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1 Preamble
Abstract: This package gives access to the database of Lie p-rings of order at most p7 as determined by Mike Newman,
Eamonn O’Brien and Michael Vaughan-Lee, see [NOVL03] and [OVL05], and it provides some functionality to work
with these Lie p-rings.

Copyright: The LiePRing package is free software; you can redistribute it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your opinion) any later
version. The LiePRing package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

How to cite this package: If you use the LiePRing package, then please cite it as: Bettina Eick and Michael Vaughan-
Lee, LiePRing – A GAP Package for computing with nilpotent Lie rings of prime-power order (2014), see

https://www.gap-system.org/Packages/liepring.html

Acknowlegdements: The Lazard correspondence induces a one-to-one correspondence between the Lie p-rings of
order pn and class less than p and the p-groups of order pn and class less than p. This package provides a function to
evaluate this correspondence; this function has been implemented and given to us by Willem de Graaf.



2 Lie p-rings

In this preliminary chapter we recall some of theoretic background of Lie rings and Lie p-rings. We refer to Chapter
5 in [Khu98] for some further details. Throughout we assume that p stands for a rational prime.

A Lie ring L is an additive abelian group with a multiplication that is alternating, bilinear and satisfies the Jacobi
identity. We denote the product of two elements g and h of L with gh.

A subset I ⊆ L is an ideal in the Lie ring L if it is a subgroup of the additive group of L and it satisfies al ∈ I for all
a ∈ I and l ∈ L. As the multiplication in L is alternating, it follows that la ∈ I for all l ∈ L and a ∈ I. Note that if I
and J are ideals in L, then I + J = {a + b | a ∈ I, b ∈ J} and IJ = 〈ab | a ∈ I, b ∈ J〉+ are ideals in L.

A subset U ⊆ L is a subring of the Lie ring L if U is a Lie ring with respect to the addition and the multiplication of
L. Every ideal in L is also a subring of L. As usual, for an ideal I in L the quotient L/I has the structure of a Lie ring,
but this does not hold for subrings.

The lower central series of the Lie ring L is the series of ideals L = γ1(L) ≥ γ2(L) ≥ . . . defined by γi(L) = γi−1(L)L.
We say that L is nilpotent if there exists a natural number c with γc+1(L) = {0}. The smallest natural number with
this property is the class of L.

The notion of nilpotence now allows to state the central definition of this package. A Lie p-ring is a Lie ring that is
nilpotent and has pn elements for some natural number n.

Every finite dimensional Lie algebra over a field with p elements is an example for a Lie ring with pn elements. Note
that there exist non-nilpotent Lie algebras of this type: the Lie algebra consisting of all n × n matrices with trace 0
and n ≥ 3 is an example. Thus not every Lie ring with pn elements is nilpotent. (In contrast to the group case, where
every group with pn elements is nilpotent!)

For a Lie p-ring L we define the series L = λ1(L) ≥ λ2(L) ≥ . . . via λi+1(L) = λi(L)L + pλi(L). This series is the
lower exponent-p central series of L. Its length is the p-class of L. If |L/λ2(L)| = pd, then d is the minimal generator
number of L. Similar to the p-group case, one can observe that this is indeed the cardinality of a generating set of
smallest possible size.

Each Lie p-ring L has a central series L = L1 ≥ . . . ≥ Ln ≥ {0} with quotients of order p. Choose li ∈ Li \ Li+1 for
1 ≤ i ≤ n. Then (l1, . . . , ln) is a generating set of L satisfying that pli ∈ Li+1 and lilj ∈ Li+1 for 1 ≤ j < i ≤ n. We
call such a generating sequence a basis for L and we say that L has dimension n.



3 LiePRings in GAP

This package introduces a new datastructure that allows to define and compute with Lie p-rings in GAP. We first
describe this datastructure in the case of ordinary Lie p-rings; that is, Lie p-rings for a fixed prime p with given
structure constants. Then we show how this datastructure can also be used to define so-called ’generic’ Lie p-rings;
that is, Lie p-rings with indeterminate prime p.

