Matrices for the homalg project

2024.02-01

20 February 2024

Mohamed Barakat
Markus Lange-Hegermann
Martin Leuner
Vinay Wagh
Mohamed Barakat
Email: mohamed.barakat@uni-siegen.de
Homepage: https://mohamed-barakat.github.io
Address: Walter-Flex-Str. 3
 57072 Siegen
 Germany

Markus Lange-Hegermann
Email: markus.lange-hegermann@hs-owl.de
Homepage: https://www.th-owl.de/eecs/fachbereich/team/markus-lange-hegermann/
Address: Markus Lange-Hegermann
 Hochschule Ostwestfalen-Lippe
 Liebigstraße 87
 32657 Lemgo
 Germany

Martin Leuner
Email: leuner@omo.math.rwth-aachen.de
Homepage: http://wwwb.math.rwth-aachen.de/Mitarbeiter/leuner.php
Address: Martin Leuner
 Lehrstuhl B fuer Mathematik, RWTH Aachen
 Templergraben 64
 52062 Aachen
 Germany

Vinay Wagh
Email: waghoba@gmail.com
Homepage: http://www.iitg.ernet.in/vinay.wagh/
Address: E-102, Department of Mathematics,
 Indian Institute of Technology Guwahati,
 Guwahati, Assam, India.
 PIN: 781 039.
 India
Contents

1 Introduction 4
1.1 What is the role of the MatricesForHomalg package in the homalg project? 4
1.2 This manual 5

2 Installation of the MatricesForHomalg Package 6

3 Rings 7
3.1 Rings: Category and Representations 7
3.2 Rings: Constructors 8
3.3 Rings: Properties 9
3.4 Rings: Attributes 17
3.5 Rings: Operations and Functions 21

4 Ring Maps 22
4.1 Ring Maps: Category and Representations 22
4.2 Ring Maps: Constructors 22
4.3 Ring Maps: Properties 23
4.4 Ring Maps: Attributes 24
4.5 Ring Maps: Operations and Functions 24

5 Matrices 25
5.1 Matrices: Category and Representations 25
5.2 Matrices: Constructors 25
5.3 Matrices: Properties 31
5.4 Matrices: Attributes 34
5.5 Matrices: Operations and Functions 38

6 Ring Relations 54
6.1 Ring Relations: Categories and Representations 54
6.2 Ring Relations: Constructors 55
6.3 Ring Relations: Properties 55
6.4 Ring Relations: Attributes 55
6.5 Ring Relations: Operations and Functions 55

A The Basic Matrix Operations 56
A.1 Main 56
A.2 Effective 56
Chapter 1

Introduction

1.1 What is the role of the MatricesForHomalg package in the homalg project?

1.1.1 MatricesForHomalg provides ...

The package MatricesForHomalg provides:

- rings
- ring elements
- ring maps
- matrices

1.1.2 homalg delegates ...

The package homalg delegates all matrix operations as it treats matrices and their rings as black boxes. homalg comes with a single predefined class of rings and a single predefined class of matrices over these rings – the so-called internal matrices (→ 5.1.2) over so-called internal rings (→ 3.1.4). An internal matrix (resp. ring) is simply a wrapper containing a GAP-builtin matrix (resp. ring). homalg allows other packages to define further classes or extend existing classes of rings and matrices together with their operations. For example:

- The homalg subpackage ResidueClassRingForHomalg (→ Appendix D) defines the classes of residue class rings, residue class ring elements, and matrices over residue class rings. Such a matrix is defined by a matrix over the ambient ring which is nevertheless interpreted modulo the ring relations, i.e. modulo the generators of the defining ideal.

- The package GaussForHomalg extends the class of internal matrices enabling it to wrap sparse matrices provided by the package Gauss. GaussForHomalg delegates the essential part of the matrix creation and all matrix operations to Gauss.

- The package HomalgToCAS defines the classes of so-called external rings and matrices and the package RingsForHomalg delegates the essential part of the matrix creation and all matrix operations to external computer algebra systems like Singular, Macaulay2, Sage, Macaulay2,
The package homalg accesses external matrices via pointers. The pointer of an external matrix is simply its name in the external system. HomalgToCAS chooses these names.

- The package LocalizeRingForHomalg defines the classes of local(ized) rings, local ring elements, and local matrices. A homalg local matrix contains a homalg matrix as a numerator and an element of the global ring as a denominator.

The matrix operations are divided into two classes called “Tools” and “Basic”. The “Tools” operations include addition, subtraction, multiplication, extracting certain rows or columns, stacking, and augmenting matrices (→ Appendix B). The “Basic” operations include the two basic operations in linear algebra needed to solve an inhomogeneous linear system $XA = B$ with coefficients in a not necessarily commutative ring R (→ Appendix A):

- Effectively reducing B modulo A, i.e. effectively deciding if a row (or a set of rows) B lies in the R-span of the rows of the matrix A.

- Computing an R-generating set of row syzygies (= R-relations among the rows) of A, i.e. computing an R-generating set of the left kernel of A. This generating set is then given as the rows of a matrix Y and $YA = 0$.

The first operation is nothing but deciding the solvability of the inhomogeneous system $XA = B$ and if solvable to compute a particular solution X, while the second is to compute an R-generating set for the homogeneous solution space, i.e. the solution space of the homogeneous system $YA = 0$. The above is of course also valid for the column convention.

1.1.3 The black box concept

Now we address the following concerns: Wouldn’t the idea of using algorithms like the Gröbner basis algorithm(s) as a black box (→ 1.1.2) contradict the following facts?

- It is known that an efficient Gröbner basis algorithm depends on the ring R under consideration. For example the implementation of the algorithm depends on the ground ring (or field) k.

- Often enough highly specialized implementations are used to address specific types of linear systems of equations (occurring in specific homological problems) in order to increase the speed or reduce the space needed for the computations.

The following should clarify the above concerns.

- Since each ring comes with its own black box, the first point is automatically resolved.

- Allow the black box coming with each ring to contain the different available implementations and make them accessible to homalg via standardized names, independent of the computer algebra system used to perform computations.

1.2 This manual

Chapter 2 describes the installation of this package. The remaining chapters are each devoted to one of the MatricesForHomalg objects (→ 1.1.1) with its constructors, properties, attributes, and operations.
Chapter 2

Installation of the MatricesForHomalg Package

To install this package just extract the package’s archive file to the GAP pkg directory.

By default the MatricesForHomalg package is not automatically loaded by GAP when it is
installed. You must load the package with

LoadPackage("MatricesForHomalg");

before its functions become available.

Please, send me an e-mail if you have any questions, remarks, suggestions, etc. concerning this
package. Also, I would be pleased to hear about applications of this package.

Mohamed Barakat
Chapter 3

Rings

3.1 Rings: Category and Representations

3.1.1 IsHomalgRing

▷ IsHomalgRing(R) (Category)
 Returns: true or false
 The GAP category of homalg rings.
 (It is a subcategory of the GAP categories IsStructureObject and IsHomalgRingOrModule.)

Code

DeclareCategory("IsHomalgRing", IsStructureObject and IsRingWithOne and IsHomalgRingOrModule);

3.1.2 IsPreHomalgRing

▷ IsPreHomalgRing(R) (Category)
 Returns: true or false
 The GAP category of pre homalg rings.
 (It is a subcategory of the GAP category IsHomalgRing.)

These are rings with an incomplete homalgTable. They provide flexibility for developers to support a wider class of rings, as was necessary for the development of the LocalizeRingForHomalg package. They are not suited for direct usage.

Code

DeclareCategory("IsPreHomalgRing", IsHomalgRing);

3.1.3 IsHomalgRingElement

▷ IsHomalgRingElement(r) (Category)
 Returns: true or false
 The GAP category of elements of homalg rings which are not GAP4 built-in.
3.1.4 IsHomalgInternalRingRep

▷ IsHomalgInternalRingRep(R) (Representation)

Returns: true or false

The internal representation of homalg rings.

(It is a representation of the GAP category IsHomalgRing.)

3.2 Rings: Constructors

This section describes how to construct rings for use with MatricesForHomalg, which exploit the GAP4-built-in abilities to perform the necessary ring operations. By this we also mean necessary matrix operations over such rings. For the purposes of MatricesForHomalg only the ring of integers is properly supported in GAP4. The GAP4 extension packages Gauss and GaussForHomalg extend these built-in abilities to operations with sparse matrices over the ring \(\mathbb{Z}/p^n \) for \(p \) prime and \(n \) positive.

If a ring \(R \) is supported in MatricesForHomalg any of its residue class rings \(R/I \) is supported as well, provided the ideal \(I \) of relations admits a finite set of generators as a left resp. right ideal (\(\rightarrow \backslash / (3.2.2) \)). This is immediate for commutative noetherian rings.

3.2.1 HomalgRingOfIntegers (constructor for the integers)

▷ HomalgRingOfIntegers() (function)

Returns: a homalg ring

▷ HomalgRingOfIntegers(c) (function)

Returns: a homalg ring

The no-argument form returns the ring of integers \(\mathbb{Z} \) for homalg.

The one-argument form accepts an integer \(c \) and returns the ring \(\mathbb{Z}/c \) for homalg:

- \(c = 0 \) defaults to \(\mathbb{Z} \)
- if \(c \) is a prime power then the package GaussForHomalg is loaded (if it fails to load an error is issued)
- otherwise, the residue class ring constructor \(/ (\rightarrow \backslash / (3.2.2)) \) is invoked

The operation SetRingProperties is automatically invoked to set the ring properties.

If for some reason you don’t want to use the GaussForHomalg package (maybe because you didn’t install it), then use
HomalgRingOfIntegers() / c;
but note that the computations will then be considerably slower.

3.2.2 \(\langle \rangle \) (constructor for residue class rings)

\(\langle \rangle/(R, ring_rel) \)

Returns: a homalg ring

This is the homalg constructor for residue class rings \(R /I \), where \(R \) is a homalg ring and \(I = ring_rel \) is the ideal of relations generated by \(ring_rel \). \(ring_rel \) might be:

- a set of ring relations of a left resp. right ideal
- a list of ring elements of \(R \)
- a ring element of \(R \)

For noncommutative rings: In the first case the set of ring relations should generate the ideal of relations \(I \) as left resp. right ideal, and their involutions should generate \(I \) as right resp. left ideal. If \(ring_rel \) is not a set of relations, a left set of relations is constructed.

The operation \(\text{SetRingProperties} \) is automatically invoked to set the ring properties.

```
Example

gap> zz := HomalgRingOfIntegers( );
Z
gap> Display( zz );
<An internal ring>
gap> Z256 := zz / 2^8;
Z/( 256 )
gap> Display( Z256 );
<An residue class ring>
gap> Z2 := Z256 / 6;
Z/( 256, 6 )
gap> BasisOfRows( MatrixOfRelations( Z2 ) );
<An unevaluated non-zero 1 x 1 matrix over an internal ring>
gap> Z2;
Z/( 2 )
gap> Display( Z2 );
<An residue class ring>
```

3.3 Rings: Properties

The following properties are declared for homalg rings. Note that (apart from so-called true and immediate methods (→ C.1)) there are no methods installed for ring properties. This means that if the value of the ring property \(\text{Prop} \) is not set for a homalg ring \(R \), then

\(\text{Prop}(R) \);

will cause an error. One can use the usual GAP4 mechanism to check if the value of the property is set or not

\(\text{HasProp}(R) \);

If you discover that a specific property \(\text{Prop} \) is missing for a certain homalg ring \(R \) you can it add using the usual GAP4 mechanism.
SetProp(\(R\), true);

or

SetProp(\(R\), false);

Be very cautious with setting "missing" properties to \texttt{homalg} objects: If the value you set is mathematically wrong \texttt{homalg} will probably draw wrong conclusions and might return wrong results.

