
idrel
Identities among relations

2.44

4 June 2022

Anne Heyworth

Chris Wensley

Chris Wensley
Email: c.d.wensley@bangor.ac.uk
Homepage: https://github.com/cdwensley
Address: Dr. C.D. Wensley

School of Computer Science
Bangor University
Dean Street
Bangor
Gwynedd LL57 1UT
UK

mailto://c.d.wensley@bangor.ac.uk
https://github.com/cdwensley

idrel 2

Abstract
IdRel is a GAP package originally implemented in 1999, using the GAP 3 language, when the first author was
studying for a Ph.D. in Bangor.

This package is designed to compute a minimal set of generators for the module of the identities among
relators of a group presentation. It does this using

• rewriting and logged rewriting: a self-contained implementation of the Knuth-Bendix process using the
monoid presentation associated to the group presentation;

• monoid polynomials: an implementation of the monoid ring;

• module polynomials: an implementation of the right module over this monoid generated by the relators.

• Y-sequences: used as a rewriting way of representing elements of a free crossed module (products of
conjugates of group relators and inverse relators).

IdRel became an accepted GAP package in May 2015.
Bug reports, suggestions and comments are, of course, welcome. Please contact the

last author at c.d.wensley@bangor.ac.uk or submit an issue at the GitHub repository
https://github.com/gap-packages/idrel/issues/.

Copyright
© 1999-2022 Anne Heyworth and Chris Wensley

The IdRel package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

Acknowledgements
This documentation was prepared using the GAPDoc [LN17] and AutoDoc [GH17] packages.

The procedure used to produce new releases uses the package GitHubPagesForGAP [Hor14] and the
package ReleaseTools.

mailto://c.d.wensley@bangor.ac.uk
https://github.com/gap-packages/idrel/issues/

Contents

1 Introduction 4
1.1 An illustrative example . 5

2 Rewriting Systems 7
2.1 Monoid Presentations of FpGroups . 7
2.2 Rewriting systems for FpGroups . 9
2.3 Enumerating elements . 12

3 Logged Rewriting Systems 14
3.1 Logged Knuth-Bendix Completion . 14
3.2 Logged reduction of a word . 17

4 Monoid Polynomials 19
4.1 Construction of monoid polynomials . 19
4.2 Components of a polynomial . 20
4.3 Monoid Polynomial Operations . 21
4.4 Reduction of a Monoid Polynomial . 22

5 Module Polynomials 23
5.1 Construction of module polynomials . 23
5.2 Components of a module polynomial . 24
5.3 Module Polynomial Operations . 25

6 Identities Among Relators 27
6.1 Constructing identities . 27
6.2 Identities for S3 . 30
6.3 Reducing identities . 32
6.4 The original approach . 36
6.5 Partial lists of elements . 38

References 40

Index 41

3

Chapter 1

Introduction

This manual describes the IdRel package for GAP 4.7 for computing the identities among relators of
a group presentation using rewriting, logged rewriting, monoid polynomials, module polynomials and
Y -sequences.

The theoretical background for these computations is contained in Brown and Huebschumann
[BH82], Brown and Razak Salleh [BRS99] and is surveyed in the first author’s thesis [Hey99].

IdRel is primarily designed for the computation of a minimal set of generators for the module
of identities among relators. It also contains functions which compute logged rewrite systems for
group presentations (and complete them where possible); functions for operations involving elements
of monoid rings; and functions for operations with elements of right modules over monoid rings. The
Y -sequences are used as a rewriting way of representing elements of a free crossed module (products
of conjugates of group relators and inverse relators). The package is written entirely in GAP4, and
requires no compilation.

The package is loaded into GAP with the LoadPackage command, and on-line help is available
in the usual way.

Example

gap> LoadPackage("idrel");
gap> ?idrel

A pdf version of the IdRel manual is available in the doc directory of the home directory of IdRel.
The information parameter InfoIdRel has default value 0. When raised to a higher value, additional
information is printed out. IdRel was originally developed in 1999 using GAP3, partially supported
by a University of Wales Research Assistantship for the first author, Anne Heyworth.

If you use IdRel to solve a problem then please send a short email to the second author, to whom
bug reports, suggestions and other comments should also be sent. You may reference the package by
mentioning [HW03] and [Hey99].

The package may be obtained as a compressed tar file idrel-version.number.tar.gz by ftp
from one of the following sites:

• the IdRel GitHub site: https://github.com/gap-packages.github.io/idrel/.

• any GAP archive, e.g. https://www.gap-system.org/Packages/packages.html;

The package also has a GitHub repository at: https://github.com/gap-packages/idrel/ where
issues can be raised.

4

https://github.com/gap-packages.github.io/idrel/
https://www.gap-system.org/Packages/packages.html
https://github.com/gap-packages/idrel/

idrel 5

1.1 An illustrative example

A typical input for IdRel is an fp-group presentation. This requires a free group F on a set of generators
and a set of relators R (words in the free group). The module of identities among relators for this
presentation has as its elements the Peiffer equivalence classes of all products of conjugates of relators
which represent the identity in the free group.

In this package the identities among relators are represented by Y-sequences, which are lists
[[r1,u1], . . . , [rk,uk]] where r1, . . . ,rk are the group relators or their inverses, and u1, . . . ,uk are words
in the free group F. A Y-sequence is evaluated in F as the product (u−1

1 r1u1) . . .(u−1
k rkuk) and is an

identity Y-sequence if it evaluates to the identity in F. An identity Y-sequence represents an identity
among the relators of the group presentation. The main function of the package is to produce a set
of Y-sequences which generate the module of identites among relators, and further, that this set be
minimal in the sense that every element in it is needed to generate the module.

Before starting on the main example, we consider a simpler example illustrating the use of IdRel.
All the functions used are described in detail in this manual. We compute a reduced set of identities
among relators for the presentation of the symmetric group s3 = F/[f^3,g^2,(fg)^2]. In the
listings below, s3_Ri is the i-th relator for s3, and f1,f2 are the generators f ,g of F .

Example

gap> F := FreeGroup(2);;
gap> f := F.1;; g := F.2;;
gap> rels3 := [f^3, g^2, f*g*f*g];
[f1^3, f2^2, (f1*f2)^2]
gap> s3 := F/rels3;
<fp group on the generators [f1, f2]>
gap> SetName(s3, "s3");;
gap> IdentitiesAmongRelators(s3);
[[[-1, <identity ...>], [1, s3_M1]],

[[-2, <identity ...>], [2, s3_M2]],
[[-3, <identity ...>], [3, s3_M1*s3_M2]],
[[1, <identity ...>], [-3, s3_M1], [2, s3_M3*s3_M4], [1, s3_M4],

[-3, <identity ...>], [2, s3_M3*s3_M4*s3_M3], [2, s3_M3],
[-3, s3_M3]],

[[1, <identity ...>], [-3, s3_M2], [2, s3_M3*s3_M4*s3_M3*s3_M2],
[2, s3_M3*s3_M2], [1, s3_M2], [-3, <identity ...>], [2, s3_M3],
[-3, s3_M3]]]

If we write ρ = f 3, σ = g2, τ = (f g)2 then the first identity becomes ρ−1ρ f . Similarly, the second
and third identities are the root identities σ−1σg and τ−1τ f g. The fourth identity, which is not a root
identity, is obtained by walking around the Schreier diagram of the presentation, a somewhat truncated
triangular prism. Taking the appropriate conjugate of each face in turn, we get:

ρ (τ−1) f
σ

f−1g−1
ρ

g−1
(τ−1) σ

f−1g−1 f−1
σ

f−1
(τ−1) f−1

.

The fifth identity is equivalent to the fourth, as we shall show in section 6.2.
In order to form the module of identities for s3 the identities are transformed into module poly-

nomials. The first is y1 = ρ(f − 1). The second and third are y2 = σ(g− 1) and y3 = τ(f g− 1),
while the fourth is ρ(1 + g−1 f) + σ(1 + f−1g−1 + f−1g−1 f)− τ(1 ++ f + f 2). Note that, in

idrel 6

the fourth polynomial, the conjugators are converted to their normal forms in s3, namely f 2 =
f−1, f−1g−1 f = f g, g−1 f = g f and f g−1 f = g. Generators for this module are returned by the
operation IdentityYSequences.

Example

gap> idyseq3 := IdentityYSequences(s3);
[(s3_Y1*(-s3_M1), s3_R1*(s3_M1 - <identity ...>)),

(s3_Y2*(<identity ...>), s3_R2*(s3_M2 - <identity ...>)),
(s3_Y3*(s3_M1), s3_R3*(s3_M2 - s3_M1)),
(s3_Y9*(-<identity ...>), s3_R1*(-s3_M2*s3_M1 - s3_M1) + s3_R2*(-s3_M1*s\

3_M2 - s3_M1 - <identity ...>) + s3_R3*(s3_M3 + s3_M2 + <identity ...>))]

Further examples are given in chapter 6.
An extensive revision has been released with version 2.44. This has concentrated in the area of

log sequences, adding many of the functions described in sections 6.2 and 6.3.
Work on revising Y-sequences is needed, but must wait for later versions.

Chapter 2

Rewriting Systems

This chapter describes functions to construct rewriting systems for finitely presented groups which
store rewriting information. The main example used throughout this manual is a presentation of the
quaternion group q8 = F/[a4,b4,abab−1,a2b2].

2.1 Monoid Presentations of FpGroups

2.1.1 FreeRelatorGroup

. FreeRelatorGroup(grp) (attribute)

. FreeRelatorHomomorphism(grp) (attribute)

The function FreeRelatorGroup returns a free group on the set of relators of the fp-group G. If
HasName(G) is true then a name is automatically assigned to this free group by concatenating _R.

The function FreeRelatorHomomorphism returns the group homomorphism from the free group
on the relators to the free group on the generators of G, mapping each generator to the corresponding
word.