3.1 Ordinary Lie p-rings

Let p be a prime and let L be a Lie p-ring of order pn. Let (l1, . . . , ln) be a basis for L. Then there exist coefficients
ci,j,k ∈ {0, . . . , p− 1} so that the following relations hold in L for 1 ≤ i, j ≤ n with i 6= j:

li · lj =
n

∑
k=i+1

ci,j,klk,

pli =
n

∑
k=i+1

ci,i,klk·

These structure constants define the Lie p-ring L. As the multiplication in a Lie p-ring is anticommutative, it follows
that ci,j,k = −cj,i,k holds for each k and each i 6= j. Thus the structure constants ci,j,k for i ≥ j are sufficient to define
the Lie p-ring L.

This package contains the new datastructure LiePRing that allows to define Lie p-rings via their structure constants
ci,j,k. To use this datastructure, we first collect all relevant information into a record as follows:

dim
the dimension n of L;

prime
the prime p of L;

tab
a list with structure constants [c1,1, c2,1, c2,2, c3,1, c3,2, c3,3, . . .].

Each entry ci,j in the list tab is a list [k1, ci,j,k1 , k2, ci,j,k2 , . . .] so that k1 < k2 < . . . and the entries ci,j,k1 , ci,j,k2 , . . . are
the non-zero structure contants in the product li · lj. Thus if li · lj = 0, then ci,j is the empty list. If an entry in the list
tab is not bound, then it is assumed to be the empty list.

1 I LiePRingBySCTable( SC )
I LiePRingBySCTableNC( SC )

These functions create a LiePRing from the structure constants table record SC. The first version checks that the
multiplication defined by tab is alternating and satisfies the Jacobi-identity, the second version assumes that this is
the case and omits these checks. These checks can also be carried out independently via the following function.

2 I CheckIsLiePRing( L )

This function takes as input an object L created via LiePRingBySCTableNC and checks that the Jacobi identity holds
in this ring.
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The following example creates the Lie 2-ring of order 8 with trivial multiplication.

gap> SC := rec( dim := 3, prime := 2, tab := [] );;

gap> L := LiePRingBySCTable(SC);

<LiePRing of dimension 3 over prime 2>

gap> l := BasisOfLiePRing(L);

[ l1, l2, l3 ]

gap> l[1]*l[2];

0

gap> 2*l[1];

0

gap> l[1] + l[2];

l1 + l2

The next example creates a LiePRing of order 54 with non-trivial multiplication.

gap> SC := rec( dim := 4, prime := 5, tab := [ [], [3, 1], [], [4, 1]]);;

gap> L := LiePRingBySCTableNC(SC);;

gap> ViewPCPresentation(L);

[l2,l1] = l3

[l3,l1] = l4

3.2 Generic Lie p-rings

In a generic Lie p-ring, p is allowed to be an indeterminate and the structure constants are allowed to be rational
functions over a polynomial ring in a finite set of commuting indeterminates. It is generally assumed that the inde-
terminate with name p represents the prime, the indeterminate with name w represents the smallest primitive root
modulo the prime and there are further predefined indeterminates with the names x, y, z, t, j, k, m, n, r, s, u and v.
These indeterminates are used in the database of Lie p-rings and they can be obtained via

1 I IndeterminateByName( string )

The structure constants records for generic Lie p-rings are similar to those for ordinary Lie p-rings, but have the
additional entry param which is a list containing all indeterminates used in the considered Lie p-ring. We exhibit an
example.

gap> p := IndeterminateByName("p");;

gap> x := IndeterminateByName("x");;

gap> S := rec( dim := 5,

> param := [ x ],

> prime := p,

> tab := [ [ 4, 1 ], [ 3, 1 ], [ 5, x ], [ 4, 1 ], [ 5, 1 ] ] );;

gap> L := LiePRingBySCTable(S);

<LiePRing of dimension 5 over prime p with parameters [ x ]>

gap> ViewPCPresentation(L);

p*l1 = l4

p*l2 = x*l5

[l2,l1] = l3

[l3,l1] = l4

[l3,l2] = l5

gap> l := BasisOfLiePRing(L);