3.3.1 \textbf{IsZero (for rings)}

\texttt{IsZero}(\(R\)) \hspace{1cm} \textbf{(property)}

\textbf{Returns:} true or false

Check if the ring \(R\) is the zero ring, i.e., if One(\(R\)) = Zero(\(R\)).

3.3.2 \textbf{IsNonZeroRing (for rings)}

\texttt{IsNonZeroRing}(\(R\)) \hspace{1cm} \textbf{(property)}

\textbf{Returns:} true or false

Check if the ring \(R\) is not the zero ring, i.e., if One(\(R\)) is different from Zero(\(R\)).

3.3.3 \textbf{ContainsAField}

\texttt{ContainsAField}(\(R\)) \hspace{1cm} \textbf{(property)}

\textbf{Returns:} true or false

\(R\) is a ring for \texttt{homalg}.

3.3.4 \textbf{IsRationalsForHomalg}

\texttt{IsRationalsForHomalg}(\(R\)) \hspace{1cm} \textbf{(property)}

\textbf{Returns:} true or false

\(R\) is a ring for \texttt{homalg}.

3.3.5 \textbf{IsFieldForHomalg}

\texttt{IsFieldForHomalg}(\(R\)) \hspace{1cm} \textbf{(property)}

\textbf{Returns:} true or false

\(R\) is a ring for \texttt{homalg}.

3.3.6 \textbf{IsDivisionRingForHomalg}

\texttt{IsDivisionRingForHomalg}(\(R\)) \hspace{1cm} \textbf{(property)}

\textbf{Returns:} true or false

\(R\) is a ring for \texttt{homalg}.

3.3.7 \textbf{IsIntegersForHomalg}

\texttt{IsIntegersForHomalg}(\(R\)) \hspace{1cm} \textbf{(property)}

\textbf{Returns:} true or false

\(R\) is a ring for \texttt{homalg}.
3.3.8 IsResidueClassRingOfTheIntegers

▷ IsResidueClassRingOfTheIntegers(R) (property)
 Returns: true or false
 R is a ring for homalg.

3.3.9 IsBezoutRing

▷ IsBezoutRing(R) (property)
 Returns: true or false
 R is a ring for homalg.

3.3.10 IsIntegrallyClosedDomain

▷ IsIntegrallyClosedDomain(R) (property)
 Returns: true or false
 R is a ring for homalg.

3.3.11 IsUniqueFactorizationDomain

▷ IsUniqueFactorizationDomain(R) (property)
 Returns: true or false
 R is a ring for homalg.

3.3.12 IsKaplanskyHermite

▷ IsKaplanskyHermite(R) (property)
 Returns: true or false
 R is a ring for homalg.

3.3.13 IsDedekindDomain

▷ IsDedekindDomain(R) (property)
 Returns: true or false
 R is a ring for homalg.

3.3.14 IsDiscreteValuationRing

▷ IsDiscreteValuationRing(R) (property)
 Returns: true or false
 R is a ring for homalg.

3.3.15 IsFreePolynomialRing

▷ IsFreePolynomialRing(R) (property)
 Returns: true or false
 R is a ring for homalg.
3.3.16 IsWeylRing
▷ IsWeylRing(R)
 Returns: true or false
 R is a ring for homalg.

3.3.17 IsLocalizedWeylRing
▷ IsLocalizedWeylRing(R)
 Returns: true or false
 R is a ring for homalg.

3.3.18 IsGlobalDimensionFinite
▷ IsGlobalDimensionFinite(R)
 Returns: true or false
 R is a ring for homalg.

3.3.19 IsLeftGlobalDimensionFinite
▷ IsLeftGlobalDimensionFinite(R)
 Returns: true or false
 R is a ring for homalg.

3.3.20 IsRightGlobalDimensionFinite
▷ IsRightGlobalDimensionFinite(R)
 Returns: true or false
 R is a ring for homalg.

3.3.21 HasInvariantBasisProperty
▷ HasInvariantBasisProperty(R)
 Returns: true or false
 R is a ring for homalg.

3.3.22 IsLocal
▷ IsLocal(R)
 Returns: true or false
 R is a ring for homalg.

3.3.23 IsSemiLocalRing
▷ IsSemiLocalRing(R)
 Returns: true or false
 R is a ring for homalg.
3.3.24 IsIntegralDomain
▷ IsIntegralDomain(R) (property)
 Returns: true or false
 \(R \) is a ring for homalg.

3.3.25 IsHereditary
▷ IsHereditary(R) (property)
 Returns: true or false
 \(R \) is a ring for homalg.

3.3.26 IsLeftHereditary
▷ IsLeftHereditary(R) (property)
 Returns: true or false
 \(R \) is a ring for homalg.

3.3.27 IsRightHereditary
▷ IsRightHereditary(R) (property)
 Returns: true or false
 \(R \) is a ring for homalg.

3.3.28 IsHermite
▷ IsHermite(R) (property)
 Returns: true or false
 \(R \) is a ring for homalg.

3.3.29 IsLeftHermite
▷ IsLeftHermite(R) (property)
 Returns: true or false
 \(R \) is a ring for homalg.

3.3.30 IsRightHermite
▷ IsRightHermite(R) (property)
 Returns: true or false
 \(R \) is a ring for homalg.

3.3.31 IsNoetherian
▷ IsNoetherian(R) (property)
 Returns: true or false
 \(R \) is a ring for homalg.
3.3.32 \textbf{IsLeftNoetherian} \\
\texttt{IsLeftNoetherian}(R) \\
\textbf{Returns:} true or false \\
\textit{R} is a ring for homalg.

3.3.33 \textbf{IsRightNoetherian} \\
\texttt{IsRightNoetherian}(R) \\
\textbf{Returns:} true or false \\
\textit{R} is a ring for homalg.

3.3.34 \textbf{IsCohenMacaulay} \\
\texttt{IsCohenMacaulay}(R) \\
\textbf{Returns:} true or false \\
\textit{R} is a ring for homalg.

3.3.35 \textbf{IsGorenstein} \\
\texttt{IsGorenstein}(R) \\
\textbf{Returns:} true or false \\
\textit{R} is a ring for homalg.

3.3.36 \textbf{IsKoszul} \\
\texttt{IsKoszul}(R) \\
\textbf{Returns:} true or false \\
\textit{R} is a ring for homalg.

3.3.37 \textbf{IsArtinian (for rings)} \\
\texttt{IsArtinian}(R) \\
\textbf{Returns:} true or false \\
\textit{R} is a ring for homalg.

3.3.38 \textbf{IsLeftArtinian} \\
\texttt{IsLeftArtinian}(R) \\
\textbf{Returns:} true or false \\
\textit{R} is a ring for homalg.

3.3.39 \textbf{IsRightArtinian} \\
\texttt{IsRightArtinian}(R) \\
\textbf{Returns:} true or false \\
\textit{R} is a ring for homalg.
3.3.40 \textbf{IsOreDomain}

\begin{itemize}
 \item \texttt{IsOreDomain}(R) \hfill (property)
 \item \textbf{Returns}: true or false
 \item \hspace{0.5cm} \textit{R} is a ring for \texttt{homalg}.
\end{itemize}

3.3.41 \textbf{IsLeftOreDomain}

\begin{itemize}
 \item \texttt{IsLeftOreDomain}(R) \hfill (property)
 \item \textbf{Returns}: true or false
 \item \hspace{0.5cm} \textit{R} is a ring for \texttt{homalg}.
\end{itemize}

3.3.42 \textbf{IsRightOreDomain}

\begin{itemize}
 \item \texttt{IsRightOreDomain}(R) \hfill (property)
 \item \textbf{Returns}: true or false
 \item \hspace{0.5cm} \textit{R} is a ring for \texttt{homalg}.
\end{itemize}

3.3.43 \textbf{IsPrincipalIdealRing}

\begin{itemize}
 \item \texttt{IsPrincipalIdealRing}(R) \hfill (property)
 \item \textbf{Returns}: true or false
 \item \hspace{0.5cm} \textit{R} is a ring for \texttt{homalg}.
\end{itemize}

3.3.44 \textbf{IsLeftPrincipalIdealRing}

\begin{itemize}
 \item \texttt{IsLeftPrincipalIdealRing}(R) \hfill (property)
 \item \textbf{Returns}: true or false
 \item \hspace{0.5cm} \textit{R} is a ring for \texttt{homalg}.
\end{itemize}

3.3.45 \textbf{IsRightPrincipalIdealRing}

\begin{itemize}
 \item \texttt{IsRightPrincipalIdealRing}(R) \hfill (property)
 \item \textbf{Returns}: true or false
 \item \hspace{0.5cm} \textit{R} is a ring for \texttt{homalg}.
\end{itemize}

3.3.46 \textbf{IsRegular}

\begin{itemize}
 \item \texttt{IsRegular}(R) \hfill (property)
 \item \textbf{Returns}: true or false
 \item \hspace{0.5cm} \textit{R} is a ring for \texttt{homalg}.
\end{itemize}

3.3.47 \textbf{IsFiniteFreePresentationRing}

\begin{itemize}
 \item \texttt{IsFiniteFreePresentationRing}(R) \hfill (property)
 \item \textbf{Returns}: true or false
 \item \hspace{0.5cm} \textit{R} is a ring for \texttt{homalg}.
\end{itemize}
3.3.48 \textbf{IsLeftFiniteFreePresentationRing}

\[\text{IsLeftFiniteFreePresentationRing}(R) \]
\textbf{Returns:} true or false

\(R \) is a ring for \texttt{homalg}.

3.3.49 \textbf{IsRightFiniteFreePresentationRing}

\[\text{IsRightFiniteFreePresentationRing}(R) \]
\textbf{Returns:} true or false

\(R \) is a ring for \texttt{homalg}.

3.3.50 \textbf{IsSimpleRing}

\[\text{IsSimpleRing}(R) \]
\textbf{Returns:} true or false

\(R \) is a ring for \texttt{homalg}.

3.3.51 \textbf{IsSemiSimpleRing}

\[\text{IsSemiSimpleRing}(R) \]
\textbf{Returns:} true or false

\(R \) is a ring for \texttt{homalg}.

3.3.52 \textbf{IsSuperCommutative}

\[\text{IsSuperCommutative}(R) \]
\textbf{Returns:} true or false

\(R \) is a ring for \texttt{homalg}.

3.3.53 \textbf{BasisAlgorithmRespectsPrincipalIdeals}

\[\text{BasisAlgorithmRespectsPrincipalIdeals}(R) \]
\textbf{Returns:} true or false

\(R \) is a ring for \texttt{homalg}.

3.3.54 \textbf{AreUnitsCentral}

\[\text{AreUnitsCentral}(R) \]
\textbf{Returns:} true or false

\(R \) is a ring for \texttt{homalg}.

3.3.55 \textbf{IsMinusOne}

\[\text{IsMinusOne}(r) \]
\textbf{Returns:} true or false

Check if the ring element \(r \) is the additive inverse of one.
3.3.56 **IsMonic** (for homalg ring elements)

- **IsMonic(r)**
 - **Returns:** true or false
 - Check if the homalg ring element r is monic.