Example

gap> relq8 := [f^4, g^4, f*g*f*g^-1, f^2*g^2];;
gap> q8 := F/relq8;;
gap> SetName(q8, "q8");;
gap> q8R := FreeRelatorGroup(q8);
q8_R
gap> genq8R := GeneratorsOfGroup(q8R);
[q8_R1, q8_R2, q8_R3, q8_R4]
gap> homq8R := FreeRelatorHomomorphism(q8);
[q8_R1, q8_R2, q8_R3, q8_R4] -> [f1^4, f2^4, f1*f2*f1*f2^-1, f1^2*f2^2]

2.1.2 MonoidPresentationFpGroup

. MonoidPresentationFpGroup(grp) (attribute)

. ArrangementOfMonoidGenerators(grp) (attribute)

. MonoidPresentationLabels(grp) (attribute)

. FreeGroupOfPresentation(mon) (attribute)

7

idrel 8

. GroupRelatorsOfPresentation(mon) (attribute)

. InverseRelatorsOfPresentation(mon) (attribute)

. HomomorphismOfPresentation(mon) (attribute)

A monoid presentation for a finitely presented group G has two monoid generators g,G for each
group generator g. The relators of the monoid presentation comprise the group relators, and rela-
tors gG,Gg specifying the inverses. The function MonoidPresentationFpGroup returns the monoid
presentation derived in this way from an fp-presentation.

The function FreeGroupOfPresentation returns the free group on the monoid generators.
The function GroupRelatorsOfPresentation returns those relators of the monoid which corre-

spond to the relators of the group. All negative powers in the group relators are converted to positive
powers of the G’s. The function InverseRelatorsOfPresentation returns relators which specify
the inverse pairs of the monoid generators.

The function HomomorphismOfPresentation returns the homomorphism from the free group of
the monoid presentation to the free group of the group presentation.

The attribute ArrangementOfMonoidGenerators will be discussed before the second example
in the next section.

In the example below, the four monoid generators a,b,A,B are named q8_M1, q8_M2, q8_M3,
q8_M4 respectively.

Example

gap> mq8 := MonoidPresentationFpGroup(q8);
monoid presentation with group relators
[q8_M1^4, q8_M2^4, q8_M1*q8_M2*q8_M1*q8_M4, q8_M1^2*q8_M2^2]
gap> fmq8 := FreeGroupOfPresentation(mq8);
<free group on the generators [q8_M1, q8_M2, q8_M3, q8_M4]>
gap> genfmq8 := GeneratorsOfGroup(fmq8);;
gap> gprels := GroupRelatorsOfPresentation(mq8);
[q8_M1^4, q8_M2^4, q8_M1*q8_M2*q8_M1*q8_M4, q8_M1^2*q8_M2^2]
gap> invrels := InverseRelatorsOfPresentation(mq8);
[q8_M1*q8_M3, q8_M2*q8_M4, q8_M3*q8_M1, q8_M4*q8_M2]
gap> hompres := HomomorphismOfPresentation(mq8);
[q8_M1, q8_M2, q8_M3, q8_M4] -> [f1, f2, f1^-1, f2^-1]

2.1.3 PrintLnUsingLabels

. PrintLnUsingLabels(args) (function)

. PrintUsingLabels(args) (function)

The labels q8_M1, q8_M2, q8_M3, q8_M4 are rather unhelpful in lengthy output, so it is conve-
nient to use [a,b,A,B] as above. Then the function PrintUsingLabels takes as input a word in the
monoid, the generators of the monoid, and a set of labels for these generators. This function also treats
lists of words and lists of lists in a similar way. The function PrintLnUsingLabels does exactly the
same, and then appends a newline.

Example

gap> q8labs := ["a", "b", "A", "B"];;

idrel 9

gap> SetMonoidPresentationLabels(q8, q8labs);;
gap> PrintLnUsingLabels(gprels, genfmq8, q8labs);
[a^4, b^4, a*b*a*B, a^2*b^2]

2.1.4 InitialRulesOfPresentation

. InitialRulesOfPresentation(mon) (function)

The initial rules for mq8 are the four rules of the form a−1→ A; the four rules of the form aA→ id;
and the four relator rules of the form a4→ id.

Example

gap> q0 := InitialRulesOfPresentation(mq8);;
gap> PrintLnUsingLabels(q0, genfmq8, q8labs);
[[a^-1, A], [b^-1, B], [A^-1, a], [B^-1, b], [a*A, id],
[b*B, id], [A*a, id], [B*b, id], [a^4, id], [a^2*b^2, id],
[a*b*a*B, id], [b^4, id]]

2.2 Rewriting systems for FpGroups

These functions duplicate the standard Knuth Bendix functions which are available in the GAP library.
There are two reasons for this: (1) these functions were first written before the standard functions were
available; (2) we require logged versions of the functions, and these are most conveniently extended
versions of the non-logged code.

2.2.1 RewritingSystemFpGroup

. RewritingSystemFpGroup(grp) (attribute)

This function attempts to return a complete rewrite system for the fp-group G obtained using the
group’s monoid presentation mon, with a length-lexicographical ordering on the words in fgmon, by
applying Knuth-Bendix completion. Such a rewrite system can be obtained for all finite groups. The
rewrite rules are (partially) ordered, starting with the inverse relators, followed by the rules which
reduce the word length the most.

In our q8 example there are 20 rewrite rules in the rewriting system rws:

a−1→ A, b−1→ B, A−1→ a, B−1→ b,
aA→ id, bB→ id, Aa→ id, Bb→ id,

ba→ aB, b2→ a2, bA→ ab, Ab→ aB, A2→ a2, AB→ ab,
Ba→ ab, BA→ aB, B2→ a2, a3→ a, a2b→ B, a2B→ b.

Example

gap> rws := RewritingSystemFpGroup(q8);;
gap> Length(rws);
20
gap> PrintLnUsingLabels(rws, genfmq8, q8labs);

idrel 10

[[a^-1, A], [b^-1, B], [A^-1, a], [B^-1, b], [a*A, id],
[b*B, id], [A*a, id], [B*b, id], [b*a, a*B], [b^2, a^2],
[b*A, a*b], [A*b, a*B], [A^2, a^2], [A*B, a*b], [B*a, a*b],
[B*A, a*B], [B^2, a^2], [a^3, A], [a^2*b, B], [a^2*B, b]]

The default ordering of the 2n monoid generators is [g+1 ,g
+
2 , . . . ,g

+
n ,g

−
1 ,g

−
2 , . . . ,g

−
n]. In the case of the

two-generator abelian group T = 〈a,b | [a,b]〉 the Knuth-Bendix process starts to generate infinite sets
of relations such as {abma−1→ bm, m > 1}.

If, using the ArrangementOfMonoidGenerators function, we specify the alternative ordering
[g+1 ,g

−
1 ,g

+
2 ,g

−
2], then a finite set of rules is obtained.

Example

gap> T := F/[Comm(f,g)];
<fp group of size infinity on the generators [f1, f2]>
gap> SetName(T, "T");
gap> SetArrangementOfMonoidGenerators(T, [1,-1,2,-2]);
gap> Tlabs := ["x", "X", "y", "Y"];;
gap> mT := MonoidPresentationFpGroup(T);
monoid presentation with group relators [T_M2*T_M4*T_M1*T_M3]
gap> fgmT := FreeGroupOfPresentation(mT);;
gap> genfgmT := GeneratorsOfGroup(fgmT);;
gap> SetMonoidPresentationLabels(T, Tlabs);;
gap> rwsT := RewritingSystemFpGroup(T);;
gap> PrintLnUsingLabels(rwsT, genfgmT, Tlabs);
[[x^-1, X], [X^-1, x], [y^-1, Y], [Y^-1, y], [x*X, id],
[X*x, id], [y*Y, id], [Y*y, id], [y*x, x*y], [y*X, X*y],
[Y*x, x*Y], [Y*X, X*Y]]

The last four rules show that generators x and y commute.

2.2.2 OnePassReduceWord

. OnePassReduceWord(word, rules) (operation)

. ReduceWordKB(word, rules) (operation)

These functions are called by the function RewritingSystemFpGroup.
Assuming that word is an element of a free monoid and rules is a list of ordered pairs of such

words, the function OnePassReduceWord searches the list of rules until it finds that the left-hand side
of a rule is a subword of word, whereupon it replaces that subword with the right-hand side of
the matching rule. The search is continued from the next rule in rules, but using the new word.
When the end of rules is reached, one pass is considered to have been made and the reduced word is
returned. If no matches are found then the original word is returned.

The function ReduceWordKB repeatedly applies the function OnePassReduceWord until the word
remaining contains no left-hand side of a rule as a subword. If rules is a complete rewrite system,
then the irreducible word that is returned is unique, otherwise the order of the rules in rules will
determine which irreducible word is returned. In our q8 example we see that b9a−9 reduces to ab.

idrel 11

Example

gap> a := genfmq8[1];; b := genfmq8[2];;
gap> A := genfmq8[3];; B := genfmq8[4];;
gap> w0 := b^9 * a^-9;;
gap> PrintLnUsingLabels(w0, genfmq8, q8labs);
b^9*a^-9
gap> w1 := OnePassReduceWord(w0, rws);;
gap> PrintLnUsingLabels(w1, genfmq8, q8labs);
B*b^5*a*b*a^-8
gap> w2 := ReduceWordKB(w0, rws);;
gap> PrintLnUsingLabels(w2, genfmq8, q8labs);
a*b

2.2.3 OnePassKB

. OnePassKB(mon, rules) (operation)

The function OnePassKB implements the main loop of the Knuth-Bendix completion algorithm.
Rules are compared with each other; all critical pairs are calculated; and the irreducible critical pairs
are orientated with respect to the length-lexicographical ordering and added to the rewrite system.

The function ShorterRule gives an ordering on rules. Rules (glg2, id) that identify two generators
(or one generator with the inverse of another) come first in the ordering. Otherwise one precedes
another if it reduces the length of a word by a greater amount.

One pass of this procedure for our q8 example adds 10 relators to the original 12.
Example

gap> q1 := OnePassKB(mq8, q0);;
gap> Length(q1);
22
gap> PrintLnUsingLabels(q1, genfmq8, q8labs);
[[a^-1, A], [b^-1, B], [A^-1, a], [B^-1, b], [a*A, id],
[b*B, id], [A*a, id], [B*b, id], [b^2, a^2], [a^3, A],
[a^2*b, B], [a*b*a, b], [a*b^2, A], [b*a*B, A], [b^3, B],
[a*b^2, a^3], [b*a*B, a^3], [b^3, a^2*b], [a^4, id],
[a^2*b^2, id], [a*b*a*B, id], [b^4, id]]

2.2.4 RewriteReduce

. RewriteReduce(mon, rules) (operation)

The function RewriteReduce will remove unnecessary rules from a rewrite system. A rule is
deemed to be unnecessary if it is implied by the other rules, i.e. if both sides can be reduced to the
same thing by the remaining rules.

