicit storing of the stabiliser chain unnecessary.

The stored stabiliser chain of a group object can be used using StoredStabilizerChain
(3.4.12).

3.4.12 StoredStabilizerChain

. StoredStabilizerChain(g) (attribute)

Returns: a stabiliser chain
This attribute for a group object g contains a stored stabiliser chain for the group. See

SetStabilizerChain (3.4.11) for details.

3.4.13 StabChainOp

. StabChainOp(p, S) (method)

Returns: a GAP stabiliser chain
This method computes a standard GAP library stabiliser chain for the permutation group p using

the fact that S is a known correct stabiliser chain for p . If all base points in S are positive integers and
all actions are equal to OnPoints, then the same base points are taken for the new stabiliser chain.

3.4.14 SiftBaseImage

. SiftBaseImage(S, l) (operation)

Returns: true or false
This operation sifts an image l of the base points of the stabiliser chain S . This means that the

elements of the list l must be images of the base points under the actions in the various layers of the
stabiliser chain. The sifting procedure using the orbits and Schreier trees in the stabiliser chain decides
if this base image is one for a group element of the group described by S and returns true or false
accordingly.

This operation is mostly used internally.

3.4.15 SLPChainStabilizerChain

. SLPChainStabilizerChain(S, gens) (operation)

Returns: a record

genss 15

This operation assumes that S is a stabiliser chain that correctly describes the group generated by
the generators gens . It returns a list of straight line programs expressing successively the stabilisers
in the chain, each in terms of the generators of the previous, the first in terms of gens . This list is
stored in the component slps of the resulting record. The sizes of the groups in the chain are stored
in the component sizes of the resulting record.

The operations, functions and methods described below use stabiliser chains internally:

3.4.16 GroupHomomorphismByImagesNCStabilizerChain

. GroupHomomorphismByImagesNCStabilizerChain(g, h, images, opt1, opt2) (function)

Returns: a group homomorphism
This function creates a group homomorphism object from the group g into the group object h ,

mapping the generators of the group g to the elements images which must lie in h . This mapping
must be a group homomorphism, note that this is not checked!

The homomorphism is computed by computing stabiliser chains on both sides such that elements
can be mapped in both directions simply be sifting and expressing them in terms of the strong gener-
ators. This is where the two arguments opts1 and opts2 come into play. The former is used as the
options record for the stabiliser computation in g and the latter for the one in the group generated by
images .

3.4.17 FindShortGeneratorsOfSubgroup

. FindShortGeneratorsOfSubgroup(g, u) (method)

Returns: a record
This is an additional method for matrix or permutation groups implementing the operation

FindShortGeneratorsOfSubgroup (orb: FindShortGeneratorsOfSubgroup) from the orb pack-
age using stabiliser chains. Both arguments must be groups and u must be a subgroup of g . The
resulting record contains two components gens and slp, where the first is a list of generators for the
group u and the second is a straight line program expressing gens in terms of the generators of g .
This operation aims to find short words in the generators of g to use as generators for u .

3.4.18 Stab

. Stab(g, x, op[, opt]) (operation)

Returns: a record or fail
This operation aims to compute the point stabiliser of the group g acting via the action function op

of the point x . The optional last argument is an options record. The general approach of this procedure
is to go back and forth between enumerating a part of the orbit and trying to produce random elements
in the stabiliser using the already enumerated part of the orbit. Random elements in the stabiliser are
produced by using product replacement in g to produce random elements of g and then using the
Schreier tree of the orbit to map them back into the stabiliser. If this works, the resulting random
elements are distributed uniformly in the point stabiliser.

This routine is a Monte Carlo procedure. If sufficiently many random elements of the stabiliser
have been produced and did not increase its size, the program concludes that the whole stabiliser is
found and returns a record describing it. Otherwise it returns fail after some time.

The resulting record has the stabiliser in the component stab, its size estimate in the component
size, a stabiliser chain for stab in the component stabilizerchain and a boolean value in the

genss 16

component proof indicating whether or not the result is certain.
We do not document all possible options in the options record here, since we want to allow for the

possibility to change these in later versions. The most important component in the options record is
the component ErrorBound which must be bound to a rational number between 0 and 1 and which is
an upper bound for the error probability.

Please note again that two types of errors can occur in this program: The first is that the correct
point stabiliser is not found but only a proper subgroup of it. The second is that the stabiliser chain
computation to estimate its size went wrong and returns an incorrect stabiliser chain.

Chapter 4

Backtrack search methods

This chapter describes the methods for backtrack search in the genss package. Note that the code in
this area is not yet very stable and is almost certainly going to change in subsequent versions of this
package. This might also concern the interfaces and calling conventions.

4.1 Setwise stabilisers

4.1.1 SetwiseStabilizer

. SetwiseStabilizer(G, op, M) (operation)

Returns: a record
This operation computes the setwise stabiliser of the set M . So G must be a group acting on some

set Ω, this action is given by the action function op . The set M must consist of elements Ω. The result
is a record with the components setstab containing the setwise stabiliser and S containing a stabiliser
chain for it.

This operation uses backtrack search in a specially crafted stabiliser chain for G doing not much
intelligent pruning of the search tree, so expect possible long delays!

4.1.2 SetwiseStabilizerPartitionBacktrack

. SetwiseStabilizerPartitionBacktrack(G, op, M) (operation)

Returns: a record
This operation computes the setwise stabiliser of the set M . So G must be a group acting on some

set Ω, this action is given by the action function op . The set M must consist of elements Ω. The result
is a record with the components setstab containing the setwise stabiliser and S containing a stabiliser
chain for it.