3.3.57 **IsMonicUptoUnit** (for homalg ring elements)

- **IsMonicUptoUnit(r)**
 - **Returns:** true or false
 - Check if leading coefficient of the homalg ring element r is a unit.

3.3.58 **IsLeftRegular** (for homalg ring elements)

- **IsLeftRegular(r)**
 - **Returns:** true or false
 - Check if the homalg ring element r is left regular.

3.3.59 **IsRightRegular** (for homalg ring elements)

- **IsRightRegular(r)**
 - **Returns:** true or false
 - Check if the homalg ring element r is right regular.

3.3.60 **IsRegular** (for homalg ring elements)

- **IsRegular(r)**
 - **Returns:** true or false
 - Check if the homalg ring element r is regular, i.e. left and right regular.

3.4 **Rings: Attributes**

3.4.1 **Inverse** (for homalg ring elements)

- **Inverse(r)**
 - **Returns:** a homalg ring element or fail
 - The inverse of the homalg ring element r.

```gap
gap> zz := HomalgRingOfIntegers( );;
gap> R := zz / 2^8;
Z/( 256 )
gap> r := (1/3*One(R)+1/5)+3/7;
[ [ 157 ] ]
gap> 1 / r; ## = r^-1;
[ [ 181 ] ]
gap> s := (1/3*One(R)+2/5)+3/7;
[ [ 106 ] ]
gap> s^(-1);
fail
```
3.4.2 homalgTable

▷ homalgTable(R) (attribute)
 Returns: a homalg table
 The homalg table of R is a ring dictionary, i.e. the translator between homalg and the (specific implementation of the) ring.
 Every homalg ring has a homalg table.

3.4.3 RingElementConstructor

▷ RingElementConstructor(R) (attribute)
 Returns: a function
 The constructor of ring elements in the homalg ring R.

3.4.4 TypeOfHomalgMatrix

▷ TypeOfHomalgMatrix(R) (attribute)
 Returns: a type
 The GAP4-type of homalg matrices over the homalg ring R.

3.4.5 ConstructorForHomalgMatrices

▷ ConstructorForHomalgMatrices(R) (attribute)
 Returns: a type
 The constructor for homalg matrices over the homalg ring R.

3.4.6 Zero (for homalg rings)

▷ Zero(R) (attribute)
 Returns: a homalg ring element
 The zero of the homalg ring R.

3.4.7 One (for homalg rings)

▷ One(R) (attribute)
 Returns: a homalg ring element
 The one of the homalg ring R.

3.4.8 MinusOne

▷ MinusOne(R) (attribute)
 Returns: a homalg ring element
 The minus one of the homalg ring R.

3.4.9 ProductOfIndeterminates

▷ ProductOfIndeterminates(R) (attribute)
 Returns: a homalg ring element
 The product of indeterminates of the homalg ring R.
3.4.10 RationalParameters

▷ RationalParameters(R)

Returns: a list of homalg ring elements
The list of rational parameters of the homalg ring R.

3.4.11 IndeterminatesOfPolynomialRing

▷ IndeterminatesOfPolynomialRing(R)

Returns: a list of homalg ring elements
The list of indeterminates of the homalg polynomial ring R.

3.4.12 RelativeIndeterminatesOfPolynomialRing

▷ RelativeIndeterminatesOfPolynomialRing(R)

Returns: a list of homalg ring elements
The list of relative indeterminates of the homalg polynomial ring R.

3.4.13 IndeterminateCoordinatesOfRingOfDerivations

▷ IndeterminateCoordinatesOfRingOfDerivations(R)

Returns: a list of homalg ring elements
The list of indeterminate coordinates of the homalg Weyl ring R.

3.4.14 RelativeIndeterminateCoordinatesOfRingOfDerivations

▷ RelativeIndeterminateCoordinatesOfRingOfDerivations(R)

Returns: a list of homalg ring elements
The list of relative indeterminate coordinates of the homalg Weyl ring R.

3.4.15 IndeterminateDerivationsOfRingOfDerivations

▷ IndeterminateDerivationsOfRingOfDerivations(R)

Returns: a list of homalg ring elements
The list of indeterminate derivations of the homalg Weyl ring R.

3.4.16 RelativeIndeterminateDerivationsOfRingOfDerivations

▷ RelativeIndeterminateDerivationsOfRingOfDerivations(R)

Returns: a list of homalg ring elements
The list of relative indeterminate derivations of the homalg Weyl ring R.

3.4.17 IndeterminateAntiCommutingVariablesOfExteriorRing

▷ IndeterminateAntiCommutingVariablesOfExteriorRing(R)

Returns: a list of homalg ring elements
The list of anti-commuting indeterminates of the homalg exterior ring R.
3.4.18 RelativeIndeterminateAntiCommutingVariablesOfExteriorRing

▷ RelativeIndeterminateAntiCommutingVariablesOfExteriorRing(\(R\)) (attribute)

Returns: a list of homalg ring elements
The list of anti-commuting relative indeterminates of the homalg exterior ring \(R\).

3.4.19 IndeterminatesOfExteriorRing

▷ IndeterminatesOfExteriorRing(\(R\)) (attribute)

Returns: a list of homalg ring elements
The list of all indeterminates (commuting and anti-commuting) of the homalg exterior ring \(R\).

3.4.20 CoefficientsRing

▷ CoefficientsRing(\(R\)) (attribute)

Returns: a homalg ring
The ring of coefficients of the homalg ring \(R\).

3.4.21 KrullDimension

▷ KrullDimension(\(R\)) (attribute)

Returns: a non-negative integer
The Krull dimension of the commutative homalg ring \(R\).

3.4.22 LeftGlobalDimension

▷ LeftGlobalDimension(\(R\)) (attribute)

Returns: a non-negative integer
The left global dimension of the homalg ring \(R\).

3.4.23 RightGlobalDimension

▷ RightGlobalDimension(\(R\)) (attribute)

Returns: a non-negative integer
The right global dimension of the homalg ring \(R\).

3.4.24 GlobalDimension

▷ GlobalDimension(\(R\)) (attribute)

Returns: a non-negative integer
The global dimension of the homalg ring \(R\). The global dimension is defined, only if the left and right global dimensions coincide.

3.4.25 GeneralLinearRank

▷ GeneralLinearRank(\(R\)) (attribute)

Returns: a non-negative integer
The general linear rank of the homalg ring \(R\) ([MR01], 11.1.14).
3.4.26 ElementaryRank

▷ ElementaryRank(R)
Returns: a non-negative integer
The elementary rank of the homalg ring R ([MR01], 11.3.10).

3.4.27 StableRank

▷ StableRank(R)
Returns: a non-negative integer
The stable rank of the homalg ring R ([MR01], 11.3.4).

3.4.28 AssociatedGradedRing

▷ AssociatedGradedRing(R)
Returns: a homalg ring
The graded ring associated to the filtered ring R.

3.5 Rings: Operations and Functions
Chapter 4

Ring Maps

A homalg ring map is a data structure for maps between finitely generated rings. homalg more or less provides the basic declarations and installs the generic methods for ring maps, but it is up to other high level packages to install methods applicable to specific rings. For example, the package Sheaves provides methods for ring maps of (finitely generated) affine rings.

4.1 Ring Maps: Category and Representations

4.1.1 IsHomalgRingMap

▷ IsHomalgRingMap(phi)
 (Category)
 Returns: true or false
 The GAP category of ring maps.

4.1.2 IsHomalgRingSelfMap

▷ IsHomalgRingSelfMap(phi)
 (Category)
 Returns: true or false
 The GAP category of ring self-maps.
 (It is a subcategory of the GAP category IsHomalgRingMap.)

4.1.3 IsHomalgRingMapRep

▷ IsHomalgRingMapRep(phi)
 (Representation)
 Returns: true or false
 The GAP representation of homalg ring maps.
 (It is a representation of the GAP category IsHomalgRingMap (4.1.1)).

4.2 Ring Maps: Constructors

4.2.1 RingMap (constructor for ring maps)

▷ RingMap(images, S, T)
 (operation)
 Returns: a homalg ring map
This constructor returns a ring map (homomorphism) of finitely generated rings/algebras. It is represented by the images \textbf{images} of the set of generators of the source homalg ring S in terms of the generators of the target ring T (→ 3.2). Unless the source ring is free and given on free ring/algebra generators the returned map will cautiously be indicated using parenthesis: “homomorphism”. If source and target are identical objects, and only then, the ring map is created as a selfmap.

4.3 Ring Maps: Properties

4.3.1 IsMorphism (for ring maps)

▷ **IsMorphism**(ϕ)
Returns: true or false
Check if ϕ is a well-defined map, i.e. independent of all involved presentations.

4.3.2 IsIdentityMorphism (for ring maps)

▷ **IsIdentityMorphism**(ϕ)
Returns: true or false
Check if the homalg ring map ϕ is the identity morphism.

4.3.3 IsMonomorphism (for ring maps)

▷ **IsMonomorphism**(ϕ)
Returns: true or false
Check if the homalg ring map ϕ is a monomorphism.

4.3.4 IsEpimorphism (for ring maps)

▷ **IsEpimorphism**(ϕ)
Returns: true or false
Check if the homalg ring map ϕ is an epimorphism.

4.3.5 IsIsomorphism (for ring maps)

▷ **IsIsomorphism**(ϕ)
Returns: true or false
Check if the homalg ring map ϕ is an isomorphism.

4.3.6 IsAutomorphism (for ring maps)

▷ **IsAutomorphism**(ϕ)
Returns: true or false
Check if the homalg ring map ϕ is an automorphism.
4.4 Ring Maps: Attributes

4.4.1 Source (for ring maps)

▷ Source(phi)
 Returns: a homalg ring
 The source of the homalg ring map \(\phi \).

4.4.2 Range (for ring maps)

▷ Range(phi)
 Returns: a homalg ring
 The target (range) of the homalg ring map \(\phi \).

4.4.3 DegreeOfMorphism (for ring maps)

▷ DegreeOfMorphism(phi)
 Returns: an integer
 The degree of the morphism \(\phi \) of graded rings.
 (no method installed)

4.4.4 CoordinateRingOfGraph (for ring maps)

▷ CoordinateRingOfGraph(phi)
 Returns: a homalg ring
 The coordinate ring of the graph of the ring map \(\phi \).

4.5 Ring Maps: Operations and Functions
Chapter 5

Matrices

5.1 Matrices: Category and Representations

5.1.1 IsHomalgMatrix

▷ IsHomalgMatrix(A)
Returns: true or false
The GAP category of homalg matrices.

Code

```
DeclareCategory( "IsHomalgMatrix",
    IsMatrixObj and
    IsAttributeStoringRep );
```

5.1.2 IsHomalgInternalMatrixRep

▷ IsHomalgInternalMatrixRep(A)
Returns: true or false
The internal representation of homalg matrices.
(It is a representation of the GAP category IsHomalgMatrix (5.1.1).)

5.2 Matrices: Constructors

5.2.1 HomalgInitialMatrix (constructor for initial matrices filled with zeros)

▷ HomalgInitialMatrix(m, n, R)
Returns: a homalg matrix
A mutable unevaluated initial $m \times n$ homalg matrix filled with zeros over the homalg ring R.
This construction is useful in case one wants to define a matrix by assigning its nonzero entries.
The property IsInitialMatrix (5.3.26) is reset as soon as the matrix is evaluated. New computed
properties or attributes of the matrix won't be cached, until the matrix is explicitly made immutable
using (→ MakeImmutable (Reference: MakeImmutable)).