In the example the 22 rules in q1 are reduced to 13.
Example

gap> q2 := RewriteReduce(mq8, q1);;

idrel 12

gap> Length(q2);
13
gap> PrintLnUsingLabels(q2, genfmq8, q8labs);
[[a^-1, A], [b^-1, B], [A^-1, a], [B^-1, b], [a*A, id],
[b*B, id], [A*a, id], [B*b, id], [b^2, a^2], [a^3, A],
[a^2*b, B], [a*b*a, b], [b*a*B, A]]

2.2.5 KnuthBendix

. KnuthBendix(mon, rules) (operation)

The function KnuthBendix implements the Knuth-Bendix algorithm, attempting to complete a
rewrite system with respect to a length-lexicographic ordering. It calls first OnePassKB, which adds
rules, and then (for efficiency) RewriteReduce which removes any unnecessary ones. This procedure
is repeated until OnePassKB adds no more rules. It will not always terminate, but for many examples
(all finite groups) it will be successful. The rewrite system returned is complete, that is: it will rewrite
any given word in the free monoid to a unique irreducible; there is one irreducible for each element of
the quotient monoid; and any two elements of the free monoid which are in the same class will rewrite
to the same irreducible.

The function ShorterRule gives an ordering on rules. Rules (glg2, id) that identify two generators
(or one generator with the inverse of another) come first in the ordering. Otherwise one precedes
another if it reduces the length of a word by a greater amount.

In the example the function KnuthBendix requires three instances of OnePassKB and
RewriteReduce to form the complete rewrite system rws for the group shown above.

Example

gap> q3 := KnuthBendix(mq8, q0);;
gap> Length(q3);
20
gap> PrintLnUsingLabels(q3, genfmq8, q8labs);
[[a^-1, A], [b^-1, B], [A^-1, a], [B^-1, b], [a*A, id],
[b*B, id], [A*a, id], [B*b, id], [b*a, a*B], [b^2, a^2],
[b*A, a*b], [A*b, a*B], [A^2, a^2], [A*B, a*b], [B*a, a*b],
[B*A, a*B], [B^2, a^2], [a^3, A], [a^2*b, B], [a^2*B, b]]

2.3 Enumerating elements

2.3.1 ElementsOfMonoidPresentation

. ElementsOfMonoidPresentation(mon) (attribute)

The function ElementsOfMonoidPresentation returns a list of normal forms for the elements
of the group given by the monoid presentation mon. The normal forms are the least elements in each
equivalence class (with respect to length-lex order). When rules is a complete rewrite system for G
the list returned is a set of normal forms for the group elements. For q8 this list is

[id, a+, b+, a−, b−, a+2, a+b+, a+b−].

idrel 13

Example

gap> elq8 := Elements(q8);
[<identity ...>, f1, f1^3, f2, f1^2*f2, f1^2, f1*f2, f1^3*f2]
gap> elmq8 := ElementsOfMonoidPresentation(q8);;
gap> PrintLnUsingLabels(elmq8, genfmq8, q8labs);
[id, a, b, A, B, a^2, a*b, a*B]

Chapter 3

Logged Rewriting Systems

A logged rewrite system is associated with a group presentation. Each logged rewrite rule contains,
in addition to the standard rewrite rule, a record or log component which expresses the rule in terms
of the original relators of the group. We represent such a rule by a triple [u, [L1,L2,..,Lk], v],
where [u,v] is a rewrite rule and Li = [ni,wi] where ni is a group relator and wi is a word. These three
components obey the identity u = nw1

1 . . .nwk
k v.

3.1 Logged Knuth-Bendix Completion

The functions in this section are the logged versions of those in the previous chapter.

3.1.1 InitialLoggedRulesOfPresentation

. InitialLoggedRulesOfPresentation(mon) (function)

The 12 initial logged rules for mq8 correspond to the 12 initial rules in section 2.1.4. Rules of the
form g−1 → G and gG→ id apply to the monoid presentation, but not to the group presentation, so
are given an empty logged component. The remaining four rules, which corresppond to the relators
r ∈ [a4,b4,abab−1,a2b2] are given logged components [r, [[n, id]], id] for n ∈ [9..12].

Example

gap> r0 := InitialLoggedRulesOfPresentation(mq8);;
gap> PrintLnUsingLabels(r0, genfmq8, q8labs);
[[a^-1, [], A], [b^-1, [], B], [A^-1, [], a], [B^-1,
[], b], [a*A, [], id], [b*B, [], id], [A*a, [], id],
[B*b, [], id], [a^4, [[1, id]], id], [a^2*b^2, [[4, id]], id],
[a*b*a*B, [[3, id]], id], [b^4, [[2, id]], id]]

3.1.2 LoggedOnePassKB

. LoggedOnePassKB(grp, loggedrules) (operation)

Given a logged rewrite system for the group grp, this function finds all the rules that would be
added to complete the rewrite system of OnePassKB in 2.2.3, and also the logs which relate the new

14

idrel 15

rules to the originals. The result of applying this function to loggedrules is to add new logged rules
to the system without changing the monoid it defines.

In the example, we apply one pass of the logged Knuth-Bendix procedure to the initial set of
logged rules.

Example

gap> r1 := LoggedOnePassKB(mq8, r0);;
gap> Length(r1);
25
gap> PrintLnUsingLabels(r1, genfmq8, q8labs);
[[a^-1, [], A], [b^-1, [], B], [A^-1, [], a], [B^-1,
[], b], [a*A, [], id], [b*B, [], id], [A*a, [], id],
[B*b, [], id], [b^2, [[-4, id], [2, A^2]], a^2],
[b^2, [[-1, id], [4, A^2]], a^2], [a^3, [[1, id]], A],
[a^3, [[1, a]], A], [a^2*b, [[4, id]], B], [a*b*a,
[[3, id]], b], [a*b^2, [[4, a]], A], [b*a*B, [
[3, a]], A], [b^3, [[2, id]], B], [b^3, [[2, b]], B],
[a*b^2, [[-1, id], [4, A^3]], a^3], [b*a*B, [[-1, id],
[3, A^3]], a^3], [b^3, [[-4, id], [2, B*A^2]], a^2*b],
[a^4, [[1, id]], id], [a^2*b^2, [[4, id]], id],
[a*b*a*B, [[3, id]], id], [b^4, [[2, id]], id]]

Note that r1 has length 25, three more than the length 22 of q1 in 2.2.3. This because the three rules
b2→ a2; a3→ A; b3→ B each appear twice, with alternative logged components.

If we write a,b,A,B for M1,M2,M3,M4 and label the four original relators as q = a4, r = b4, s =
abaB, t = a2b2 then the ninth identity (for example) says that b2 = (t−1rA2

)a2. To verify this, we may
expand the right-hand side as follows:

(B2A2).a2(b4)A2.a2 = B2(A2a2)b4(A2a2) = B2b4 = b2.

3.1.3 LoggedRewriteReduce

. LoggedRewriteReduce(grp, loggedrules) (operation)

The function LoggedRewriteReduce removes unnecessary rules from a logged rewrite system.
It works on the same principle as RewriteReduce in 2.2.4. Note that q2 nd r2 both have length 13.

Example

gap> r2 := LoggedRewriteReduce(mq8, r1);;
gap> Length(r2);
13
gap> PrintLnUsingLabels(r2, genfmq8, q8labs);
[[a^-1, [], A], [b^-1, [], B], [A^-1, [], a], [B^-1,
[], b], [a*A, [], id], [b*B, [], id], [A*a, [], id],
[B*b, [], id], [b^2, [[-4, id], [2, A^2]], a^2],
[a^3, [[1, id]], A], [a^2*b, [[4, id]], B], [a*b*a,
[[3, id]], b], [b*a*B, [[3, a]], A]]

idrel 16

3.1.4 LoggedKnuthBendix

. LoggedKnuthBendix(grp, loggedrules) (operation)

The function LoggedKnuthBendix repeatedly applies functions LoggedOnePassKB and
LoggedRewriteReduce until no new rules are added and no unnecessary ones are included. The
output is a reduced complete logged rewrite system.

As a further example, consider the ninth rule in r3 which shows how ba reduces to aB. For this
rule [u,L,v] we will verify that u = nw1

1 nw2
2 nw3

3 v, as in the introduction to this chapter. The rule is:

[ba, [[−11, id], [12,BA]],aB].

The relators are −11≡ s−1 = bABA and 12≡ t = a2b2. These are conjugated by the identity and BA
respectively. So the second and third parts of the rule expand to:

(bABA)(ab(aabb)BA)aB = bAB(Aa)baab(bB)(Aa)B = bA(Bb)aa(bB) = b(Aa)a = ba,

the first part of the rule.
Example

gap> r3 := LoggedKnuthBendix(mq8, r0);;
gap> Length(r3);
20
gap> PrintLnUsingLabels(r3, genfmq8, q8labs);
[[a^-1, [], A], [b^-1, [], B], [A^-1, [], a], [B^-1,
[], b], [a*A, [], id], [b*B, [], id], [A*a, [], id],
[B*b, [], id], [b*a, [[-3, id], [4, B*A]], a*B],
[b^2, [[-4, id], [2, A^2]], a^2], [b*A, [[-3, id]], a*b],
[A*b, [[-1, id], [4, A]], a*B], [A^2, [[-1, id]], a^2],
[A*B, [[-4, a]], a*b], [B*a, [[-4, id], [3, A]], a*b],
[B*A, [[-3, a*b]], a*B], [B^2, [[-4, id]], a^2],
[a^3, [[1, id]], A], [a^2*b, [[4, id]], B], [a^2*B,
[[-4, A^2], [1, id]], b]]

3.1.5 LoggedRewritingSystemFpGroup

. LoggedRewritingSystemFpGroup(grp) (attribute)

Given a group presentation, the function LoggedRewritingSystemFpGroup determines a logged
rewrite system based on the relators. The initial logged rewrite system associated with a group
presentation consists of two types of rule. These are logged versions of the two types of rule in
the monoid presentation. Corresponding to the j-th relator rel of the group there is a logged rule
[rel,[[j,id]],id]. For each inverse relator there is a logged rule [gen*inv, [], id]. The
function then attempts a completion of the logged rewrite system. The rules in the final system are
partially ordered by the function ShorterLoggedRule.