[ l1, l2, l3, l4, l5 ]

gap> p*l[1];

l4
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gap> l[1]+l[2];

l1 + l2

gap> l[1]*l[2];

-1*l3

3.3 Specialising Lie p-rings

A generic Lie p-ring defines a family of ordinary Lie p-rings by evaluating the parameters contained in its presentation.
It is generally assumed that the indeterminate p is evaluated to a rational prime P and the indeterminate w is evaluated
to the smallest primitive root modulo P (this can be determined via PrimitiveRootMod(P)). All other indeterminates
can take arbitrary integer values (usually these values are in {0, . . . ,P− 1}, but other choices are possible as well).
The following functions allow to evaluate the indeterminates.

1 I SpecialiseLiePRing(L, P, para, vals)

takes as input a generic Lie p-ring L, a rational prime P, a list of indeterminates para and a corresponding list of
values vals. The function returns a new Lie p-ring in which the prime p is evaluated to P, the parameter w is evaluated
to PrimitiveRootMod(P) and the parameters in para are evaluated to vals.

2 I SpecialisePrimeOfLiePRing(L, P)

this is a shortcut for SpecialiseLiePRing(L, P, [], []). We exhibit a some example applications.

gap> p := IndeterminateByName("p");;

gap> w := IndeterminateByName("w");;

gap> x := IndeterminateByName("x");;

gap> y := IndeterminateByName("y");;

gap> S := rec( dim := 7,

> param := [ w, x, y ],

> prime := p,

> tab := [ [ ], [ 6, 1 ], [ 6, 1 ], [ 7, 1 ], [ ],

> [ 6, x, 7, y ], [ ], [ 7, 1 ], [ 6, w ] ] );;

gap> L := LiePRingBySCTable(S);

<LiePRing of dimension 7 over prime p with parameters [ w, x, y ]>

gap> ViewPCPresentation(L);

p*l2 = l6

p*l3 = x*l6 + y*l7

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = w*l6

gap> SpecialiseLiePRing(L, 7, [x, y], [0,0]);

<LiePRing of dimension 7 over prime 7>

gap> ViewPCPresentation(last);

7*l2 = l6

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = 3*l6

gap> SpecialiseLiePRing(L, 11, [x, y], [0,10]);

<LiePRing of dimension 7 over prime 11>

gap> ViewPCPresentation(last);

11*l2 = l6

11*l3 = 10*l7
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[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = 2*l6

gap> Cartesian([0,1],[0,1]);

[ [ 0, 0 ], [ 0, 1 ], [ 1, 0 ], [ 1, 1 ] ]

gap> List(last, v -> SpecialiseLiePRing(L, 2, [x,y], v));

[ <LiePRing of dimension 7 over prime 2>,

<LiePRing of dimension 7 over prime 2>,

<LiePRing of dimension 7 over prime 2>,

<LiePRing of dimension 7 over prime 2> ]

It is not necessary to specialise all parameters at once. In particular, it is possible to leave the prime p as indeterminate
and specialize only some of the parameters. (Except for w which is linked to p.)

gap> SpecialiseLiePRing(L, p, [x], [0]);

<LiePRing of dimension 7 over prime p with parameters [ y, w ]>

gap> ViewPCPresentation(last);

p*l2 = l6

p*l3 = y*l7

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = w*l6

gap> SpecialiseLiePRing(L, p, [y], [3]);

<LiePRing of dimension 7 over prime p with parameters [ x, w ]>

gap> ViewPCPresentation(last);

p*l2 = l6

p*l3 = x*l6 + 3*l7

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = w*l6

It is also possible to specialise the prime only, but leave all or some of the parameters indeterminate. Note that
specialising p also specialises w. Again, we continue to use the generic Lie p-ring L as above.

gap> SpecialisePrimeOfLiePRing(L, 29);

<LiePRing of dimension 7 over prime 29 with parameters [ y, x ]>

gap> ViewPCPresentation(last);

29*l2 = l6

29*l3 = x*l6 + y*l7

[l2,l1] = l6

[l3,l1] = l7

[l4,l2] = l7

[l4,l3] = 2*l6

3 I LiePValues(K)

if K is obtained by specialising, then this attribute is set and contains the parameters that have been specialised and
their values.
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gap> L := LiePRingsByLibrary(6)[14];