Example

```
gap> zz := HomalgRingOfIntegers( );
Z
gap> z := HomalgInitialMatrix( 2, 3, zz );
<An initial 2 x 3 matrix over an internal ring>
```
gap> HasIsZero(z);
false
gap> IsZero(z);
true
gap> z;
<A 2 x 3 mutable matrix over an internal ring>
gap> HasIsZero(z);
false

Example
gap> n := HomalgInitialMatrix(2, 3, zz);
<An initial 2 x 3 matrix over an internal ring>
gap> n[1, 1] := "1";;
gap> n[2, 3] := "1";;
gap> MakeImmutable(n);
<A 2 x 3 matrix over an internal ring>
gap> Display(n);
[[1, 0, 0],
 [0, 0, 1]]
gap> IsZero(n);
false
gap> n;
<A non-zero 2 x 3 matrix over an internal ring>

5.2.2 HomalgInitialIdentityMatrix (constructor for initial quadratic matrices with ones on the diagonal)

▷ HomalgInitialIdentityMatrix(m, R) (function)

Returns: a homalg matrix

A mutable unevaled initial $m \times m$ homalg quadratic matrix with ones on the diagonal over the homalg ring R. This construction is useful in case one wants to define an elementary matrix by assigning its off-diagonal nonzero entries. The property IsInitialIdentityMatrix (5.3.27) is reset as soon as the matrix is evaluated. New computed properties or attributes of the matrix won't be cached, until the matrix is explicitly made immutable using (→ MakeImmutable (Reference: MakeImmutable)).

Example

gap> zz := HomalgRingOfIntegers();
Z
gap> id := HomalgInitialIdentityMatrix(3, zz);
<An initial identity 3 x 3 matrix over an internal ring>
gap> HasIsOne(id);
false
gap> IsOne(id);
true
gap> id;
<A 3 x 3 mutable matrix over an internal ring>
gap> HasIsOne(id);
false

Example

gap> e := HomalgInitialIdentityMatrix(3, zz);
<An initial identity 3 x 3 matrix over an internal ring>
5.2.3 HomalgZeroMatrix (constructor for zero matrices)

\[\text{\texttt{HomalgZeroMatrix}(m, n, R)} \]

\textbf{Returns:} a homalg matrix

An immutable unevaluated \(m \times n \) homalg zero matrix over the homalg ring \(R \).

\begin{verbatim}
gap> zz := HomalgRingOfIntegers(); Z
gap> z := HomalgZeroMatrix(2, 3, zz);
<An unevaluated 2 x 3 zero matrix over an internal ring>
gap> Display(z);
\[\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix} \]
gap> z;
<An 2 x 3 zero matrix over an internal ring>
\end{verbatim}

5.2.4 HomalgIdentityMatrix (constructor for identity matrices)

\[\text{\texttt{HomalgIdentityMatrix}(m, R)} \]

\textbf{Returns:} a homalg matrix

An immutable unevaluated \(m \times m \) homalg identity matrix over the homalg ring \(R \).

\begin{verbatim}
gap> zz := HomalgRingOfIntegers(); Z
gap> id := HomalgIdentityMatrix(3, zz);
<An unevaluated 3 x 3 identity matrix over an internal ring>
gap> Display(id);
\[\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \]
gap> id;
<An 3 x 3 identity matrix over an internal ring>
\end{verbatim}

5.2.5 HomalgVoidMatrix (constructor for void matrices)

\[\text{\texttt{HomalgVoidMatrix}(m, n, R)} \]

\textbf{Returns:} a homalg matrix
A void \(m \times n \) homalg matrix.

5.2.6 HomalgMatrix (constructor for matrices using a listlist)

- \texttt{HomalgMatrix(lлист, R)}
- \texttt{HomalgMatrix(lлист, m, n, R)}
- \texttt{HomalgMatrix(list, m, n, R)}
- \texttt{HomalgMatrix(str_lлист, R)}
- \texttt{HomalgMatrix(str_list, m, n, R)}

\textbf{Returns:} a homalg matrix

An immutable evaluated \(m \times n \) homalg matrix over the homalg ring \(R \).

\begin{verbatim}
gap> zz := HomalgRingOfIntegers(); Z
gap> m := HomalgMatrix([[1, 2, 3], [4, 5, 6]], zz);
<A 2 x 3 matrix over an internal ring>
gap> Display(m);
[[1, 2, 3],
 [4, 5, 6]]
\end{verbatim}

\begin{verbatim}
gap> m := HomalgMatrix([[1, 2, 3], [4, 5, 6]], 2, 3, zz);
<A 2 x 3 matrix over an internal ring>
gap> Display(m);
[[1, 2, 3],
 [4, 5, 6]]
\end{verbatim}

\begin{verbatim}
gap> m := HomalgMatrix([1, 2, 3, 4, 5, 6], 2, 3, zz);
<A 2 x 3 matrix over an internal ring>
gap> Display(m);
[[1, 2, 3],
 [4, 5, 6]]
\end{verbatim}

\begin{verbatim}
gap> m := HomalgMatrix([[1, 2, 3], [4, 5, 6]], str);
<A 2 x 3 matrix over an internal ring>
gap> Display(m);
[[1, 2, 3],
 [4, 5, 6]]
\end{verbatim}

\begin{verbatim}
gap> m := HomalgMatrix([[1, 2, 3], [4, 5, 6]], 2, 3, str);;
<A 2 x 3 matrix over an internal ring>
gap> Display(m);
[[1, 2, 3],
 [4, 5, 6]]
\end{verbatim}

It is nevertheless recommended to use the following form to create homalg matrices. This form can also be used to define external matrices. Since whitespaces (→ Reference: Whitespaces) are ignored, they can be used as optical delimiters:
Example

```
gap> m := HomalgMatrix( "[ 1, 2, 3, 4, 5, 6 ]", 2, 3, zz );
<A 2 x 3 matrix over an internal ring>
gap> Display( m );
[ [ 1, 2, 3 ],
  [ 4, 5, 6 ] ]
```

One can split the input string over several lines using the backslash character `\` to end each line:

```
gap> m := HomalgMatrix( "[ \n> 1, 2, 3, \n> 4, 5, 6 \n> ]", 2, 3, zz );
<A 2 x 3 matrix over an internal ring>
gap> Display( m );
[ [ 1, 2, 3 ],
  [ 4, 5, 6 ] ]
```

5.2.7 HomalgMatrixListList (constructor for matrices using a listlist with given dimensions)

▷ HomalgMatrixListList(llist, m, n, R)

Returns: a homalg matrix

Special case of HomalgMatrix (5.2.6).

5.2.8 HomalgRowVector (constructor for matrices with a single row)

▷ HomalgRowVector(entries, nr_cols, R)

Returns: a homalg matrix

Special case of HomalgMatrix (5.2.6) for matrices with a single row. `entries` must be a list of ring elements.

5.2.9 HomalgColumnVector (constructor for matrices with a single column)

▷ HomalgColumnVector(entries, nr_rows, R)

Returns: a homalg matrix

Special case of HomalgMatrix (5.2.6) for matrices with a single column. `entries` must be a list of ring elements.

5.2.10 HomalgDiagonalMatrix (constructor for diagonal matrices)

▷ HomalgDiagonalMatrix(diag, R)

Returns: a homalg matrix

An immutable unevaluated diagonal homalg matrix over the homalg ring R. The diagonal consists of the entries of the list `diag`.

```
gap> zz := HomalgRingOfIntegers( );
Z
gap> d := HomalgDiagonalMatrix( [ 1, 2, 3 ], zz );
```

5.2.11 *(copy a matrix over a different ring)

\>[*(R, mat)]
\>[*(mat, R)]

Returns: a homalg matrix

An immutable evaluated homalg matrix over the homalg ring R having the same entries as the matrix mat. Syntax: R * mat or mat * R

Example

```gap
gap> zz := HomalgRingOfIntegers( );
Z
gap> Z4 := zz / 4;
Z/( 4 )
gap> Display( Z4 );
<A residue class ring>
gap> d := HomalgDiagonalMatrix( [ 2 .. 4 ], zz );
<An unevaluated diagonal 3 x 3 matrix over an internal ring>
gap> d2 := Z4 * d; ## or d2 := d * Z4;
<A 3 x 3 matrix over a residue class ring>
gap> Display( d2 );
[ [ 2, 0, 0 ],
 [ 0, 3, 0 ],
 [ 0, 0, 4 ] ]
modulo [ 4 ]
gap> d;
<A diagonal 3 x 3 matrix over an internal ring>
gap> ZeroRows( d );
[ ]
gap> ZeroRows( d2 );
[ 3 ]
gap> d;
<A non-zero diagonal 3 x 3 matrix over an internal ring>
gap> d2;
<A non-zero 3 x 3 matrix over a residue class ring>
```

5.2.12 CoercedMatrix (copy a matrix over a different ring)

\> CoercedMatrix(ring_from, ring_to, mat)
\> CoercedMatrix(ring_to, mat)

Returns: a homalg matrix

A copy of the homalg matrix mat with homalg ring ring_from in the homalg ring ring_to. (for the installed standard method see Eval (C.4.9))
5.3 Matrices: Properties

5.3.1 IsZero (for matrices)

▷ IsZero(A) (property)
Returns: true or false
Check if the homalg matrix A is a zero matrix, taking possible ring relations into account.
(for the installed standard method see IsZeroMatrix (B.1.20))

```
gap> zz := HomalgRingOfIntegers( );
z
gap> A := HomalgMatrix( "[ 2 ]", zz );
<A 1 x 1 matrix over an internal ring>
gap> Z2 := zz / 2;
Z/( 2 )
gap> A := Z2 * A;
<A 1 x 1 matrix over a residue class ring>
gap> Display( A );
[ [ 2 ] ]
modulo [ 2 ]
gap> IsZero( A );
true
```

5.3.2 IsOne

▷ IsOne(A) (property)
Returns: true or false
Check if the homalg matrix A is an identity matrix, taking possible ring relations into account.
(for the installed standard method see IsIdentityMatrix (B.2.2))

5.3.3 IsUnitFree

▷ IsUnitFree(A) (property)
Returns: true or false
A is a homalg matrix.

5.3.4 IsPermutationMatrix

▷ IsPermutationMatrix(A) (property)
Returns: true or false
A is a homalg matrix.

5.3.5 IsSpecialSubidentityMatrix

▷ IsSpecialSubidentityMatrix(A) (property)
Returns: true or false
A is a homalg matrix.
5.3.6 IsSubidentityMatrix

▷ IsSubidentityMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.7 IsLeftRegular

▷ IsLeftRegular(A)
 Returns: true or false
 A is a homalg matrix.

5.3.8 IsRightRegular

▷ IsRightRegular(A)
 Returns: true or false
 A is a homalg matrix.

5.3.9 IsInvertibleMatrix

▷ IsInvertibleMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.10 IsLeftInvertibleMatrix

▷ IsLeftInvertibleMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.11 IsRightInvertibleMatrix

▷ IsRightInvertibleMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.12 IsEmptyMatrix

▷ IsEmptyMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.13 IsDiagonalMatrix

▷ IsDiagonalMatrix(A)
 Returns: true or false
 Check if the homalg matrix A is a diagonal matrix, taking possible ring relations into account.
 (for the installed standard method see IsDiagonalMatrix (B.2.3))
5.3.14 **IsScalarMatrix**

▷ IsScalarMatrix(A)

Returns: true or false

A is a *homalg* matrix.