Example

gap> lrws := LoggedRewritingSystemFpGroup(q8);;
gap> PrintLnUsingLabels(lrws, genfgmon, q8labs);

idrel 17

[[a^-1, [], A], [b^-1, [], B], [A^-1, [], a], [B^-1,
[], b], [a*A, [], id], [b*B, [], id], [A*a, [], id],
[B*b, [], id], [b*a, [[-3, id], [4, B*A]], a*B],
[b^2, [[-4, id], [2, A^2]], a^2], [b*A, [[-3, id]], a*b],
[A*b, [[-1, id], [4, A]], a*B], [A^2, [[-1, id]], a^2],
[A*B, [[-4, a]], a*b], [B*a, [[-4, id], [3, A]], a*b],
[B*A, [[-3, a*b]], a*B], [B^2, [[-4, id]], a^2],
[a^3, [[1, id]], A], [a^2*b, [[4, id]], B], [a^2*B,
[[-4, A^2], [1, id]], b]]
gap> Length(lrws);
16

Consider now the two-generator abelian group T considered in the previous chapter (2.2.1). Using
the alternative ordering on the monoid generators, [T_M1= a, T_M2= A, T_M3= b, T_M4= B], we
obtain the following set of 8 logged rules. The last of these may be checked as follows:

(ba(BAba)AB)ab = ba(B(A(b(aA)B)a)b)

and is a logged version of the rule ba→ ab.
Example

gap> lrwsT := LoggedRewritingSystemFpGroup(T);;
gap> PrintLnUsingLabels(lrwsT, genfgmonT, Tlabs);
[[x^-1, [], X], [X^-1, [], x], [y^-1, [], Y], [Y^-1,
[], y], [x*X, [], id], [X*x, [], id], [y*Y, [], id],
[Y*y, [], id], [y*x, [[-1, X*Y]], x*y], [y*X, [[1, Y]], X*y],
[Y*x, [[1, X]], x*Y], [Y*X, [[-1, id]], X*Y]]

3.2 Logged reduction of a word

3.2.1 LoggedReduceWordKB

. LoggedReduceWordKB(word, loggedrules) (operation)

. LoggedOnePassReduceWord(word, loggedrules) (operation)

. ShorterLoggedRule(logrule1, logrule2) (operation)

Given a word and a logged rewrite system, the function LoggedOnePassReduceWord makes one
reduction pass of the word (possibly involving several reductions) (as does OnePassReduceWord in
2.2.2) and records this, using the log part of the rule(s) used and the position in the original word of
the replaced part.

The function LoggedReduceWordKB repeatedly applies OnePassLoggedReduceWord until the
word can no longer be reduced. Each step of the reduction is logged, showing how the original
word can be expressed in terms of the original relators and the irreducible word. When loggedrules
is complete the reduced word is a unique normal form for that group element. The log of the reduction
depends on the order in which the rules are applied.

idrel 18

The function ShorterLoggedrule decides whether one logged rule is better than another, using
the same criteria as ShorterRule in 2.2.3. In the example we perform logged reductions of w0 =
a9b−9 corresponding to the ordinary reductions performed in the previous chapter (section 2.2.2).

In order to clarify the following output, note that, in the log below, b9a−9 reduces to Bb5aba−8 in
lw1, just as in section 2.2.2. This may be checked by cancelling terms in:

(b2A2)(a2.b4.A2)(a2b6.bABA.b6A2)(a2b2)Bb5aba−8 = b9a9.

The corresponding expansion of lw2 is too lengthy to include here. (It’s hard to believe that the logged
part of this identity is the simplest possible. Further investigation is needed to determine whether or
not this logged part can be simplified.)

Example

gap> PrintLnUsingLabels(w0, genfmq8, q8labs);
b^9*a^-9
gap> lw1 := LoggedOnePassReduceWord(w0, lrws);;
gap> PrintLnUsingLabels(lw1, genfmq8, q8labs);
[[[-4, id], [2, A^2], [-3, b^-6*a^-2], [4, id]],
B*b^5*a*b*a^-8]
gap> lw2 := LoggedReduceWordKB(w0, lrws);;
gap> PrintLnUsingLabels(lw2, genfmq8, q8labs);
[[[-4, id], [2, A^2], [-3, b^-6*a^-2], [4, id], [-3, b^-3],
[4, B*A*b^-3], [-4, id], [2, A^2], [-3, B^-1*a^-1*b^-1*a^-2],
[-4, a^-1*b^-1*a^-2], [3, A*a^-1*b^-1*a^-2], [4, id],
[-4, a^-2*B^-1], [2, A^2*a^-2*B^-1], [-4, id], [3, A],
[1, b^-1*a^-1], [-3, a^-1], [-1, b^-1*a^-2], [4, id],
[-3, a*b], [-3, a*b*a^-1], [-4, A^2], [1, id], [-3, id]], a*b]

Chapter 4

Monoid Polynomials

This chapter describes functions to compute with elements of a free noncommutative algebra. The
elements of the algebra are sums of rational multiples of words in a free monoid. These are called
monoid polynomials, and are stored as lists of pairs [coefficient, word].

4.1 Construction of monoid polynomials

4.1.1 MonoidPolyFromCoeffsWords

. MonoidPolyFromCoeffsWords(coeffs, words) (operation)

. MonoidPoly(terms) (operation)

. ZeroMonoidPoly(F) (operation)

There are two ways to input a monoid polynomial: by listing the coefficients and then the words;
or by listing the terms as a list of pairs [coefficient, word]. If a word occurs more than once in
the input list, the coefficients will be added so that the terms of the monoid polynomial recorded do
not contain any duplicates. The zero monoid polynomial is the polynomial with no terms.

Example

gap> relq8 := RelatorsOfFpGroup(q8);
[f1^4, f2^4, f1*f2*f1*f2^-1, f1^2*f2^2]
gap> freeq8 := FreeGroupOfFpGroup(q8);;
gap> gens := GeneratorsOfGroup(freeq8);;
gap> famfree := ElementsFamily(FamilyObj(freeq8));;
gap> famfree!.monoidPolyFam := MonoidPolyFam;;
gap> cg := [6,7];;
gap> pg := MonoidPolyFromCoeffsWords(cg, gens);;
gap> Print(pg, "\n");
7*f2 + 6*f1
gap> cr := [3,4,-5,-2];;
gap> pr := MonoidPolyFromCoeffsWords(cr, relq8);;
gap> Print(pr, "\n");
4*f2^4 - 5*f1*f2*f1*f2^-1 - 2*f1^2*f2^2 + 3*f1^4
gap> Print(ZeroMonoidPoly(freeq8), "\n");
zero monpoly

19

idrel 20

4.2 Components of a polynomial

4.2.1 Terms (for monoid polynomials)

. Terms(poly) (attribute)

. Coeffs(poly) (attribute)

. Words(poly) (attribute)

. LeadTerm(poly) (attribute)

. LeadCoeffMonoidPoly(poly) (attribute)

The function Terms returns the terms of a polynomial as a list of pairs of the form [word,
coefficient]. The function Coeffs returns the coefficients of a polynomial as a list, and the func-
tion Words returns the words of a polynomial as a list. The function LeadTerm returns the term of the
polynomial whose word component is the largest with respect to the length-lexicographical ordering.
The function LeadCoeffMonoidPoly returns the coefficient of the leading term of a polynomial.

Example

gap> Coeffs(pr);
[4, -5, -2, 3]
gap> Terms(pr);
[[4, f2^4], [-5, f1*f2*f1*f2^-1], [-2, f1^2*f2^2], [3, f1^4]]
gap> Words(pr);
[f2^4, f1*f2*f1*f2^-1, f1^2*f2^2, f1^4]
gap> LeadTerm(pr);
[4, f2^4]
gap> LeadCoeffMonoidPoly(pr);
4

4.2.2 Monic

. Monic(poly) (operation)

A monoid polynomial is called monic if the coefficient of its leading polynomial is one. The
function Monic converts a polynomial into a monic polynomial by dividing all the coefficients by the
leading coefficient.

Example

gap> mpr := Monic(pr);;
gap> Print(mpr, "\n");
f2^4 - 5/4*f1*f2*f1*f2^-1 - 1/2*f1^2*f2^2 + 3/4*f1^4

4.2.3 AddTermMonoidPoly

. AddTermMonoidPoly(poly, coeff, word) (operation)

The function AddTermMonoidPoly adds a new term, given by its coeffiecient and word, to an
existing polynomial.

idrel 21

Example

gap> w := gens[1]^gens[2];
f2^-1*f1*f2
gap> cw := 3/4;;
gap> wpg := AddTermMonoidPoly(pg, cw, w);;
gap> Print(wpg, "\n");
3/4*f2^-1*f1*f2 + 7*f2 + 6*f1

4.3 Monoid Polynomial Operations

Tests for equality and arithmetic operations are performed in the usual way.
The operation poly1 = poly2 returns true if the monoid polynomials have the same terms,

and false otherwise. Multiplication of a monoid polynomial (on the left or right) by a coefficient;
the addition or subtraction of two monoid polynomials; multiplication (on the right) of a monoid
polynomial by a word; and multiplication of two monoid polynomials; are all implemented.

Example

gap> [pg = pg, pg = pr];
[true, false]
gap> prcw := pr * cw;;
gap> Print(prcw, "\n");
3*f2^4 - 15/4*f1*f2*f1*f2^-1 - 3/2*f1^2*f2^2 + 9/4*f1^4
gap> cwpr := cw * pr;;
gap> Print(cwpr, "\n");
3*f2^4 - 15/4*f1*f2*f1*f2^-1 - 3/2*f1^2*f2^2 + 9/4*f1^4
gap> [pr = prcw, prcw = cwpr];
[false, true]
gap> Print(pg + pr, "\n");
4*f2^4 - 5*f1*f2*f1*f2^-1 - 2*f1^2*f2^2 + 3*f1^4 + 7*f2 + 6*f1
gap> Print(pg - pr, "\n");
- 4*f2^4 + 5*f1*f2*f1*f2^-1 + 2*f1^2*f2^2 - 3*f1^4 + 7*f2 + 6*f1

gap> Print(pg * w, "\n");
6*f1*f2^-1*f1*f2 + 7*f1*f2
gap> Print(pg * pr, "\n");
28*f2^5 - 35*(f2*f1)^2*f2^-1 - 14*f2*f1^2*f2^2 + 21*f2*f1^4 + 24*f1*f2^4 -
30*f1^2*f2*f1*f2^-1 - 12*f1^3*f2^2 + 18*f1^5

4.3.1 Length (for monoid polynomials)

. Length(poly) (method)

This function returns the number of distinct terms in the monoid polynomial.
The boolean function poly1 > poly2 returns true if the first polynomial has more terms than

the second. If the polynomials are the same length it will compare their leading terms. If the leading
word of the first is lengthlexicographically greater than the leading word of the second, or if the words
are equal but the coefficient of the first is greater than the coefficient of the second then true is returned.

idrel 22

If the leading terms are equal then the next terms are compared in the same way. If all terms are the
same then false is returned.