<LiePRing of dimension 6 over prime p with parameters [ x ]>

gap> K := SpecialisePrimeOfLiePRing(L, 5);

<LiePRing of dimension 6 over prime 5 with parameters [ x ]>

gap> LiePValues(K);

[ [ p, w ], [ 5, 2 ] ]

3.4 Subrings of Lie p-rings

Let L be a Lie p-ring with basis (l1, . . . , ln) and let U be a subring of L. Then U is a Lie p-ring and thus also has a
basis (u1, . . . , um). For 1 ≤ i ≤ m we define the coefficients ai,j ∈ {0, . . . , p− 1} via

ui =
n

∑
j=1

ai,jli

and we denote with A the matrix with entries ai,j. We say that the basis (u1, . . . , um) is induced if A is in upper
triangular form. Further, the basis (u1, . . . , um) is canonical if A is in upper echelon form; that is, it is upper triangular,
each row in A has leading entry 1 and there are 0’s above the leading entry. Note that a canonical basis is unique for
the subring.

1 I LiePSubring(L, gens)

Let L be a (generic or ordinary) Lie p-ring and let gens be a set of elements in L. This function determines a canonical
basis for the subring generated by gens in L and returns the LiePSubring of L generated by gens. Note that this
function may have strange effects for generic Lie p-rings as the following example shows.

gap> L := LiePRingsByLibrary(6)[100];

<LiePRing of dimension 6 over prime p>

gap> l := BasisOfLiePRing(L);

[ l1, l2, l3, l4, l5, l6 ]

gap> U := LiePSubring(L, [5*l[1]]);

<LiePRing of dimension 3 over prime p>

gap> BasisOfLiePRing(U);

[ l1, l4, l6 ]

gap> K := SpecialisePrimeOfLiePRing(L, 5);

<LiePRing of dimension 6 over prime 5>

gap> b := BasisOfLiePRing(K);

[ l1, l2, l3, l4, l5, l6 ]

gap> LiePSubring(K, [5*b[1]]);

<LiePRing of dimension 2 over prime 5>

gap> BasisOfLiePRing(last);

[ l4, l6 ]

gap> K := SpecialisePrimeOfLiePRing(L, 7);

<LiePRing of dimension 6 over prime 7>

gap> b := BasisOfLiePRing(K);

[ l1, l2, l3, l4, l5, l6 ]

gap> U := LiePSubring(K, [5*b[1]]);

<LiePRing of dimension 3 over prime 7>

gap> BasisOfLiePRing(U);

[ l1, l4, l6 ]

2 I LiePIdeal(L, gens)

return the ideal of L generated by gens. This function computes a an induced basis for the ideal.
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gap> LiePIdeal(L, [l[1]]);

<LiePRing of dimension 5 over prime p>

gap> BasisOfLiePRing(last);

[ l1, l3, l4, l5, l6 ]

3 I LiePQuotient(L, U)

return a Lie p-ring isomorphic to L/U where U must be an ideal of L. This function requires that L is an ordinary Lie
p-ring.

gap> LiePIdeal(K, [b[1]]);

<LiePRing of dimension 5 over prime 7>

gap> LiePIdeal(K, [b[2]]);

<LiePRing of dimension 4 over prime 7>

gap> LiePQuotient(K,last);

<LiePRing of dimension 2 over prime 7>

3.5 Elementary functions

The functions described in this section work for ordinary and generic Lie p-rings and their subrings.

1 I PrimeOfLiePRing(L)

returns the underlying prime. This can either be an integer or an indeterminate.

2 I BasisOfLiePRing(L)

returns a basis for L.

3 I DimensionOfLiePRing(L)

returns the dimension of L.

4 I ParametersOfLiePRing(L)

returns the list of indeterminates involved in L. If L is a subring of a Lie p-ring defined by structure constants, then
the parameters of the parent are returned.

5 I ViewPCPresentation(L)

prints the presentation for L with respect to its basis.

3.6 Series of subrings

Let L be a generic or ordinary Lie p-ring or a subring of such such a Lie p-ring.