5.3.15 **IsUpperTriangularMatrix**

▷ IsUpperTriangularMatrix(A)

Returns: true or false

A is a *homalg* matrix.

5.3.16 **IsLowerTriangularMatrix**

▷ IsLowerTriangularMatrix(A)

Returns: true or false

A is a *homalg* matrix.

5.3.17 **IsStrictUpperTriangularMatrix**

▷ IsStrictUpperTriangularMatrix(A)

Returns: true or false

A is a *homalg* matrix.

5.3.18 **IsStrictLowerTriangularMatrix**

▷ IsStrictLowerTriangularMatrix(A)

Returns: true or false

A is a *homalg* matrix.

5.3.19 **IsUpperStairCaseMatrix**

▷ IsUpperStairCaseMatrix(A)

Returns: true or false

A is a *homalg* matrix.

5.3.20 **IsLowerStairCaseMatrix**

▷ IsLowerStairCaseMatrix(A)

Returns: true or false

A is a *homalg* matrix.

5.3.21 **IsTriangularMatrix**

▷ IsTriangularMatrix(A)

Returns: true or false

A is a *homalg* matrix.
5.3.22 IsBasisOfRowsMatrix
▷ IsBasisOfRowsMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.23 IsBasisOfColumnsMatrix
▷ IsBasisOfColumnsMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.24 IsReducedBasisOfRowsMatrix
▷ IsReducedBasisOfRowsMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.25 IsReducedBasisOfColumnsMatrix
▷ IsReducedBasisOfColumnsMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.26 IsInitialMatrix
▷ IsInitialMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.27 IsInitialIdentityMatrix
▷ IsInitialIdentityMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.3.28 IsVoidMatrix
▷ IsVoidMatrix(A)
 Returns: true or false
 A is a homalg matrix.

5.4 Matrices: Attributes

5.4.1 NumberRows
▷ NumberRows(A)
 Returns: a nonnegative integer
The number of rows of the matrix A.
(for the installed standard method see \texttt{NumberRows (B.1.21)})

5.4.2 NumberColumns

\begin{verbatim}
\texttt{NumberColumns}(A) (attribute)
\end{verbatim}

\textbf{Returns:} a nonnegative integer
The number of columns of the matrix A.
(for the installed standard method see \texttt{NumberColumns (B.1.22)})

5.4.3 DeterminantMat

\begin{verbatim}
\texttt{DeterminantMat}(A) (attribute)
\end{verbatim}

\textbf{Returns:} a ring element
The determinant of the quadratic matrix A.
You can invoke it with \texttt{Determinant(A)}.
(for the installed standard method see \texttt{Determinant (B.1.23)})

5.4.4 ZeroRows

\begin{verbatim}
\texttt{ZeroRows}(A) (attribute)
\end{verbatim}

\textbf{Returns:} a (possibly empty) list of positive integers
The list of zero rows of the matrix A.
(for the installed standard method see \texttt{ZeroRows (B.2.4)})

5.4.5 ZeroColumns

\begin{verbatim}
\texttt{ZeroColumns}(A) (attribute)
\end{verbatim}

\textbf{Returns:} a (possibly empty) list of positive integers
The list of zero columns of the matrix A.
(for the installed standard method see \texttt{ZeroColumns (B.2.5)})

5.4.6 NonZeroRows

\begin{verbatim}
\texttt{NonZeroRows}(A) (attribute)
\end{verbatim}

\textbf{Returns:} a (possibly empty) list of positive integers
The list of nonzero rows of the matrix A.

5.4.7 NonZeroColumns

\begin{verbatim}
\texttt{NonZeroColumns}(A) (attribute)
\end{verbatim}

\textbf{Returns:} a (possibly empty) list of positive integers
The list of nonzero columns of the matrix A.

5.4.8 PositionOfFirstNonZeroEntryPerRow

\begin{verbatim}
\texttt{PositionOfFirstNonZeroEntryPerRow}(A) (attribute)
\end{verbatim}

\textbf{Returns:} a list of nonnegative integers
The list of positions of the first nonzero entry per row of the matrix A, else zero.
5.4.9 PositionOfFirstNonZeroEntryPerColumn

▷ PositionOfFirstNonZeroEntryPerColumn\((A) \)

Returns: a list of nonnegative integers

The list of positions of the first nonzero entry per column of the matrix \(A \), else zero.

5.4.10 RowRankOfMatrix

▷ RowRankOfMatrix\((A) \)

Returns: a nonnegative integer

The row rank of the matrix \(A \).

5.4.11 ColumnRankOfMatrix

▷ ColumnRankOfMatrix\((A) \)

Returns: a nonnegative integer

The column rank of the matrix \(A \).

5.4.12 LeftInverse

▷ LeftInverse\((M) \)

Returns: a homalg matrix

A left inverse \(C \) of the matrix \(M \). If no left inverse exists then false is returned. (→ RightDivide (5.5.51))

(for the installed standard method see LeftInverse (5.5.2))

5.4.13 RightInverse

▷ RightInverse\((M) \)

Returns: a homalg matrix

A right inverse \(C \) of the matrix \(M \). If no right inverse exists then false is returned. (→ LeftDivide (5.5.52))

(for the installed standard method see RightInverse (5.5.3))

5.4.14 CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries

▷ CoefficientsOfUnreducedNumeratorOfHilbertPoincareSeries\((A) \)

Returns: a list of integers

\(A \) is a homalg matrix (row convention).

5.4.15 CoefficientsOfNumeratorOfHilbertPoincareSeries

▷ CoefficientsOfNumeratorOfHilbertPoincareSeries\((A) \)

Returns: a list of integers

\(A \) is a homalg matrix (row convention).
5.4.16 UnreducedNumeratorOfHilbertPoincareSeries

\[\text{UnreducedNumeratorOfHilbertPoincareSeries}(A) \]

Returns: a univariate polynomial with rational coefficients

\(A \) is a homalg matrix (row convention).

5.4.17 NumeratorOfHilbertPoincareSeries

\[\text{NumeratorOfHilbertPoincareSeries}(A) \]

Returns: a univariate polynomial with rational coefficients

\(A \) is a homalg matrix (row convention).

5.4.18 HilbertPoincareSeries

\[\text{HilbertPoincareSeries}(A) \]

Returns: a univariate rational function with rational coefficients

\(A \) is a homalg matrix (row convention).

5.4.19 HilbertPolynomial

\[\text{HilbertPolynomial}(A) \]

Returns: a univariate polynomial with rational coefficients

\(A \) is a homalg matrix (row convention).

5.4.20 AffineDimension

\[\text{AffineDimension}(A) \]

Returns: an integer

\(A \) is a homalg matrix (row convention).

5.4.21 AffineDegree

\[\text{AffineDegree}(A) \]

Returns: a nonnegative integer

\(A \) is a homalg matrix (row convention).

5.4.22 ProjectiveDegree

\[\text{ProjectiveDegree}(A) \]

Returns: a nonnegative integer

\(A \) is a homalg matrix (row convention).

5.4.23 ConstantTermOfHilbertPolynomial

\[\text{ConstantTermOfHilbertPolynomial}(A) \]

Returns: an integer

\(A \) is a homalg matrix (row convention).
5.4.24 MatrixOfSymbols

\[\text{MatrixOfSymbols}(A) \]
\[\text{Returns: an integer} \]
\[A \text{ is a homalg matrix.} \]

5.5 Matrices: Operations and Functions

5.5.1 HomalgRing (for matrices)

\[\text{HomalgRing}(\text{mat}) \]
\[\text{Returns: a homalg ring} \]
\[\text{The homalg ring of the homalg matrix mat.} \]

\begin{verbatim}
gap> zz := HomalgRingOfIntegers(); Z

gap> d := HomalgDiagonalMatrix([2 .. 4], zz);
<An unevaluated diagonal 3 x 3 matrix over an internal ring>

gap> R := HomalgRing(d); Z

gap> IsIdenticalObj(R, zz);
true
\end{verbatim}

5.5.2 LeftInverse (for matrices)

\[\text{LeftInverse}(\text{RI}) \]
\[\text{Returns: a homalg matrix or fail} \]
\[\text{The left inverse of the matrix } RI. \text{ The lazy version of this operation is } \text{LeftInverseLazy (5.5.4).} \]
\[\rightarrow \text{RightDivide (5.5.51)} \]

\begin{verbatim}
InstallMethod(LeftInverse, "for homalg matrices", [IsHomalgMatrix],

function(RI)
 local Id, LI;

 Id := HomalgIdentityMatrix(NumberColumns(RI), HomalgRing(RI));

 LI := RightDivide(Id, RI); ## (cf. [BR08, Subsection 3.1.3])

 ## CAUTION: for the following SetXXX RightDivide is assumed
 ## NOT to be lazy evaluated!!!
 SetIsLeftInvertibleMatrix(RI, IsHomalgMatrix(LI));

 if IsBool(LI) then
 return fail;
 fi;

 if HasIsInvertibleMatrix(RI) and IsInvertibleMatrix(RI) then

\end{verbatim}
5.5.3 RightInverse (for matrices)

\[\text{RightInverse}(LI) \]

\textbf{Returns:} a homalg matrix or fail

The right inverse of the matrix \(LI \). The lazy version of this operation is RightInverseLazy (5.5.5). (\(\rightarrow \) LeftDivide (5.5.52))

\begin{verbatim}
InstallMethod(RightInverse,
 "for homalg matrices",
 [IsHomalgMatrix],
 function(LI)
 local Id, RI;

 Id := HomalgIdentityMatrix(NumberRows(LI), HomalgRing(LI));
 RI := LeftDivide(LI, Id); ## (cf. [BR08, Subsection 3.1.3])
 ## CAUTION: for the following SetXXX LeftDivide is assumed
 ## NOT to be lazy evaluated!!!
 SetIsRightInvertibleMatrix(LI, IsHomalgMatrix(RI));
 if IsBool(RI) then
 return fail;
 fi;
 if HasIsInvertibleMatrix(LI) and IsInvertibleMatrix(LI) then
 SetIsInvertibleMatrix(RI, true);
 else
 SetIsLeftInvertibleMatrix(RI, true);
 fi;
end ;
\end{verbatim}
SetLeftInverse(RI, LI);

SetNumberRows(RI, NumberColumns(LI));

if NumberRows(LI) = NumberColumns(LI) then
 ## a right inverse of a ring element is unique
 ## and coincides with the left inverse
 SetLeftInverse(LI, RI);
 SetRightInverse(RI, LI);
fi;
return RI;
end);

5.5.4 LeftInverseLazy (for matrices)
▷ LeftInverseLazy(M) (operation)
 Returns: a homalg matrix
 A lazy evaluated left inverse C of the matrix M. If no left inverse exists then \texttt{Eval}(C) will issue an error.
 (for the installed standard method see \texttt{Eval}(C.4.5))

5.5.5 RightInverseLazy (for matrices)
▷ RightInverseLazy(M) (operation)
 Returns: a homalg matrix
 A lazy evaluated right inverse C of the matrix M. If no right inverse exists then \texttt{Eval}(C) will issue an error.
 (for the installed standard method see \texttt{Eval}(C.4.6))

5.5.6 Involution (for matrices)
▷ Involution(M) (method)
 Returns: a homalg matrix
 The twisted transpose of the homalg matrix M. If the underlying ring is commutative, the twist is the identity.
 (for the installed standard method see \texttt{Eval}(C.4.7))

5.5.7 TransposedMatrix (for matrices)
▷ TransposedMatrix(M) (method)
 Returns: a homalg matrix
 The transpose of the homalg matrix M.
 (for the installed standard method see \texttt{Eval}(C.4.8))
5.5.8 CertainRows (for matrices)

\(\triangleright\) CertainRows\((M, \text{plist})\)

\textbf{Returns:} a homalg matrix

The matrix of which the \(i\)-th row is the \(k\)-th row of the homalg matrix \(M\), where \(k = \text{plist}[i]\).