Example

gap> Length(pr);
4
gap> [pr > 3*pr, pr > pg];
[false, true]

4.4 Reduction of a Monoid Polynomial

4.4.1 ReduceMonoidPoly

. ReduceMonoidPoly(poly, rules) (operation)

Recall that the words of a monoid polynomial are elements of a free monoid. Given a rewrite
system (set of rules) on the free monoid the words can be reduced. This allows us to simulate calcula-
tion in monoid rings where the monoid is given by a complete presentation. This function reduces the
words of the polynomial (elements of the free monoid) with respect to the complete rewrite system.
The words of the reduced polynomial are normal forms for the elements of the monoid presented by
that rewite system. The list of rules r2 is displayed in section 2.3.3.

Example

gap> M := genfmq8;;
gap> mp1 := MonoidPolyFromCoeffsWords([9,-7,5],
> [M[1]*M[3], M[2]^3, M[4]*M[3]*M[2]]);;
gap> PrintUsingLabels(mp1, genfmq8, q8labs);
5*B*A*b + -7*b^3 + 9*a*A
gap> rmp1 := ReduceMonoidPoly(mp1, r2);;
gap> PrintUsingLabels(rmp1, genfmq8, q8labs);
-7*B + 5*a + 9*id

Chapter 5

Module Polynomials

In this chapter we consider finitely generated modules over the monoid rings considered previously.
We call an element of this module a module polynomial, and we describe functions to construct module
polynomials and the standard algebraic operations for such polynomials.

A module polynomial modpoly is recorded as a list of pairs, [gen, monpoly], where gen is
a module generator (basis element), and monpoly is a monoid polynomial. The module polynomial
is printed as the formal sum of monoid polynomial multiples of the generators. Note that the monoid
polynomials are the coefficients of the module polynomials and appear to the right of the generator, as
we choose to work with right modules.

The examples we are aiming for are the identities among the relators of a finitely presented group
(see section 5.4).

5.1 Construction of module polynomials

5.1.1 ModulePoly (with input gens, polys)

. ModulePoly(gens, monpolys) (operation)

. ModulePoly(args) (operation)

. ZeroModulePoly(Fgens, Fmon) (operation)

The function ModulePoly returns a module polynomial. The terms of the polynomial may be
input as a list of generators followed by a list of monoid polynomials or as one list of [generator,
monoid polynomial] pairs.

Assuming that Fgens is the free group on the module generators and Fmon is the free group on the
monoid generators, the function ZeroModulePoly returns the zero module polynomial, which has no
terms, and is an element of the module.

Example

gap> q8R := FreeRelatorGroup(q8);;
gap> genq8R := GeneratorsOfGroup(q8R);
[q8_R1, q8_R2, q8_R3, q8_R4]
gap> q8Rlabs := ["q", "r", "s", "t"];;
gap> Print(rmp1, "\n");
- 7*q8_M4 + 5*q8_M1 + 9*<identity ...>

gap> M := GeneratorsOfGroup(fmq8);
[q8_M1, q8_M2, q8_M3, q8_M4]

23

idrel 24

gap> mp2 := MonoidPolyFromCoeffsWords([4,-5], [M[4], M[1]]);;
gap> Print(mp2, "\n");
4*q8_M4 - 5*q8_M1
gap> zeromp := ZeroModulePoly(q8R, freeq8);
zero modpoly
gap> s1 := ModulePoly([genq8R[4], genq8R[1]], [rmp1, mp2]);
q8_R1*(4*q8_M4 - 5*q8_M1) + q8_R4*(- 7*q8_M4 + 5*q8_M1 + 9*<identity ...>)

5.1.2 PrintLnModulePoly (input object, [gens,labels] for the group, ditto relators)

. PrintLnModulePoly(obj, gens1, labs1, gens2, labs2) (operation)

. PrintModulePoly(obj, gens1, labs1, gens2, labs2) (operation)

The function PrintModulePoly prints a module polynomial, using the function
PrintUsingLabels. Two lists of labels are involved: those for the fp-group being investi-
gated, and those for the free relator group of this group. The function PrintLnModulePoly does
exactly the same, and then appends a newline.

Example

gap> q8Rlabs := ["q", "r", "s", "t"];;
gap> PrintLnModulePoly(s1, genfgmon, q8labs, genq8R, q8Rlabs);
q*(4*B + -5*a) + t*(-7*B + 5*a + 9*id)
gap> s2 := ModulePoly([genq8R[3], genq8R[2], genq8R[1]],
> [-1*rmp1, 3*mp2, (rmp1+mp2)]);;
gap> PrintLnModulePoly(s2, genfgmon, q8labs, genq8R, q8Rlabs);
q*(-3*B + 9*id) + r*(12*B + -15*a) + s*(7*B + -5*a + -9*id)

5.2 Components of a module polynomial

5.2.1 Terms (for module polynomials)

. Terms(modpoly) (attribute)

. LeadTerm(modpoly) (attribute)

. LeadMonoidPoly(modpoly) (attribute)

. Length(modpoly) (method)

. One(modpoly) (attribute)

The function Terms returns the terms of a module polynomial as a list of pairs. In LeadTerm, the
generators are ordered, and the term of modpoly with the highest value generator is defined to be the
leading term. The monoid polynomial (coefficient) part of the leading term is returned by the function
LeadMonoidPoly.

The function Length counts the number of module generators which occur in modpoly (a gener-
ator occurs in a polynomial if it has nonzero coefficient). The function One returns the identity in the
free group on the generators.

idrel 25

Example

gap> [Length(s1), Length(s2)];
[2, 3]
gap> One(s1);
<identity ...>
gap> terms := Terms(s1);;
gap> for t in terms do
> PrintModulePolyTerm(t, genfmq8, q8labs, genq8R, q8Rlabs);
> Print("\n");
> od;
q*(4*B + -5*a)
t*(-7*B + 5*a + 9*id)
gap> t1 := LeadTerm(s1);;
gap> PrintModulePolyTerm(t1, genfmq8, q8labs, genq8R, q8Rlabs);
t*(-7*B + 5*a + 9*id)
gap> t2 := LeadTerm(s2);;
gap> PrintModulePolyTerm(t2, genfmq8, q8labs, genq8R, q8Rlabs);
s*(7*B + -5*a + -9*id)
gap> p1 := LeadMonoidPoly(s1);
- 7*q8_M4 + 5*q8_M1 + 9*<identity ...>

gap> p2 := LeadMonoidPoly(s2);
7*q8_M4 - 5*q8_M1 - 9*<identity ...>

5.3 Module Polynomial Operations

5.3.1 AddTermModulePoly

. AddTermModulePoly(modpoly, gen, monpoly) (operation)

The function AddTermModulePoly adds a term [gen, monpoly] to a module polynomial
modpoly.

Tests for equality and arithmetic operations are performed in the usual way. Module polynomials
may be added or subtracted. A module polynomial can also be multiplied on the right by a word or
by a scalar. The effect of this is to multiply the monoid polynomial parts of each term by the word or
scalar. This is made clearer in the example.

Example

gap> mp0 := MonoidPolyFromCoeffsWords([6], [M[2]]);;
gap> s0 := AddTermModulePoly(s1, genq8R[3], mp0);
q8_R1*(4*q8_M4 - 5*q8_M1) + q8_R3*(6*q8_M2) + q8_R4*(- 7*q8_M4 + 5*q8_M1 +
9*<identity ...>)
gap> Print(s1 + s2, "\n");
q8_R1*(q8_M4 - 5*q8_M1 + 9*<identity ...>) + q8_R2*(12*q8_M4 -
15*q8_M1) + q8_R3*(7*q8_M4 - 5*q8_M1 - 9*<identity ...>) + q8_R4*(-
7*q8_M4 + 5*q8_M1 + 9*<identity ...>)
gap> Print(s1 - s0, "\n");
q8_R3*(- 6*q8_M2)
gap> Print(s1 * 1/2, "\n");

idrel 26

q8_R1*(2*q8_M4 - 5/2*q8_M1) + q8_R4*(- 7/2*q8_M4 + 5/2*q8_M1 + 9/
2*<identity ...>)
gap> Print(s1 * M[1], "\n");
q8_R1*(4*q8_M4*q8_M1 - 5*q8_M1^2) + q8_R4*(- 7*q8_M4*q8_M1 + 5*q8_M1^2 +
9*q8_M1)

Chapter 6

Identities Among Relators

The identities among the relators for a finitely presented group G are constructed as logged module
polynomials. The procedure, described in [HW03] and based on work in [BRS99], is to construct a
full set of group relator sequences for the group; convert these into module polynomials (eliminating
empty sequences); and then apply simplification rules (including the primary identity property) to
eliminate obvious duplicates and conjugates.

When a reduced set of polynomials has been obtained, the relator sequences from which they were
formed are returned as the identities among relators for G.

6.1 Constructing identities

6.1.1 RootIdentities

. RootIdentities(grp) (attribute)

. RootPositions(grp) (attribute)

The root identities of G are identities of the form R−1Rw where R = wn is a proper power relator
and n > 1. (For equivalent forms invert, or permute the factors cyclically, or act with w−1.)

For S3 = 〈 f ,g | ρ = f 3,σ = g2,τ = (f g)2〉 all three relators are proper powers: [1≡ ρ = f 3,2≡
σ = g2,3≡ τ = (f g)2]. So the root identities are ρ−1ρa, σ−1σb and τ−1τab.

For Q8 = 〈a,b | q = a4,r = b4,s = abab−1, t = a2b2〉 only two of the four relators are proper
powers, so the root identities are q−1qa and r−1rb.

In the example we see that the attribute RootIdentities returns a list which includes R−1Rw−1

as well as R−1Rw. Relator ρ−1ρ f is stored as [[-1,id],[1,f]], etc.
The RootPositions attribute is a boolean list specifying which of the relators are proper powers.