1 I LiePLowerCentralSeries(L)

returns the lower central series of L.

2 I LiePLowerPCentralSeries(L)

returns the lower exponent-p central series of L.

3 I LiePDerivedSeries(L)

returns the derived series of L.

4 I LiePMinimalGeneratingSet(L)

returns a minimal generating set of L; that is, a generating set of smallest possible size.
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3.7 The Lazard correspondence

The following function has been implemented by Willem de Graaf. It uses the Baker-Campbell-Hausdorff formula as
described in [CdGVL12] and it is based on the Liering package [CdG10].

1 I PGroupByLiePRing(L)

Let L be an ordinary Lie p-ring with cl(L) < p. Then this function returns the p-group G obtained from L via the
Lazard correspondence.



4 The Database
This package gives access to the database of Lie p-rings of order at most p7 as determined by Mike Newman, Eamonn
O’Brien and Michael Vaughan-Lee, see [NOVL03] and [OVL05]. A description of the database can also be found in
[VL13].

For each n ∈ {1, . . . , 7} this package contains a (finite) list of generic presentations of Lie p-rings. For each prime
p ≥ 5, each of the generic Lie p-rings gives rise to a family of Lie p-rings over the considered prime p by specialising
the indeterminates to a certain list of values. The resulting lists of Lie p-rings provides a complete and irredundant
set of isomorphism type representatives of the Lie p-rings of order pn. The generic Lie p-rings of p-class at most 2
can also be considered for the prime p = 3 and yield a list of isomorphism type representatives for the Lie p-rings of
order 3n and p-class at most 2.

The Lazard correspondence has been used to check the correctness of the database of Lie p-rings: for various small
primes it has been checked that the Lie p-rings of this database define non-isomorphic finite p-groups.

In the following we describe functions to access the database. Throughout this chapter, we assume that dim ∈
{1, . . . , 7} and P is a prime with P 6= 2.

4.1 Accessing Lie p-rings
1 I LiePRingsByLibrary( dim )
I LiePRingsByLibrary( dim, gen, cl )

returns the generic Lie p-rings of dimension dim in the database. The second form returns the Lie p-rings of minimal
generator number gen and p-class cl only.

2 I LiePRingsByLibrary( dim, P )
I LiePRingsByLibrary( dim, P, gen, cl )

returns isomorphism type representatives of ordinary Lie p-rings of dimension dim for the prime P. The second form
returns the Lie p-rings of minimal generator number gen and p-class cl only. The function assumes P ≥ 3 and for
P = 3 there are only the Lie p-rings of p-class at most 2 available.

The first example yields the generic Lie p-rings of dimension 4.

gap> LiePRingsByLibrary(4);

[ <LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,
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<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p>,

<LiePRing of dimension 4 over prime p> ]

The next example yields the isomorphism type representatives of Lie p-rings of dimension 3 for the prime 5.

gap> LiePRingsByLibrary(3, 5);

[ <LiePRing of dimension 3 over prime 5>,

<LiePRing of dimension 3 over prime 5>,

<LiePRing of dimension 3 over prime 5>,

<LiePRing of dimension 3 over prime 5>,

<LiePRing of dimension 3 over prime 5> ]

The following example extracts the generic Lie p-rings of dimension 5 with minimal generator number 2 and p-class
4.

gap> LiePRingsByLibrary(5, 2, 4);

[ <LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p> ]

Finally, we determine the isomorphism type representatives of Lie p-rings of dimension 5, minimal generator number
2 and p-class 4 for the prime 7.

gap> LiePRingsByLibrary(5, 7, 2, 4);

[ <LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7>,

<LiePRing of dimension 5 over prime 7> ]
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4.2 Numbers of Lie p-rings
1 I NumberOfLiePRings( dim )

returns the number of generic Lie p-rings in the database of the considered dimension for dim{1, . . . , 7}.

gap> List([1..7], x -> NumberOfLiePRings(x));

[ 1, 2, 5, 15, 75, 542, 4773 ]

2 I NumberOfLiePRings( dim, P )

returns the number of isomorphism types of ordinary Lie p-rings of order Pdim in the database. If P ≥ 5, then this is the
number of all isomorphism types of Lie p-rings of order Pdim and if P = 3 then this is the number of all isomorphism
types of Lie p-rings of p-class at most 2. If P ≥ 7, then this number coincides with NumberSmallGroups(Pdim).