(for the installed standard method see Eval (C.4.10))

5.5.9 CertainColumns (for matrices)

\(\triangleright\) CertainColumns\((M, \text{plist})\)

\textbf{Returns:} a homalg matrix

The matrix of which the \(j\)-th column is the \(l\)-th column of the homalg matrix \(M\), where \(l = \text{plist}[j]\).

(for the installed standard method see Eval (C.4.11))

5.5.10 UnionOfRows (for a homalg ring, an integer and a list of homalg matrices)

\(\triangleright\) UnionOfRows\((\left[R, \text{nr_cols}, \right]\text{L})\)

\textbf{Returns:} a homalg matrix

Stack the homalg matrices in the list \(L\). The entries of \(L\) must be matrices over the homalg ring \(R\) with \(\text{nr_cols}\) columns. If \(L\) is non-empty, \(R\) and \(\text{nr_cols}\) can be omitted.

(for the installed standard method see Eval (C.4.12))

5.5.11 UnionOfColumns (for a homalg ring, an integer and a list of homalg matrices)

\(\triangleright\) UnionOfColumns\((\left[R, \text{nr_rows}, \right]\text{L})\)

\textbf{Returns:} a homalg matrix

Augment the homalg matrices in the list \(L\). The entries of \(L\) must be matrices over the homalg ring \(R\) with \(\text{nr_rows}\) rows. If \(L\) is non-empty, \(R\) and \(\text{nr_rows}\) can be omitted.

(for the installed standard method see Eval (C.4.13))

5.5.12 ConvertRowToMatrix (for matrices)

\(\triangleright\) ConvertRowToMatrix\((M, r, c)\)

\textbf{Returns:} a homalg matrix

Fold the row \(M\) to an \(r \times c\)-matrix.

5.5.13 ConvertColumnToMatrix (for matrices)

\(\triangleright\) ConvertColumnToMatrix\((M, r, c)\)

\textbf{Returns:} a homalg matrix

Fold the column \(M\) to an \(r \times c\)-matrix.

5.5.14 ConvertMatrixToRow (for matrices)

\(\triangleright\) ConvertMatrixToRow\((M)\)

\textbf{Returns:} a homalg matrix

Unfold the matrix \(M\) row-wise into a row.
5.5.15 ConvertMatrixToColumn (for matrices)

▷ ConvertMatrixToColumn(M) (method)
 Returns: a homalg matrix
 Unfold the matrix M column-wise into a column.

5.5.16 DiagMat (for a homalg ring and a list of homalg matrices)

▷ DiagMat([R,] list) (method)
 Returns: a homalg matrix
 Build the block diagonal matrix out of the homalg matrices listed in list. If list is non-empty,
 R can be omitted.
 (for the installed standard method see Eval (C.4.14))

5.5.17 KroneckerMat (for matrices)

▷ KroneckerMat(A, B) (method)
 Returns: a homalg matrix
 The Kronecker (or tensor) product of the two homalg matrices A and B.
 (for the installed standard method see Eval (C.4.15))

5.5.18 DualKroneckerMat (for matrices)

▷ DualKroneckerMat(A, B) (method)
 Returns: a homalg matrix
 The dual Kronecker product of the two homalg matrices A and B.
 (for the installed standard method see Eval (C.4.16))

5.5.19 * (for ring elements and matrices)

▷ *(a, A) (method)
 Returns: a homalg matrix
 The product of the ring element a with the homalg matrix A (enter: a * A ;).
 (for the installed standard method see Eval (C.4.17))

5.5.20 \+ (for matrices)

▷ \+(A, B) (method)
 Returns: a homalg matrix
 The sum of the two homalg matrices A and B (enter: A + B ;).
 (for the installed standard method see Eval (C.4.18))

5.5.21 \- (for matrices)

▷ \-(A, B) (method)
 Returns: a homalg matrix
 The difference of the two homalg matrices A and B (enter: A - B ;).
 (for the installed standard method see Eval (C.4.19))
\[5.5.22 \quad \ast \quad (\text{for composable matrices})\]

\[\ast (A, B) \quad \text{(method)}\]

Returns: a \texttt{homalg} matrix

The matrix product of the two \texttt{homalg} matrices \(A\) and \(B\) (enter: \(A \ast B;\)).

(for the installed standard method see \texttt{Eval (C.4.20)})

\[5.5.23 \quad = \quad (\text{for matrices})\]

\[=(A, B) \quad \text{(operation)}\]

Returns: true or false

Check if the \texttt{homalg} matrices \(A\) and \(B\) are equal (enter: \(A = B;\)), taking possible ring relations into account.

(for the installed standard method see \texttt{AreEqualMatrices (B.2.1)})

\begin{verbatim}
gap> zz := HomalgRingOfIntegers();
Z
gap> A := HomalgMatrix("[1]", zz);
<A 1 x 1 matrix over an internal ring>
gap> B := HomalgMatrix("[3]", zz);
<A 1 x 1 matrix over an internal ring>
gap> Z2 := zz / 2;
Z/(2)
gap> A := Z2 * A;
<A 1 x 1 matrix over a residue class ring>
gap> B := Z2 * B;
<A 1 x 1 matrix over a residue class ring>
gap> Display(A);
[[1]]
modulo [2]
gap> Display(B);
[[3]]
modulo [2]
gap> A = B;
true
\end{verbatim}

\[5.5.24 \quad \text{GetColumnIndependentUnitPositions (for matrices)}\]

\[\text{GetColumnIndependentUnitPositions}(A, \text{poslist}) \quad \text{(operation)}\]

Returns: a (possibly empty) list of pairs of positive integers

The list of column indepedent unit position of the matrix \(A\). We say that a unit \(A[i,k]\) is column independet from the unit \(A[l,j]\) if \(i > l\) and \(A[l,k] = 0\). The rows are scanned from top to bottom and within each row the columns are scanned from right to left searching for new units, column independent from the preceding ones. If \(A[i,k]\) is a new column independent unit then \([i,k]\) is added to the output list. If \(A\) has no units the empty list is returned.

(for the installed standard method see \texttt{GetColumnIndependentUnitPositions (B.2.6)})
5.5.25 GetRowIndependentUnitPositions (for matrices)

▷ GetRowIndependentUnitPositions(A, poslist)

Returns: a (possibly empty) list of pairs of positive integers

The list of row independent unit position of the matrix A. We say that a unit \(A[i,j] \) is row independent from the unit \(A[i,l] \) if \(j > l \) and \(A[k,l] = 0 \). The columns are scanned from left to right and within each column the rows are scanned from bottom to top searching for new units, row independent from the preceding ones. If \(A[k,j] \) is a new row independent unit then \([j,k]\) (yes \([j,k]\)) is added to the output list. If \(A \) has no units the empty list is returned.

(for the installed standard method see GetRowIndependentUnitPositions (B.2.7))

5.5.26 GetUnitPosition (for matrices)

▷ GetUnitPosition(A, poslist)

Returns: a (possibly empty) list of pairs of positive integers

The position \([i,j]\) of the first unit \(A[i,j] \) in the matrix \(A \), where the rows are scanned from top to bottom and within each row the columns are scanned from left to right. If \(A[i,j] \) is the first occurrence of a unit then the position pair \([i,j]\) is returned. Otherwise fail is returned.

(for the installed standard method see GetUnitPosition (B.2.8))

5.5.27 Eliminate

▷ Eliminate(rel, indets)

Returns: a homalg matrix

Eliminate the independents \(\text{indets} \) from the matrix (or list of ring elements) \(\text{rel} \), i.e. compute a generating set of the ideal defined as the intersection of the ideal generated by the entries of the list \(\text{rel} \) with the subring generated by all indeterminates except those in \(\text{indets} \). by the list of indeterminates \(\text{indets} \).

5.5.28 BasisOfRowModule (for matrices)

▷ BasisOfRowModule(M)

Returns: a homalg matrix

Let \(R \) be the ring over which \(M \) is defined \((R := \text{HomalgRing}(M)) \) and \(S \) be the row span of \(M \), i.e. the \(R \)-submodule of the free left module \(R^{1 \times \text{NumberColumns}(M)} \) spanned by the rows of \(M \). A solution to the “submodule membership problem” is an algorithm which can decide if an element \(m \) in \(R^{1 \times \text{NumberColumns}(M)} \) is contained in \(S \) or not. And exactly like the Gaussian (resp. Hermite) normal form when \(R \) is a field (resp. principal ideal ring), the row span of the resulting matrix \(B \) coincides with the row span \(S \) of \(M \), and computing \(B \) is typically the first step of such an algorithm. (→ Appendix A)

5.5.29 BasisOfColumnModule (for matrices)

▷ BasisOfColumnModule(M)

Returns: a homalg matrix

Let \(R \) be the ring over which \(M \) is defined \((R := \text{HomalgRing}(M)) \) and \(S \) be the column span of \(M \), i.e. the \(R \)-submodule of the free right module \(R^{\text{NumberRows}(M) \times 1} \) spanned by the columns of \(M \). A solution to the “submodule membership problem” is an algorithm which can decide if an element \(m \)
in \(R^{\text{NumberRows}(M) \times 1} \) is contained in \(S \) or not. And exactly like the Gaussian (resp. Hermite) normal form when \(R \) is a field (resp. principal ideal ring), the column span of the resulting matrix \(B \) coincides with the column span \(S \) of \(M \), and computing \(B \) is typically the first step of such an algorithm. (→ Appendix A)

5.5.30 DecideZeroRows (for pairs of matrices)

▷ DecideZeroRows\((A, B)\)
Returns: a homalg matrix

Let \(A \) and \(B \) be matrices having the same number of columns and defined over the same ring \(R \) (:=HomalgRing\((A)\)) and \(S \) be the row span of \(B \), i.e. the \(R \)-submodule of the free left module \(R^{(1 \times \text{NumberColumns}(B))} \) spanned by the rows of \(B \). The result is a matrix \(C \) having the same shape as \(A \), for which the \(i \)-th row \(C_i \) is equivalent to the \(i \)-th row \(A_i \) of \(A \) modulo \(S \), i.e. \(C_i - A_i \) is an element of the row span \(S \) of \(B \). Moreover, the row \(C_i \) is zero, if and only if the row \(A_i \) is an element of \(S \). So DecideZeroRows decides which rows of \(A \) are zero modulo the rows of \(B \). (→ Appendix A)