This operation uses backtrack search in a specially crafted stabiliser chain for G . It does some
ideas coming from partition backtrack but does not (yet) implement a full featured partition backtrack,
so expect possible longish delays!

4.2 Generic backtrack search

4.2.1 BacktrackSearchStabilizerChainElement

17

genss 18

. BacktrackSearchStabilizerChainElement(S, P, g, pruner) (operation)

Returns: fail or a group element
Let G be the group described by the stabiliser chain S . The group element g must be some element

in an overgroup Ĝof G such that the function P described below is defined on the whole of Ĝ
This operation implements a generic backtrack search in the coset Gg looking for an element x inG

such that P(xg) is true where P is a function on Ĝtaking values true and false. The operation
returns the group element x if one is found or fail if none was found.

The search tree is given by the stabiliser chain, each node corresponds to a right coset of one of
the stabilisers in the chain. The leaves correspond to right cosets of the identity group, i.e. to group
elements in Gg

To make this backtrack search efficient some pruning of the search tree has to be done. To this
end there is the fourth argument pruner which can either be false (in which case no pruning at
all happens) or a GAP function taking 5 arguments and returning either true or false. The func-
tion pruner is called for every node in the search tree before the backtrack search descents into the
subtrees. If the pruner function returns false, the complete subtree starting at the current node is
pruned and no further search is performed there. If the result is true (or pruner was equal to false
altogether) then the subtree starting at the current node is searched recursively. Obviously, the pruner
function needs to know the current position in the search tree, which it is told by its arguments.

Each node in the search tree corresponds to a coset of some stabiliser of the stabiliser chain in its
previous one. To set up some notation, let G = S0 > S1 > S2 > · · ·> Sm > Sm+1 = {1} be the stabiliser
chain and let O1,O2, . . . ,Om be the basic orbits. Then for the node corresponding to the coset Sitg for
i≥ 1 and some transversal element t contained in Si−1 the arguments with which the pruner function
is called are the following: The first argument is the stabiliser chain object corresponding to Si−1. The
second argument is the index of the element in Oi corresponding to the transversal element t. The third
argument is the group element tg and the fourth argument is equal to the actual transversal element t.
The fifth argument is a word in the generators used to enumerate Oi expressing t, the word comes as a
list of integers which are the generator numbers.

4.2.2 BacktrackSearchStabilizerChainSubgroup

. BacktrackSearchStabilizerChainSubgroup(S, P, pruner) (operation)

Returns: fail or a stabiliser chain
Let G be the group described by the stabiliser chain S . This operation implements a generic

backtrack search in the stabiliser chain S looking for the subgroup H of the group G described by S of
all elements x for which P(x) is true, where P is a function on G taking values true or false. Note
that of course P must be such that H is actually a subgroup! The operation returns a stabiliser chain
describing the group H.

The search tree is given by the stabiliser chain, each node corresponds to a right coset of one of
the stabilisers in the chain. The leaves correspond to right cosets of the identity group, i.e. to group
elements in G

To make this backtrack search efficient some pruning of the search tree has to be done. To this
end there is the fourth argument pruner which can either be false (in which case no pruning at
all happens) or a GAP function taking 5 arguments and returning either true or false. The func-
tion pruner is called for every node in the search tree before the backtrack search descents into the
subtrees. If the pruner function returns false, the complete subtree starting at the current node is
pruned and no further search is performed there. If the result is true (or pruner was equal to false

genss 19

altogether) then the subtree starting at the current node is searched recursively. Obviously, the pruner
function needs to know the current position in the search tree, which it is told by its arguments.

Each node in the search tree corresponds to a coset of some stabiliser of the stabiliser chain in its
previous one. To set up some notation, let G = S0 > S1 > S2 > · · ·> Sm > Sm+1 = {1} be the stabiliser
chain and let O1,O2, . . . ,Om be the basic orbits. Then for the node corresponding to the coset Sitg for
i≥ 1 and some transversal element t contained in Si−1 the arguments with which the pruner function
is called are the following: The first argument is the stabiliser chain object corresponding to Si−1. The
second argument is the index of the element in Oi corresponding to the transversal element t. The third
and fourth arguments are the transversal element t. The fifth argument is a word in the generators used
to enumerate Oi expressing t, the word comes as a list of integers which are the generator numbers.

Chapter 5

Examples

Here comes text.

20

References

21

Index

genss, 5
\in, 13

BacktrackSearchStabilizerChainElement,
18

BacktrackSearchStabilizerChain-
Subgroup, 18

BaseStabilizerChain, 13

FindBasePointCandidates, 11
FindShortGeneratorsOfSubgroup, 15

GENSS_IsOneProjective, 11
GroupHomomorphismByImagesNCStabilizer-

Chain, 15
GroupIteratorByStabilizerChain, 13

IsProved, 13

NrStrongGenerators, 12

Random, 13

SetStabilizerChain, 14
SetwiseStabilizer, 17
SetwiseStabilizerPartitionBacktrack, 17
SiftBaseImage, 14
SiftGroupElement, 12
SiftGroupElementSLP, 12
Size, 13
SLPChainStabilizerChain, 14
Stab, 15
StabChainOp, 14
StabilizerChain, 6
StoredStabilizerChain, 14
StrongGenerators, 12

22

	Introduction
	Philosophy
	Overview over this manual
	Feedback

	Installation of the genss-Package
	Stabiliser Chains
	Computing stabiliser chains
	Options for the computation of stabiliser chains
	How base points are chosen
	Using stabiliser chains

	Backtrack search methods
	Setwise stabilisers
	Generic backtrack search

	Examples
	References
	Index