3 I NumberOfLiePRingsInFamily( L )

returns the number of Lie p-rings associated to L as a polynomial in p and possibly some residue classes.

gap> L := LiePRingsByLibrary(7)[780];

<LiePRing of dimension 7 over prime p with parameters

[ x, y, z, t, s, u, v ]>

gap> NumberOfLiePRingsInFamily(L);

-1/3*p^5*(p-1,3)+p^5-1/3*p^4*(p-1,3)+p^4-1/3*p^3*(p-1,3)+p^3-1/3*p^2*(p-1,3)

+p^2-p*(p-1,3)+3*p-3/2*(p-1,3)+9/2

4.3 Searching the database

We now consider a generic Lie p-ring L from the database and consider the family of ordinary Lie p-rings that arise
from it.

1 I LiePRingsInFamily( L, P )

takes as input a generic Lie p-ring L from the database and a prime P and returns all Lie p-rings determined by L and
P up to isomorphism. This function returns fail if the generic Lie p-ring does not exist for the special prime P; this
may be due to the conditions on the prime or (if P = 3) to the p-class of the Lie p-ring.

gap> L := LiePRingsByLibrary(7)[118];

<LiePRing of dimension 7 over prime p with parameters [ x, y ]>

gap> LibraryConditions(L);

[ "[x,y]~[x,-y]", "p=1 mod 4" ]

gap> LiePRingsInFamily(L, 7);

fail

gap> Length(LiePRingsInFamily(L,13));

91

gap> 13^2;

169

The following example shows how to determine all Lie p-rings of dimension 5 and p-class 4 over the prime 29 up to
isomorphism.
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gap> L := LiePRingsByLibrary(5);;

gap> L := Filtered(L, x -> PClassOfLiePRing(x)=4);

[ <LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p>,

<LiePRing of dimension 5 over prime p> ]

gap> K := List(L, x-> LiePRingsInFamily(x, 29));

[ [ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ], fail, fail,

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ], fail, fail,

[ <LiePRing of dimension 5 over prime 29> ],

[ <LiePRing of dimension 5 over prime 29> ] ]

gap> K := Filtered(Flat(K), x -> x<>fail);

[ <LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29>,

<LiePRing of dimension 5 over prime 29> ]

4.4 More details

Let L be a Lie p-ring from the database. Then the following additional attributes are available.

1 I LibraryName(L)

returns a string with the name of L in the database. See p567.pdf for further background.

2 I ShortPresentation(L)

returns a string exhibiting a short presentation of L.
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3 I LibraryConditions(L)

returns the conditions on L. This is a list of two strings. The first string exhibits the conditions on the parameters of L,
the second shows the conditions on primes.

4 I MinimalGeneratorNumberOfLiePRing(L)

returns the minimial generator number of L.

5 I PClassOfLiePRing(L)

returns the p-class of L.

gap> L := LiePRingsByLibrary(7)[118];

<LiePRing of dimension 7 over prime p with parameters [ x, y ]>

gap> LibraryName(L);

"7.118"

gap> LibraryConditions(L);

[ "[x,y]~[x,-y]", "p=1 mod 4" ]

All of the information listed in this section is inherited when L is specialised.

gap> L := LiePRingsByLibrary(7)[118];

<LiePRing of dimension 7 over prime p with parameters [ x, y ]>

gap> K := SpecialiseLiePRing(L, 13, ParametersOfLiePRing(L), [0,0]);

<LiePRing of dimension 7 over prime 13>

gap> LibraryName(K);

"7.118"

gap> LibraryConditions(K);

[ "[x,y]~[x,-y]", "p=1 mod 4" ]

The following example shows how to find a Lie p-ring with a given name in the database.

gap> L := LiePRingsByLibrary(7);;

gap> Filtered(L, x -> LibraryName(x) = "7.1010")[1];

<LiePRing of dimension 7 over prime p>

4.5 Special functions for dimension 7

The database of Lie p-rings of dimension 7 is very large and it may be time-consuming (or even impossible due to
storage problems) to generate all Lie p-rings of dimension 7 for a given prime P.