5.5.31 DecideZeroColumns (for pairs of matrices)

▷ DecideZeroColumns\((A, B)\)
Returns: a homalg matrix

Let \(A \) and \(B \) be matrices having the same number of rows and defined over the same ring \(R \) (:=HomalgRing\((A)\)) and \(S \) be the column span of \(B \), i.e. the \(R \)-submodule of the free right module \(R^{(\text{NumberRows}(B) \times 1)} \) spanned by the columns of \(B \). The result is a matrix \(C \) having the same shape as \(A \), for which the \(i \)-th column \(C_i \) is equivalent to the \(i \)-th column \(A_i \) of \(A \) modulo \(S \), i.e. \(C_i - A_i \) is an element of the column span \(S \) of \(B \). Moreover, the column \(C_i \) is zero, if and only if the column \(A_i \) is an element of \(S \). So DecideZeroColumns decides which columns of \(A \) are zero modulo the columns of \(B \). (→ Appendix A)

5.5.32 SyzygiesGeneratorsOfRows (for matrices)

▷ SyzygiesGeneratorsOfRows\((M)\)
Returns: a homalg matrix

Let \(R \) be the ring over which \(M \) is defined (\(R := \text{HomalgRing}(M) \)). The matrix of row syzygies \(\text{SyzygiesGeneratorsOfRows}(M) \) is a matrix whose rows span the left kernel of \(M \), i.e. the \(R \)-submodule of the free left module \(R^{(1 \times \text{NumberRows}(M))} \) consisting of all rows \(X \) satisfying \(XM = 0 \). (→ Appendix A)

5.5.33 SyzygiesGeneratorsOfColumns (for matrices)

▷ SyzygiesGeneratorsOfColumns\((M)\)
Returns: a homalg matrix

Let \(R \) be the ring over which \(M \) is defined (\(R := \text{HomalgRing}(M) \)). The matrix of column syzygies \(\text{SyzygiesGeneratorsOfColumns}(M) \) is a matrix whose columns span the right kernel of \(M \), i.e. the \(R \)-submodule of the free right module \(R^{(\text{NumberColumns}(M) \times 1)} \) consisting of all columns \(X \) satisfying \(NX = 0 \). (→ Appendix A)
5.5.34 SyzygiesGeneratorsOfRows (for pairs of matrices)
▷ SyzygiesGeneratorsOfRows(M, M2) (operation)
 Returns: a homalg matrix
 Let \(R \) be the ring over which \(M \) is defined (\(R := \text{HomalgRing}(M) \)). The matrix of relative row syzygies \(\text{SyzygiesGeneratorsOfRows}(M, M2) \) is a matrix whose rows span the left kernel of \(M \) modulo \(M2 \), i.e. the \(R \)-submodule of the free left module \(R^{(1 \times \text{NumberRows}(M))} \) consisting of all rows \(X \) satisfying \(XM + YM2 = 0 \) for some row \(Y \in R^{(1 \times \text{NumberRows}(M2))} \). (→ Appendix A)

5.5.35 SyzygiesGeneratorsOfColumns (for pairs of matrices)
▷ SyzygiesGeneratorsOfColumns(M, M2) (operation)
 Returns: a homalg matrix
 Let \(R \) be the ring over which \(M \) is defined (\(R := \text{HomalgRing}(M) \)). The matrix of relative column syzygies \(\text{SyzygiesGeneratorsOfColumns}(M, M2) \) is a matrix whose columns span the right kernel of \(M \) modulo \(M2 \), i.e. the \(R \)-submodule of the free right module \(R^{(\text{NumberColumns}(M) \times 1)} \) consisting of all columns \(X \) satisfying \(MX + M2Y = 0 \) for some column \(Y \in R^{(\text{NumberColumns}(M2) \times 1)} \). (→ Appendix A)

5.5.36 ReducedBasisOfRowModule (for matrices)
▷ ReducedBasisOfRowModule(M) (operation)
 Returns: a homalg matrix
 Like \(\text{BasisOfRowModule}(M) \) but where the matrix \(\text{SyzygiesGeneratorsOfRows}(\text{ReducedBasisOfRowModule}(M)) \) contains no units. This can easily be achieved starting from \(B := \text{BasisOfRowModule}(M) \) (and using \(\text{GetColumnIndependentUnitPositions}(5.5.24) \) applied to the matrix of row syzygies of \(B \), etc.). (→ Appendix A)

5.5.37 ReducedBasisOfColumnModule (for matrices)
▷ ReducedBasisOfColumnModule(M) (operation)
 Returns: a homalg matrix
 Like \(\text{BasisOfColumnModule}(M) \) but where the matrix \(\text{SyzygiesGeneratorsOfColumns}(\text{ReducedBasisOfColumnModule}(M)) \) contains no units. This can easily be achieved starting from \(B := \text{BasisOfColumnModule}(M) \) (and using \(\text{GetRowIndependentUnitPositions}(5.5.25) \) applied to the matrix of column syzygies of \(B \), etc.). (→ Appendix A)

5.5.38 ReducedSyzygiesGeneratorsOfRows (for matrices)
▷ ReducedSyzygiesGeneratorsOfRows(M) (operation)
 Returns: a homalg matrix
 Like \(\text{SyzygiesGeneratorsOfRows}(M) \) but where the matrix \(\text{SyzygiesGeneratorsOfRows}(\text{ReducedSyzygiesGeneratorsOfRows}(M)) \) contains no units. This can easily be achieved starting from \(C := \text{SyzygiesGeneratorsOfRows}(M) \) (and using \(\text{GetColumnIndependentUnitPositions}(5.5.24) \) applied to the matrix of row syzygies of \(C \), etc.). (→ Appendix A)
5.5.39 ReducedSyzygiesGeneratorsOfColumns (for matrices)

\[\text{ReducedSyzygiesGeneratorsOfColumns}(M) \]

Returns: a homalg matrix

Like `SyzygiesGeneratorsOfColumns(M)` but where the matrix `SyzygiesGeneratorsOfColumns(ReducedSyzygiesGeneratorsOfColumns(M))` contains no units. This can easily be achieved starting from \(C := \text{SyzygiesGeneratorsOfColumns}(M) \) (and using \texttt{GetRowIndependentUnitPositions} \((5.5.25)\) applied to the matrix of column syzygies of \(C \), etc.). (→ Appendix A)

5.5.40 BasisOfRowsCoeff (for matrices)

\[\text{BasisOfRowsCoeff}(M, T) \]

Returns: a homalg matrix

Returns \(B := \text{BasisOfRowModule}(M) \) and assigns the \texttt{void} matrix \texttt{T} (→ HomalgVoidMatrix \((5.2.5)\)) such that \(B = TM \). (→ Appendix A)

5.5.41 BasisOfColumnsCoeff (for matrices)

\[\text{BasisOfColumnsCoeff}(M, T) \]

Returns: a homalg matrix

Returns \(B := \text{BasisOfRowModule}(M) \) and assigns the \texttt{void} matrix \texttt{T} (→ HomalgVoidMatrix \((5.2.5)\)) such that \(B = MT \). (→ Appendix A)

5.5.42 DecideZeroRowsEffectively (for pairs of matrices)

\[\text{DecideZeroRowsEffectively}(A, B, T) \]

Returns: a homalg matrix

Returns \(M := \text{DecideZeroRows}(A, B) \) and assigns the \texttt{void} matrix \texttt{T} (→ HomalgVoidMatrix \((5.2.5)\)) such that \(M = A + TB \). (→ Appendix A)

5.5.43 DecideZeroColumnsEffectively (for pairs of matrices)

\[\text{DecideZeroColumnsEffectively}(A, B, T) \]

Returns: a homalg matrix

Returns \(M := \text{DecideZeroColumns}(A, B) \) and assigns the \texttt{void} matrix \texttt{T} (→ HomalgVoidMatrix \((5.2.5)\)) such that \(M = A + BT \). (→ Appendix A)

5.5.44 BasisOfRows (for matrices)

\[\text{BasisOfRows}(M) \]

\[\text{BasisOfRows}(M, T) \]

Returns: a homalg matrix

With one argument it is a synonym of `BasisOfRowModule` \((5.5.28)\). With two arguments it is a synonym of `BasisOfRowsCoeff` \((5.5.40)\).
5.5.45 BasisOfColumns (for matrices)

▷ BasisOfColumns(\(M\))

▷ BasisOfColumns(\(M, T\))

\textbf{Returns:} a homalg matrix

With one argument it is a synonym of BasisOfColumnModule (5.5.29). with two arguments it is a synonym of BasisOfColumnsCoeff (5.5.41).

5.5.46 DecideZero (for matrices and relations)

▷ DecideZero(mat, rel)

\textbf{Returns:} a homalg matrix

\textbf{Code}

InstallMethod(DecideZero,
 "for sets of ring relations",
 [IsHomalgMatrix, IsHomalgRingRelations],
 function(mat, rel)
 return DecideZero(mat, MatrixOfRelations(rel));
me end);

5.5.47 SyzygiesOfRows (for matrices)

▷ SyzygiesOfRows(\(M\))

▷ SyzygiesOfRows(\(M, M2\))

\textbf{Returns:} a homalg matrix

With one argument it is a synonym of SyzygiesGeneratorsOfRows (5.5.32). with two arguments it is a synonym of SyzygiesGeneratorsOfRows (5.5.34).

5.5.48 SyzygiesOfColumns (for matrices)

▷ SyzygiesOfColumns(\(M\))

▷ SyzygiesOfColumns(\(M, M2\))

\textbf{Returns:} a homalg matrix

With one argument it is a synonym of SyzygiesGeneratorsOfColumns (5.5.33). with two arguments it is a synonym of SyzygiesGeneratorsOfColumns (5.5.35).

5.5.49 ReducedSyzygiesOfRows (for matrices)

▷ ReducedSyzygiesOfRows(\(M\))

▷ ReducedSyzygiesOfRows(\(M, M2\))

\textbf{Returns:} a homalg matrix

With one argument it is a synonym of ReducedSyzygiesGeneratorsOfRows (5.5.38). With two arguments it calls ReducedBasisOfRowModule(SyzygiesGeneratorsOfRows(\(M, M2\))). (∏ ReducedBasisOfRowModule (5.5.36) and SyzygiesGeneratorsOfRows (5.5.34))
5.5.50 ReducedSyzygiesOfColumns (for matrices)

▷ ReducedSyzygiesOfColumns(M) (operation)
▷ ReducedSyzygiesOfColumns(M, M2) (operation)

Returns: a homalg matrix

With one argument it is a synonym of ReducedSyzygiesGeneratorsOfColumns (5.5.39). With two arguments it calls ReducedBasisOfColumnModule(SyzygiesGeneratorsOfColumns(M, M2)). (→ ReducedBasisOfColumnModule (5.5.37) and SyzygiesGeneratorsOfColumns (5.5.35))

5.5.51 RightDivide (for pairs of matrices)

▷ RightDivide(B, A) (operation)

Returns: a homalg matrix or fail

Let B and A be matrices having the same number of columns and defined over the same ring. The matrix RightDivide(B, A) is a particular solution of the inhomogeneous (one sided) linear system of equations $XA = B$ in case it is solvable. Otherwise fail is returned. The name RightDivide suggests "$X = BA^{-1}$". This generalizes LeftInverse (5.5.2) for which B becomes the identity matrix. (→ SyzygiesGeneratorsOfRows (5.5.32))

5.5.52 LeftDivide (for pairs of matrices)

▷ LeftDivide(A, B) (operation)

Returns: a homalg matrix or fail

Let A and B be matrices having the same number of rows and defined over the same ring. The matrix LeftDivide(A, B) is a particular solution of the inhomogeneous (one sided) linear system of equations $AX = B$ in case it is solvable. Otherwise fail is returned. The name LeftDivide suggests "$X = A^{-1}B$". This generalizes RightInverse (5.5.3) for which B becomes the identity matrix. (→ SyzygiesGeneratorsOfColumns (5.5.33))