Example

gap> roots3 := RootIdentities(s3);
[[[-1, <identity ...>], [1, s3_M1]],

[[-1, <identity ...>], [1, s3_M3]],
[[-2, <identity ...>], [2, s3_M2]],
[[-2, <identity ...>], [2, s3_M4]],
[[-3, <identity ...>], [3, s3_M1*s3_M2]],
[[-3, <identity ...>], [3, s3_M4*s3_M3]]]

gap> RootPositions(s3);
[true, true, true]

27

idrel 28

gap> PrintLnUsingLabels(RootIdentities(q8), genfmq8, q8labs);
[[[-1, id], [1, a]], [[-1, id], [1, A]], [[-2, id],
[2, b]], [[-2, id], [2, B]]]
gap> RootPositions(q8);
[true, true, false, false]

6.1.2 IdentityRelatorSequences

. IdentityRelatorSequences(grp) (attribute)

To construct the identity relator sequences for a group G we apply each relator R at each non-
identity element x, reducing the resulting words using the logged rewrite system.

With the s3 example, the monoid presentation has generators { f ,g,F,G} and relators

[f F, gG, F f , Gg, f 3, g2, (f g)2] ,

and the elements are {id, f ,g,F, f g,g f}. The logged rewriting system has relations

f−1 = F, g−1 = [−2, id]g, F−1 = f , G−1 = g, G = [−2, id]g,
f F = id, g2 = [2, id]id, F f = id, f 2 = [1, id]F, F2 = [−1, id] f ,
gF = [−3, id][2,FGF] f g, Fg = [−3, f][2,FG]g f ,
f g f = [−2,FGF][3, id]g, g f g = [3, f]F

Here is the Cayley graphs of S3, with the solid arrows forming the spanning tree:

Applying R = τ = (f g)2 at x = f gives the cycle (top right-hand quadrilateral):

f
f−→ F

g−→ g f
f−→ f g

g−→ f .

Each of these edges has a non-trivial logged rewrite, particularly the third edge where g f f → gF→ f g.
Combining this log information we obtain:

[τ,F] f = f .τ = [1, id].[−3, f][2,FG].[1,G][−3, id][2,FGF].[2,F] f .

idrel 29

Expanding [1, id][−3, f][2,FG][1,G][−3, id][2,FGF][2,F][−3,F] gives

f f f .FGFGF f .g f ggFG.g f f f G.GFGF. f g f ggFGF. f ggF. f GFGFF

which cancels to the identity, as expected. Converting this back to the group presentation, we obtain
the fourth identity given in the introduction (1.1):

ι(τ, f) = ρ (τ−1) f
σ

FG
ρ

G (τ−1) σ
FGF

σ
F (τ−1)F .

The operation IdentityRelatorSequences returns a list which omits any duplicates or empty
lists. For the s3 example, all of the possible 5∗3 = 15 sequences are added to the root identities.

Example

gap> ms3 := MonoidPresentationFpGroup(s3);;
gap> fms3 := FreeGroupOfPresentation(ms3);;
gap> genfms3 := GeneratorsOfGroup(fms3);;
gap> s3labs := ["f","g","F","G"];;
gap> SetMonoidPresentationLabels(ms3, s3labs);;
gap> idss3 := IdentityRelatorSequences(s3);;
gap> lenidss3 := Length(idss3);
17
gap> List(idss3, L -> Length(L));
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 6, 8, 8]
gap> for i in [1..Length(idss3)] do
> PrintLnUsingLabels(idss3[i], genfms3, s3labs);
> od;
[[-3, id], [3, f*g]]
[[-3, id], [3, G*F]]
[[-2, id], [2, g]]
[[-2, id], [2, G]]
[[-1, id], [1, f]]
[[-1, id], [1, F]]
[[1, id], [-1, f]]
[[1, id], [-1, F]]
[[1, G], [-1, F*G]]
[[2, id], [-2, G]]
[[2, F], [-2, G*F]]
[[3, f], [-3, G]]
[[-3, f], [2, F*G], [3, f], [-2, f]]
[[-2, F*G*F], [3, id], [2, id], [-3, G*F]]
[[-2, F*G*F], [3, id], [1, G], [-3, id], [2, F*G*F],
[-1, G*F]]
[[1, id], [-3, f], [2, F*G], [1, G], [-3, id],
[2, F*G*F], [2, F], [-3, F]]
[[1, G], [-3, id], [2, F*G*F], [2, F], [1, id],
[-3, f], [2, F*G], [-3, F*G]]

6.1.3 LogSequenceLessThan

. LogSequenceLessThan(J, K) (operation)

idrel 30

This is an operation used to sort lists of identity sequences. First the lengths of sequences J, K are
compared. If the lengths are equal then the sequences are compared as lists. The list idss3 is sorted
using this function.

Example

gap> LogSequenceLessThan(idss3[7], idss3[8]);
true

6.1.4 ExpandLogSequence

. ExpandLogSequence(mG, L) (operation)

This operation takes a log sequence L, writes each term as a conjugate of a relator, takes the
product of all of these, and then cancels consecutive inverse generators to return a word in the free
group of the presentation. This is precisely what we did by hand with ι(τ, f) on the previous page. If
the sequence is an identity sequence the identity element should be returned, so this provides a useful
check.

Example

gap> ExpandLogSequence(ms3, idss3[17]);
<identity ...>

6.2 Identities for S3

We now return to the example considered in section 1.1. In the previous section we have constructed
17 identity sequences, and we now wish to reduce this number to find a minimal set.

6.2.1 ReduceLogSequences

. ReduceLogSequences(G, ids) (operation)

This operation applies a collection of operations, which will be described in the following section,
to reduce the list idss3 from 17 to 5 identities.

Example

gap> ridss3 := ReduceLogSequences(s3, idss3);;
gap> lenridss3 := Length(ridss3);
5
gap> for i in [1..lenridss3] do
> PrintLnUsingLabels(ridss3[i], genfms3, s3labs);
> od;
[[-3, id], [3, f*g]]
[[-2, id], [2, g]]
[[-1, id], [1, f]]
[[1, id], [-3, f], [2, F*G], [1, G], [-3, id],
[2, F*G*F], [2, F], [-3, F]]

idrel 31

[[1, id], [-3, g], [2, F*G*F*g], [2, F*g], [1, g],
[-3, id], [2, F], [-3, F]]

We wish to show that the fifth of these identities is a combination of the first four. Recall that the fourth
identity was obtained by applying R = τ = (f g)2 at x = f . The fifth comes from applying R = τ at
x = g f , so this is the same cycle but with a different start point.

6.2.2 ConjugateByWordLogSequence

. ConjugateByWordLogSequence(mG, K, w) (operation)

This operation conjugates every term in a log sequence by a word in the generators. In the example
we conjugate the fifth identity K5 by G. It then becomes apparent that the fourth identity K4 has the
form [A, B, [-3, F]] while K5 has the form [B, A, [-3, FG]], where the F and the
GF are the inverses of the vertices where the cycle starts.

Example

gap> K4 := ShallowCopy(ridss3[4]);;
gap> PrintLnUsingLabels(K4, genfms3, s3labs);
[[1, id], [-3, f], [2, F*G], [1, G], [-3, id],
[2, F*G*F], [2, F], [-3, F]]
gap> L5 := ShallowCopy(ridss3[5]);;
gap> K5 := ConjugateByWordLogSequence(ms3, L5, genfms3[4]);;
gap> PrintLnUsingLabels(K5, genfms3, s3labs);
[[1, G], [-3, id], [2, F*G*F], [2, F], [1, id],
[-3, f], [2, F*G], [-3, F*G]]
gap> A := K4{[1..3]};;
gap> PrintLnUsingLabels(A, genfms3, s3labs);
[[1, id], [-3, f], [2, F*G]]
gap> B := K4{[4..7]};;
gap> PrintLnUsingLabels(B, genfms3, s3labs);
[[1, G], [-3, id], [2, F*G*F], [2, F]]
gap> PositionSublist(K5, A);
5
gap> PositionSublist(K5, B);
1

6.2.3 ChangeStartLogSequence

. ChangeStartLogSequence(mon, K, p) (operation)

The start point of an identity log sequence can be chosen at random (since every conjugate of an
identity is that identity). This operation permutes a given sequence K so as to start at the p-th position.

In our example we wish to show that K4 and K5 are equivalent up to root identities. To do this we
first replace K4 by J4 = [B, [-3, F], A].

Example

gap> J4 := ChangeStartLogSequence(ms3, K4, 4);;

idrel 32

gap> PrintLnUsingLabels(J4, genfms3, s3labs);
[[1, G], [-3, id], [2, F*G*F], [2, F], [-3, F],
[1, id], [-3, f], [2, F*G]]

6.2.4 InverseLogSequence

. InverseLogSequence(K) (operation)

To invert a log sequence we reverse the order of the terms and replace each [m,w] by [-m,w].
We continue our example by replacing J4 by its inverse.

Example

gap> J4 := InverseLogSequence(J4);;
gap> PrintLnUsingLabels(J4, genfms3, s3labs);
[[-2, F*G], [3, f], [-1, id], [3, F], [-2, F], [-2, F*G*F],
[3, id], [-1, G]]

6.2.5 CancelImmediateInversesLogSequence

. CancelImmediateInversesLogSequence(K) (attribute)

. CancelInversesLogSequence(mG, K) (operation)

Concatenating J4 and K5, we get [A^-1, [3, F], B^-1, B, A, [-3, FG]], with
length 16. Cancelling immediate inverses removes the [B^-1, B]. Cancelling inverses gets rid
of the terms a^-1 and A, converting [3, F] into [3, fgFG] = [3, FG]. Conjugating with
gf produces the third root identity [[3, fg], [-3, id]], which then cancels.

Example

gap> J4K5 := Concatenation(J4, K5);;
gap> J4K5 := CancelImmediateInversesLogSequence(J4K5);;
gap> PrintLnUsingLabels(J4K5, genfms3, s3labs);
[[-2, F*G], [3, f], [-1, id], [3, F], [1, id],
[-3, f], [2, F*G], [-3, F*G]]
gap> J4K5 := CancelInversesLogSequence(ms3, J4K5);
[]

6.3 Reducing identities

In this section we list some further operations which may be used to simplify the list of identities
returned by IdentityRelatorSequences. We will use our Q8 presentation in the examples.