Thus there are some special functions available that can be used to access a particular set of Lie p-rings of dimension
7 only. In particular, it is possible to consider the descendants of a single Lie p-ring of smaller dimension by itself.
The Lie p-rings of this type are all stored in one file of the library. Thus, equivalently, it is possible to access the Lie
p-rings in one single file only.

The table LIE TABLE contains a list of all possible files together with the number of Lie p-rings generated by their
corresponding Lie p-rings.

1 I LiePRingsDim7ByFile( nr )

returns the generic Lie p-rings in file number nr.

2 I LiePRingsDim7ByFile( nr, P )

returns the isomorphism types of Lie p-rings in file number nr for the prime P.
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gap> LIE_TABLE[100];

[ "3gen/gapdec6.139", 1/2*p+(p-1,3)+3/2 ]

gap> LiePRingsDim7ByFile(100);

[ <LiePRing of dimension 7 over prime p>,

<LiePRing of dimension 7 over prime p>,

<LiePRing of dimension 7 over prime p>,

<LiePRing of dimension 7 over prime p>,

<LiePRing of dimension 7 over prime p with parameters [ x ]> ]

gap> LiePRingsDim7ByFile(100, 7);

[ <LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7>,

<LiePRing of dimension 7 over prime 7> ]

4.6 Dimension 8 and maximal class

Recently, Lee and Vaughan-Lee [LVL22] determined the Lie p-rings of dimension 8 with maximal class up to isomor-
phism. This classification is now also available in the Lie p-ring package via the following functions.

1 I LiePRingsByLibraryMC8()

returns a list of 69 generic Lie p-rings. For each of these the following function returns the isomorphism types of Lie
p-rings in the family for a fixed prime P with P ≥ 5.

2 I LiePRingsInFamilyMC8(L, P)



5 Advanced functions
for Lie p-rings

This chapter described a few more advanced functions available for generic Lie p-rings.

5.1 Schur multipliers

The package contains a method to determine the Schur multipliers of the Lie p-rings in the family defined by a generic
Lie p-ring.

1 I LiePSchurMult( L )

The function takes as input a generic Lie p-ring and determines a list of possible Schur multipliers, each described by
its abelian invariants, for the Lie p-rings in the family described by L. For each entry in the list of Schur multipliers
there is a description of those parameters which give the considered entry. This description consists of two lists ’units’
and ’zeros’. Both consist of rational functions over the parameters of the Lie p-ring. The parameters described by
these lists are which evaluate to zero for each rational function in ’zeros’ and evaluate not to zero for each rational
function in ’units’.

gap> LL := LiePRingsByLibrary(7);;

gap> L := Filtered(LL, x -> Length(ParametersOfLiePRing(x))=2)[1];

<LiePRing of dimension 7 over prime p with parameters [ x, y ]>

gap> NumberOfLiePRingsInFamily(L);

p^2-p

gap> RingInvariants(L);

rec( units := [ x ], zeros := [ ] )

gap> ss := LiePSchurMult(L);

[ rec( norm := [ p ], units := [ x, y ], zeros := [ x*y^2-x*y+1 ] ),

rec( norm := [ p^2 ], units := [ x ], zeros := [ x*y ] ),

rec( norm := [ p ], units := [ x, x*y^2-x*y+1, y ], zeros := [ ] ) ]

In this example, L defines a generic Lie p-rings with two parameters and the RingInvariants of L show that the
parameter x should be non-zero. The function LiePSchurMult(L) yields that there are two possible Schur multipliers
for the Lie p-rings in the family defined by L: the cyclic groups of order p and of order p2. The second option only
arises if xy = 0 and thus, as x is non-zero, if y = 0.

The package also contains a function that tries to determine the numbers of values of the parameters satisfying the
conditions of a description of a Schur multiplier. This succeeds in many cases and returns a polynomial in p in this
case. If it does not succeed then it returns fail.