Example

gap> mq8 := MonoidPresentationFpGroup(q8);;
gap> fmq8 := FreeGroupOfPresentation(mq8);;
gap> genfmq8 := GeneratorsOfGroup(fmq8);;

idrel 33

gap> q8labs := ["a","b","A","B"];;
gap> SetMonoidPresentationLabels(mq8, q8labs);;
gap> idsq8 := IdentityRelatorSequences(q8);;
gap> lenidsq8 := Length(idsq8);
28
gap> List(idsq8, L -> Length(L));
[2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 8, 8, 8,

9, 10, 10]

6.3.1 LogSequenceRewriteRules

. LogSequenceRewriteRules(mG) (attribute)

The root identity R−1Rw may be converted into the rewrite rule Rw→ R.
Example

gap> rulesq8 := LogSequenceRewriteRules(mq8);;
gap> for i in [1..8] do
> PrintLnUsingLabels(rulesq8[i], genfmq8, q8labs);
> od;
[[1, a], [1, id]]
[[-1, a], [-1, id]]
[[1, A], [1, id]]
[[-1, A], [-1, id]]
[[2, b], [2, id]]
[[-2, b], [-2, id]]
[[2, B], [2, id]]
[[-2, B], [-2, id]]
[[3, a*b*a*B], [3, id]]
[[3, b*A*B*A], [3, id]]
[[-3, a*b*a*B], [-3, id]]
[[-3, b*A*B*A], [-3, id]]
[[4, a^2*b^2], [4, id]]
[[4, B^2*A^2], [4, id]]
[[-4, a^2*b^2], [-4, id]]
[[-4, B^2*A^2], [-4, id]]

6.3.2 OnePassReduceLogSequence

. OnePassReduceLogSequence(J, rules) (operation)

The rewrite rules returned by LogSequenceRewriteRules may be used to simplify other identity
sequences. In the example the fourth rule (q−1)A→ q−1, applied twice, reduces (q−1)A2

to q−1.
Example

gap> J7 := idsq8[7];
[[1, <identity ...>], [-1, q8_M3^2]]
gap> OnePassReduceLogSequence(J7, rulesq8);

idrel 34

[[1, <identity ...>], [-1, <identity ...>]]

The operation ReduceLogSequences, described in subsection 6.2.1, applied to the list idsq8 reduces
the 28 identities to 15.

Example

gap> ridsq8 := ReduceLogSequences(q8, idsq8);;
gap> lenrids := Length(ridsq8);
15
gap> for i in [1..lenrids] do
> PrintLnUsingLabels(ridsq8[i], genfmq8, q8labs);
> od;
[[-2, id], [2, b]]
[[-1, id], [1, a]]
[[-4, id], [2, A^2], [1, id], [-4, a^2]]
[[-4, id], [3, A], [4, a], [-3, b]]
[[1, id], [-4, id], [2, A^2], [-4, A^2]]
[[-4, id], [3, A], [3, id], [2, id], [-4, b]]
[[-3, id], [4, B*A], [-4, A], [1, id], [-3, a]]
[[-3, id], [4, B*A], [-4, A^2], [1, id], [-3, B]]
[[-4, id], [3, A], [-4, A], [2, A^3], [1, id],
[-3, b]]
[[-4, id], [4, B*A^2], [-4, A^2], [1, id], [2, id],
[-4, b]]
[[-3, id], [4, B*A], [-4, A], [3, A^2], [4, id],
[-4, B]]
[[-4, id], [3, A], [4, B*A], [-4, A], [1, id],
[-3, a], [4, B], [-1, b]]
[[-3, id], [4, B*A], [-4, A], [3, A^2], [4, B*A^2],
[-4, A^2], [1, id], [-1, B]]
[[4, id], [-4, b], [1, b], [-3, a^2*b], [4, B*a*b],
[-4, a*b], [3, b], [-1, id]]
[[-3, id], [4, B*A], [-4, A], [1, id], [-4, a],
[2, A], [1, id], [-4, a^2], [-3, B]]

We now demonstrate that this list may be reduced further.

6.3.3 MoveRightLogSequence

. MoveRightLogSequence(mG, J, L, q) (operation)

. MoveLeftLogSequence(mG, J, L, q) (operation)

. SwapLogSequence(mG, J, p, q) (operation)

The terms in an identity sequence may be interchanged because

RwQv = QvRwQv
= Qv(Rw)−1

Rw.

In the first two of these three operations L = [p..r] is a range specifying a sublist K=J{[p..r]} of
J, and l is the length of J. The operation MoveRightLogSequence(mG,J,L,q), with 0 < p < q and

idrel 35

q+ r ≤ p+ l, moves sublist K to the q-th position, conjugating entries in J{[p+1 . . .q]} and moving
them all to the left.

Similarly MoveLeftLogSequence(mG,J,L,q), with 0 < q < p nd r ≤ l, moves sublist K to the
q-th position, conjugating entries in J{[q . . . p−1]} and moving them all to the right.

The operation SwapLogSequence(mG,J,p,q) with p < q swaps a pair of terms in a sequence J
by calling the two previous commands.

In all three operations the procedure is completed by a call to OnePassReduceLogSequence.
In the example the third identity is converted into the fifth by moving the third term one place right

and then changing the start position, so it may be omitted.
Example

gap> J3 := ShallowCopy(ridsq8[3]);;
gap> PrintLnUsingLabels(J3, genfmq8, q8labs);
[[-4, id], [2, A^2], [1, id], [-4, a^2]]
gap> K3 := MoveRightLogSequence(mq8, J3, [3], 4);;
gap> PrintLnUsingLabels(K3, genfmq8, q8labs);
[[-4, id], [2, A^2], [-4, A^2], [1, id]]
gap> J5 := ShallowCopy(ridsq8[5]);;
gap> PrintLnUsingLabels(J5, genfmq8, q8labs);
[[1, id], [-4, id], [2, A^2], [-4, A^2]]
gap> J5 = ChangeStartLogSequence(mq8, K3, 4);
true

6.3.4 SubstituteLogSubsequence

. SubstituteLogSubsequence(mG, K, J1, J2) (operation)

If we move the second term in J5 to the right, we find that sublist U = [[1,id],[2,id]] is equal
to V = [[4,A^2],[4,id]], with both expanding to a4b4.

Now U appears in the tenth identity, and if we replace it with V and then cancel, we obtain the
empty list. So the tenth identity may be omitted.

Example

gap> K5 := MoveRightLogSequence(mq8, J5, [2], 3);;
gap> PrintLnUsingLabels(K5, genfmq8, q8labs);
[[1, id], [2, id], [-4, id], [-4, A^2]]
gap> K5a := K5{[1..2]};;
gap> K5b := InverseLogSequence(K5{[3..4]});;
gap> K5a;K5b;
[[1, <identity ...>], [2, <identity ...>]]
[[4, q8_M3^2], [4, <identity ...>]]
gap> J10 := ShallowCopy(ridsq8[10]);;
gap> PrintLnUsingLabels(J10, genfmq8, q8labs);
[[-4, id], [4, B*A^2], [-4, A^2], [1, id], [2, id],
[-4, b]]
gap> K10 := SubstituteLogSubsequence(mq8, J10, K5a, K5b);;
gap> PrintLnUsingLabels(K10, genfmq8, q8labs);
[[-4, id], [4, B*A^2], [-4, A^2], [4, A^2], [4, id],
[-4, b]]

idrel 36

gap> CancelInversesLogSequence(mq8, K10);
[]

Similarly, we may reduce the ninth identity. Initially, U does not appear as a sublist of J9. Swapping
the fourth and fifth terms and conjugating by A produces U, which is then replaced by V. After a
cancellation, we obtain a conjugate of the fourth identity.

Example

gap> J9 := ShallowCopy(ridsq8[9]);;
gap> PrintLnUsingLabels(J9, genfmq8, q8labs);
[[-4, id], [3, A], [-4, A], [2, A^3], [1, id],
[-3, b]]
gap> K9 := MoveLeftLogSequence(mq8, J9, [5], 4);;
gap> PrintLnUsingLabels(K9, genfmq8, q8labs);
[[-4, id], [3, A], [-4, A], [1, id], [2, a], [-3, b]]
gap> L9 := ConjugateByWordLogSequence(mq8, K9, genfmq8[3]);;
gap> PrintLnUsingLabels(L9, genfmq8, q8labs);
[[-4, A], [3, A^2], [-4, A^2], [1, id], [2, id],
[-3, b*A]]
gap> M9 := SubstituteLogSubsequence(mq8, L9, K5a, K5b);;
gap> PrintLnUsingLabels(M9, genfmq8, q8labs);
[[-4, A], [3, A^2], [-4, A^2], [4, A^2], [4, id],
[-3, b*A]]
gap> N9 := CancelInversesLogSequence(mq8, M9);;
gap> PrintLnUsingLabels(N9, genfmq8, q8labs);
[[-4, A], [3, A^2], [4, id], [-3, b*A]]
gap> P9 := ConjugateByWordLogSequence(mq8, N9, genfmq8[1]);;
gap> PrintLnUsingLabels(P9, genfmq8, q8labs);
[[-4, id], [3, A], [4, a], [-3, b]]
gap> P9 = ridsq8[4];
true

We will not, for now, attempt to reduce the list of identities further.

6.4 The original approach

This section describes the approach used from the earliest versions of IdRel up to version 2.38 in
2017. For version 2.39 the methods were revised so as to produce some data for infinite groups. This
experimental work is described in later sections.

6.4.1 IdentitiesAmongRelators

. IdentitiesAmongRelators(grp) (attribute)

It is not guaranteed that a minimal set of identities is obtained. For q8 a set of seven identities is
returned, whereas a minimal set contains only six. See Example 5.1 of [HW03] for further details.

Why idrelq8 in the following example is shorter than ridsq8 above remains to be investigated!

idrel 37

Example

gap> idrelq8 := IdentitiesAmongRelators(q8);;
gap> Length(idrelq8);
14
gap> for i in [1..14] do
> PrintLnUsingLabels(idrelq8[i], genfmq8, q8labs);
> od;
[[-1, id], [1, a]]
[[-2, id], [2, b]]
[[-4, id], [3, A], [3, id], [2, id], [-4, b]]
[[-4, id], [2, A^2], [1, id], [-4, a^2]]
[[1, id], [-4, id], [2, A^2], [-4, A^2]]
[[-3, id], [4, B*A], [-4, A], [1, id], [-3, a]]
[[-4, id], [3, A], [4, a], [-3, b]]
[[-3, id], [4, B*A], [-4, A^2], [1, id], [-3, B]]
[[-4, id], [4, B*A^2], [-4, A^2], [1, id], [2, id],
[-4, b]]
[[-3, id], [4, B*A], [-4, A], [3, A^2], [4, id],
[-4, B]]
[[-4, id], [3, A], [-4, A], [2, A^3], [1, id],
[-3, b]]
[[-3, id], [4, B*A], [-4, A], [1, id], [-4, a],
[2, A], [1, id], [-4, a^2], [-3, B]]
[[-4, id], [3, A], [4, B*A], [-4, A], [1, id],
[-3, a], [4, B], [-1, b]]
[[-3, id], [4, B*A], [-4, A], [3, A^2], [4, B*A^2],
[-4, A^2], [1, id], [-1, B]]

6.4.2 IdentityYSequences

. IdentityYSequences(grp) (attribute)

These identities are then transformed into module polynomials

ρ(a+ba)+σ(id+ab+ba)− τ(id+a+A) ,

where the monoid elements are transformed into their normal forms.
The collection of saturated sets of these module polynomials is then reduced as far as possible,

and the minimal set obtained returned as the IdentityYSequences of the group. The group relator
sequences corresponding to these module polynomials form the IdentitiesAmongRelators for the
group.