2 I ElementNumbers( pp, ss )

We continue the above example.

gap> ElementNumbers(ParametersOfLiePRing(L), ss);

rec( norms := [ [ p^2 ], [ p ] ], numbs := [ p-1, p^2-2*p+1 ] )
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5.2 Automorphism groups

The package contains a function that determines a description for the automorphism groups of the Lie p-rings in the
family defined by a generic Lie p-ring.

1 I AutGrpDescription( L )

Each automorphism of L is defined by its images on a generating set of L. If l1, · · ·, ln is a basis of L and l1, ··, ld is a
generating set, then each automorphism is defined by the images of l1, ··, ld and each image is an integral linear com-
bination of the basis elements l1, ··, ln. The function AutGrpDescription returns a matrix containing a description of
the coefficients in each linear combination and a list of relations among these coefficients. We consider two examples.

gap> L := Filtered(LL, x -> Length(ParametersOfLiePRing(x))=2)[1];

<LiePRing of dimension 7 over prime p with parameters [ x, y ]>

gap> AutGroupDescription(L);

rec( auto := [ [ 1, 0, A13, A14, A15, A16, A17 ],

[ 0, 1, A23, A24, A25, A26, A27 ] ],

eqns := [ [ ], [ ] ] )

gap> L := Filtered(LL, x -> Length(ParametersOfLiePRing(x))=2)[2];

<LiePRing of dimension 7 over prime p with parameters [ x, y ]>

gap> AutGroupDescription(L);

rec( auto := [ [ A22^3, 0, A13, A14, A15, A16, A17 ],

[ 0, A22, A23, A24, A25, A26, A27 ] ],

eqns := [ [ A22*A24-1/2*A23^2, A22^2*y-y,

A22*A23^2*y-2*A24*y, A22^4-1,

A23^4*y-4*A24^2*y, A22^3*A23^2-2*A24,

A22^2*A23^4-4*A24^2, A22*A23^6-8*A24^3,

A23^8-16*A24^4 ] ] )

In both cases, L is generated by the first two entries in its basis and hence the automorphism group matrix has two
rows and seven columns. In the first case, L has p10 automorphisms inducing the identity on the Frattini-quotient of L.
In the second case, the automorphism group matrix shows that each automorphism induces a certain type of diagonal
matrix on the Frattini-quotient of L and there are further equations among the coefficients of the matrix. These further
equations are equivalent to A222 = 1 and A24 = A22A232/2. Hence L has 2p9 automorphisms.

The entry eqns is a list of lists. The equations in the ith entry of this list have to be satisfied mod pi.

In a few special cases, the function returns a list of possible automorphisms together with related equations and
conditions. We exhibit an example.

gap> L := LiePRingsByLibrary(7)[489];

<LiePRing of dimension 7 over prime p with parameters [ x ]>

gap> AutGroupDescription(L);

[ rec( auto := [ [ 1, 0, A13, A14, A15, A16, A17 ],

[ 0, 1, A23, A24, A25, A26, A27 ] ],

comment := "p^8 automorphisms",

eqns := [ [ A13^2*x-A13*A23+2*A15*x+A14-A25,

-A13*A23*x+A14*x+A23^2-A25*x-2*A24 ] ] ),

rec( auto := [ [ 0, A12, A13, A14, A15, A16, A17 ],

[ -x, 0, A23, A24, A25, A26, A27 ] ],

comment := "p^8 automorphisms when x <> 0 mod p",

eqns := [ [ A12^2*A24*x-A12*A13*A23*x+A12*A13*x^2

+2*A12*A15*x^2+A12*A14*x-A13^2*x+A13*x+A15*x-A14,

-A12^2*A23*x^3+A12*A13*x^3+A12*A23^2*x-A12*A25*x^2

-2*A12*A24*x+A13*A23*x+A13*x^2-A15*x^2+A23*x+A25*x-A24 ],

[ A12*x+1 ] ] ) ]
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In this example A12x = −1 modulo p2. We note that different choices for A12 do not give different automorphisms.
Hence a single solution for A12 is sufficient to describe all automorphisms.
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