Example

gap> idyseq8 := IdentityYSequences(q8);;
gap> for y in idyseq8 do
> PrintLnYSequence(y, genfmq8, q8labs, genq8R, q8Rlabs);
> od;
q8_Y2*(1*A), q^-1*(-1*A) + q*(1*id))
q8_Y1*(1*B), r^-1*(-1*B) + r*(1*id))

idrel 38

q8_Y6*(-1*id), r*(-1*id) + s*(-1*A + -1*id) + t^-1*(1*b + 1*id))
q8_Y3*(-1*a), q*(-1*a) + r*(-1*A) + t^-1*(1*A + 1*a))
q8_Y5*(-1*a), q*(-1*a) + r*(-1*A) + t^-1*(1*A + 1*a))
q8_Y7*(1*a*b), q*(1*a*b) + s^-1*(-1*a*b + -1*B) + t^-1*(-1*b) + t*(1*id))
q8_Y4*(1*A), s^-1*(-1*a*b) + s*(1*a^2) + t^-1*(-1*A) + t*(1*id))
q8_Y8*(1*a*b), q*(1*a*b) + s^-1*(-1*a*b + -1*A) + t^-1*(-1*a*B) + t*(1*id))
q8_Y10*(1*B), q*(1*B) + r*(1*B) + t^-1*(-1*B + -1*b + -1*id) + t*(1*id))
q8_Y11*(1*b), s^-1*(-1*b) + s*(1*B) + t^-1*(-1*a*B + -1*id) + t*(1*b + 1*a))
q8_Y9*(-1*a), q*(-1*a) + r*(-1*a^2) + s^-1*(1*a*B) + s*(-1*id) + t^-1*(1*a +
1*id))
q8_Y15*(1*a*b), q*(2*a*b) + r*(1*b) + s^-1*(-1*a*b + -1*A) + t^-1*(-1*a*B +
-1*B + -1*b) + t*(1*id))
q8_Y12*(1*b), q^-1*(-1*a^2) + q*(1*b) + s^-1*(-1*a*b) + s*(1*a*B) + t^-1*(
-1*a*B + -1*b) + t*(1*a + 1*id))
q8_Y13*(1*a*b), q^-1*(-1*A) + q*(1*a*b) + s^-1*(-1*a*b) + s*(1*a*B) + t^-1*(
-1*a*B + -1*b) + t*(1*a + 1*id))

6.5 Partial lists of elements

As we have seen, the procedure for obtaining identities involves applying each relator at each element
of the group. Since this will not terminate when the group is infinite, we include an operation to
construct words up to a given length in the monoid representation of the group.

6.5.1 PartialElementsOfMonoidRepresentation

. PartialElementsOfMonoidRepresentation(G, len) (operation)

As an example we take the group 〈u,v,w | u3,v2,w2,(uv)2,(vw)2〉.
Example

gap> F := FreeGroup(3);;
gap> u := F.1;; v := F.2;; w := F.3;;
gap> rels := [u^3, v^2, w^2, (u*v)^2, (v*w)^2];;
gap> q0 := F/rels;;
gap> SetArrangementOfMonoidGenerators(q0, [1,-1,2,-2,3,-3]);
gap> SetName(q0, "q0");
gap> mq0 := MonoidPresentationFpGroup(q0);;
gap> fmq0 := FreeGroupOfPresentation(mq0);;
gap> genfmq0 := GeneratorsOfGroup(fmq0);;
gap> q0labs := ["u","U","v","V","w","W"];;
gap> SetMonoidPresentationLabels(mq0, q0labs);;
gap> lrws := LoggedRewritingSystemFpGroup(q0);;
gap> pe1 := PartialElementsOfMonoidPresentation(q0, 1);;
gap> PrintLnUsingLabels(pe1, genfmq0, q0labs);
[id, u, U, v, w]
gap> pe2 := PartialElementsOfMonoidPresentation(q0, 2);;
gap> PrintLnUsingLabels(pe2, genfmq0, q0labs);
[id, u, U, v, w, u*v, u*w, U*v, U*w, v*w, w*u, w*U]

idrel 39

References

[BH82] R. Brown and J. Huebschumann. Identities among relations. In R. Brown and T. L. Thick-
stun, editors, Low-Dimensional Topology, volume 46 of London Math. Soc. Lecture Note
Series, page 153–202. Cambridge University Press, 1982. 4

[BRS99] R. Brown and A. Razak Salleh. On the computation of identities among relations and of
free crossed resolutions of groups. London Math. Soc. J. Comput. Math., 2:28–61, 1999. 4,
27

[GH17] S. Gutsche and M. Horn. AutoDoc - Generate documentation from GAP source code (Ver-
sion 2017.09.15), 2017. GAP package, https://github.com/gap-packages/AutoDoc.
2

[Hey99] A. Heyworth. Applications of Rewriting Systems and Groebner Bases to Computing Kan
Extensions and Identities Among Relations. PhD thesis, University of Wales, Bangor, 1999.
https://www.researchgate.net/profile/Anne-Heyworth/research. 4

[Hor14] M. Horn. GitHubPagesForGAP - Template for easily using GitHub Pages within
GAP packages (Version 0.1), 2014. GAP package, https://github.com/fingolfin/
GitHubPagesForGAP/. 2

[HW03] A. Heyworth and C. D. Wensley. Logged rewriting and identities among relators. In C. M.
Campbell, E. F. Robertson, and G. C. Smith, editors, Groups St Andrews 2001 in Oxford,
volume 304 of London Math. Soc. Lecture Note Series, page 256–276. Cambridge Univer-
sity Press, 2003. 4, 27, 36

[LN17] F. Lübeck and M. Neunhöffer. GAPDoc (version 1.6). RWTH Aachen, 2017. GAP package,
https://www.math.rwth-aachen.de/~Frank.Luebeck/gap/GAPDoc/index.html. 2

40

https://github.com/gap-packages/AutoDoc
https://www.researchgate.net/profile/Anne-Heyworth/research
https://github.com/fingolfin/GitHubPagesForGAP/
https://github.com/fingolfin/GitHubPagesForGAP/
https://www.math.rwth-aachen.de/~Frank.Luebeck/gap/GAPDoc/index.html

Index

=,+,* for module polynomials, 25
=,+,* for monoid polynomials, 21

AddTermModulePoly, 25
AddTermMonoidPoly, 20
ArrangementOfMonoidGenerators, 7

CancelImmediateInversesLogSequence, 32
CancelInversesLogSequence, 32
ChangeStartLogSequence, 31
Coeffs, 20
ConjugateByWordLogSequence, 31

ElementsOfMonoidPresentation, 12
ExpandLogSequence, 30

FreeGroupOfPresentation, 7
FreeRelatorGroup, 7
FreeRelatorHomomorphism, 7

GroupRelatorsOfPresentation, 8

HomomorphismOfPresentation, 8

IdentitiesAmongRelators, 36
IdentityRelatorSequences, 28
IdentityYSequences, 37
InitialLoggedRulesOfPresentation, 14
InitialRulesOfPresentation, 9
InverseLogSequence, 32
InverseRelatorsOfPresentation, 8

KnuthBendix, 12

LeadCoeffMonoidPoly, 20
LeadMonoidPoly, 24
LeadTerm

for module polynomials, 24
for monoid polynomials, 20

Length
for module polynomials, 24

for monoid polynomials, 21
LoggedKnuthBendix, 16
LoggedOnePassKB, 14
LoggedOnePassReduceWord, 17
LoggedReduceWordKB, 17
LoggedRewriteReduce, 15
LoggedRewritingSystemFpGroup, 16
LogSequenceLessThan, 29
LogSequenceRewriteRules, 33

ModulePoly
with input [gen,poly] list, 23
with input gens, polys, 23

Monic, 20
MonoidPoly, 19
MonoidPolyFromCoeffsWords, 19
MonoidPresentationFpGroup, 7
MonoidPresentationLabels, 7
MoveLeftLogSequence, 34
MoveRightLogSequence, 34

One, 24
OnePassKB, 11
OnePassReduceLogSequence, 33
OnePassReduceWord, 10

PartialElementsOfMonoidRepresentation,
38

PrintLnModulePoly
input object, [gens,labels] for the group, ditto

relators, 24
PrintLnUsingLabels, 8
PrintModulePoly

input object, [gens,labels] for the group, ditto
relators, 24

PrintUsingLabels, 8

ReduceLogSequences, 30
ReduceMonoidPoly, 22
ReduceWordKB, 10

41

idrel 42

RewriteReduce, 11
RewritingSystemFpGroup, 9
RootIdentities, 27
RootPositions, 27

ShorterLoggedRule, 17
SubstituteLogSubsequence, 35
SwapLogSequence, 34

Terms
for module polynomials, 24
for monoid polynomials, 20

Words, 20

ZeroModulePoly, 23
ZeroMonoidPoly, 19

	Introduction
	An illustrative example

	Rewriting Systems
	Monoid Presentations of FpGroups
	Rewriting systems for FpGroups
	Enumerating elements

	Logged Rewriting Systems
	Logged Knuth-Bendix Completion
	Logged reduction of a word

	Monoid Polynomials
	Construction of monoid polynomials
	Components of a polynomial
	Monoid Polynomial Operations
	Reduction of a Monoid Polynomial

	Module Polynomials
	Construction of module polynomials
	Components of a module polynomial
	Module Polynomial Operations

	Identities Among Relators
	Constructing identities
	Identities for S3
	Reducing identities
	The original approach
	Partial lists of elements

	References
	Index