5.5.53 RightDivide (for triples of matrices)

▷ RightDivide(B, A, L) (operation)

Returns: a homalg matrix or fail

Let B, A and L be matrices having the same number of columns and defined over the same ring. The matrix RightDivide(B, A, L) is a particular solution of the inhomogeneous (one sided) linear system of equations $XA + YL = B$ in case it is solvable (for some Y which is forgotten). Otherwise fail is returned. The name RightDivide suggests "$X = BA^{-1} \text{ modulo } L$". (Cf. [BR08, Subsection 3.1.1])

```plaintext
InstallMethod( RightDivide,
    "for homalg matrices",
    [ IsHomalgMatrix, IsHomalgMatrix, IsHomalgMatrix ],
    function( B, A, L ) ## CAUTION: Do not use lazy evaluation here!!!
    local R, BL, ZA, AL, ZB, T, B_;
    R := HomalgRing( B );
    BL := BasisOfRows( L );
```

5.5.54 \texttt{LeftDivide} (for triples of matrices)

\begin{verbatim}
\texttt{LeftDivide}(A, B, L)
\end{verbatim}

\textbf{Returns:} a homalg matrix or \texttt{fail}

Let A, B and L be matrices having the same number of columns and defined over the same ring. The matrix \texttt{LeftDivide}(A, B, L) is a particular solution of the inhomogeneous (one sided) linear system of equations $AX + LY = B$ in case it is solvable (for some Y which is forgotten). Otherwise \texttt{fail} is returned. The name \texttt{LeftDivide} suggests “$X = A^{-1}B$ modulo L”. (Cf. [BR08, Subsection 3.1.1])

\begin{verbatim}
first reduce A modulo L
ZA := DecideZeroRows(A, BL);

AL := UnionOfRows(ZA, BL);

also reduce B modulo L
ZB := DecideZeroRows(B, BL);

$B__ = ZB + T \cdot AL$
T := HomalgVoidMatrix(R);
B_ := DecideZeroRowsEffectively(ZB, AL, T);

if $B__$ does not vanish
if not IsZero(B_) then
 return fail;
fi;

T := CertainColumns(T, [1 .. NumberRows(A)]);

check assertion
Assert(5, IsZero(DecideZeroRows(B + T * A, BL)));

return -T;
end);
\end{verbatim}
AL := UnionOfColumns(ZA, BL);

also reduce B modulo L
ZB := DecideZeroColumns(B, BL);

$B__ = ZB + AL \ast T$
T := HomalgVoidMatrix(R);
B_ := DecideZeroColumnsEffectively(ZB, AL, T);

if $B__$ does not vanish
if not IsZero(B_) then
 return fail;
fi;

T := CertainRows(T, [1 .. NumberColumns(A)]);

check assertion
Assert(5, IsZero(DecideZeroColumns(B + A \ast T, BL)));
return -T;
end);

5.5.55 SafeRightDivide (for pairs of matrices)

▷ SafeRightDivide(B, A)
(operation)
Returns: a homalg matrix
Same as RightDivide (5.5.51), but asserts that the result is not fail.

5.5.56 SafeLeftDivide (for pairs of matrices)

▷ SafeLeftDivide(A, B)
(operation)
Returns: a homalg matrix
Same as LeftDivide (5.5.52), but asserts that the result is not fail.

5.5.57 UniqueRightDivide (for pairs of matrices)

▷ UniqueRightDivide(B, A)
(operation)
Returns: a homalg matrix
Same as SafeRightDivide (5.5.55), but asserts at assertion level 5 that the solution is unique.

5.5.58 UniqueLeftDivide (for pairs of matrices)

▷ UniqueLeftDivide(A, B)
(operation)
Returns: a homalg matrix
Same as SafeLeftDivide (5.5.56), but asserts at assertion level 5 that the solution is unique.
5.5.59 GenerateSameRowModule (for pairs of matrices)

▷ GenerateSameRowModule\((M, N) \) (operation)

Returns: true or false
Check if the row span of \(M \) and of \(N \) are identical or not (→ RightDivide (5.5.51)).

5.5.60 GenerateSameColumnModule (for pairs of matrices)

▷ GenerateSameColumnModule\((M, N) \) (operation)

Returns: true or false
Check if the column span of \(M \) and of \(N \) are identical or not (→ LeftDivide (5.5.52)).

5.5.61 SimplifyHomalgMatrixByLeftAndRightMultiplicationWithInvertibleMatrices (for matrices)

▷ SimplifyHomalgMatrixByLeftAndRightMultiplicationWithInvertibleMatrices\((M) \) (operation)

Returns: a list of 5 homalg matrices
The input is a homalg matrix \(M \). The output is a 5-tuple of homalg matrices \(S, U, V, UI, VI \), such that \(U M V = S \). Moreover, \(U \) and \(V \) are invertible with inverses \(UI, VI \), respectively. The idea is that the matrix \(S \) should look "simpler" than \(M \).

5.5.62 SimplifyHomalgMatrixByLeftMultiplicationWithInvertibleMatrix (for matrices)

▷ SimplifyHomalgMatrixByLeftMultiplicationWithInvertibleMatrix\((M) \) (operation)

Returns: a list of 3 homalg matrices
The input is a homalg matrix \(M \). The output is a 3-tuple of homalg matrices \(S, T, TI \) such that \(T M = S \). Moreover, \(T \) is invertible with inverse \(TI \). The idea is that the matrix \(S \) should look "simpler" than \(M \).

5.5.63 SimplifyHomalgMatrixByRightMultiplicationWithInvertibleMatrix (for matrices)

▷ SimplifyHomalgMatrixByRightMultiplicationWithInvertibleMatrix\((M) \) (operation)

Returns: a list of 3 homalg matrices
The input is a homalg matrix \(M \). The output is a 3-tuple of homalg matrices \(S, T, TI \) such that \(M T = S \). Moreover, \(T \) is invertible with inverse \(TI \). The idea is that the matrix \(S \) should look "simpler" than \(M \).

5.5.64 CoefficientsWithGivenMonomials (for two homalg matrices)

▷ CoefficientsWithGivenMonomials\((M, monomials) \) (method)

Returns: a homalg matrix
Let \(R := \text{HomalgRing}(M) \). monomials must be a homalg matrix with the same number of columns as \(M \) consisting of monomials of \(R \). This method computes a homalg matrix \(\text{coeffs} \) (with entries in the coefficients ring of \(R \), yet still considered as elements of \(R \)) such that \(M = \text{coeffs} * \text{monomials} \). If no such matrix exists, the behavior is undefined. If the first argument is a homalg
ring element, it is viewed as a homalg matrix with a single entry. If the second argument is a list of monomials, it is viewed as a column matrix with the list elements as entries.
Chapter 6

Ring Relations

6.1 Ring Relations: Categories and Representations

6.1.1 IsHomalgRingRelations

▷ IsHomalgRingRelations(rel) (Category)

Returns: true or false

The GAP category of homalg ring relations.

6.1.2 IsHomalgRingRelationsAsGeneratorsOfLeftIdeal

▷ IsHomalgRingRelationsAsGeneratorsOfLeftIdeal(rel) (Category)

Returns: true or false

The GAP category of homalg ring relations as generators of a left ideal.
(It is a subcategory of the GAP category IsHomalgRingRelations.)

6.1.3 IsHomalgRingRelationsAsGeneratorsOfRightIdeal

▷ IsHomalgRingRelationsAsGeneratorsOfRightIdeal(rel) (Category)

Returns: true or false

The GAP category of homalg ring relations as generators of a right ideal.
(It is a subcategory of the GAP category IsHomalgRingRelations.)

6.1.4 IsRingRelationsRep

▷ IsRingRelationsRep(rel) (Representation)

Returns: true or false

The GAP representation of a finite set of relations of a homalg ring.
(It is a representation of the GAP category IsHomalgRingRelations (6.1.1))
6.2 Ring Relations: Constructors

6.3 Ring Relations: Properties

6.3.1 CanBeUsedToDecideZero

▷ CanBeUsedToDecideZero(rel) (property)

Returns: true or false

Check if the homalg set of relations rel can be used for normal form reductions.
(no method installed)

6.3.2 IsInjectivePresentation

▷ IsInjectivePresentation(rel) (property)

Returns: true or false

Check if the homalg set of relations rel has zero syzygies.

6.4 Ring Relations: Attributes

6.5 Ring Relations: Operations and Functions
Appendix A

The Basic Matrix Operations

These are the operations used to solve one-sided (in)homogeneous linear systems $XA = B$ resp. $AX = B$.

A.1 Main

- BasisOfRowModule (5.5.28)
- BasisOfColumnModule (5.5.29)
- DecideZeroRows (5.5.30)
- DecideZeroColumns (5.5.31)
- SyzygiesGeneratorsOfRows (5.5.32)
- SyzygiesGeneratorsOfColumns (5.5.33)

A.2 Effective

- BasisOfRowsCoeff (5.5.40)
- BasisOfColumnsCoeff (5.5.41)
- DecideZeroRowsEffectively (5.5.42)
- DecideZeroColumnsEffectively (5.5.43)

A.3 Relative

- SyzygiesGeneratorsOfRows (5.5.34)
- SyzygiesGeneratorsOfColumns (5.5.35)
A.4 Reduced

- ReducedBasisOfRowModule (5.5.36)
- ReducedBasisOfColumnModule (5.5.37)
- ReducedSyzygiesGeneratorsOfRows (5.5.38)
- ReducedSyzygiesGeneratorsOfColumns (5.5.39)
Appendix B

The Matrix Tool Operations

The functions listed below are components of the homalgTable object stored in the ring. They are only indirectly accessible through standard methods that invoke them.

B.1 The Tool Operations without a Fallback Method

There are matrix methods for which homalg needs a homalgTable entry for non-internal rings, as it cannot provide a suitable fallback. Below is the list of these homalgTable entries.

B.1.1 InitialMatrix (homalgTable entry for initial matrices)

▷ InitialMatrix(C) (function)

Returns: the Eval value of a homalg matrix C

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{InitialMatrix}$ is bound then the method Eval (C.4.1) resets the filter IsInitialMatrix and returns $RP!.\text{InitialMatrix}(C)$.

B.1.2 InitialIdentityMatrix (homalgTable entry for initial identity matrices)

▷ InitialIdentityMatrix(C) (function)

Returns: the Eval value of a homalg matrix C

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{InitialIdentityMatrix}$ is bound then the method Eval (C.4.2) resets the filter $\text{IsInitialIdentityMatrix}$ and returns $RP!.\text{InitialIdentityMatrix}(C)$.

B.1.3 ZeroMatrix (homalgTable entry)

▷ ZeroMatrix(C) (function)

Returns: the Eval value of a homalg matrix C

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{ZeroMatrix}$ is bound then the method Eval (C.4.3) returns $RP!.\text{ZeroMatrix}(C)$.
B.1.4 IdentityMatrix (homalgTable entry)

▷ IdentityMatrix(C) (function)
 Returns: the Eval value of a homalg matrix C
Let R := HomalgRing(C) and RP := homalgTable(R). If the homalgTable component RP!.IdentityMatrix is bound then the method Eval (C.4.4) returns RP!.IdentityMatrix(C).

B.1.5 Involution (homalgTable entry)

▷ Involution(M) (function)
 Returns: the Eval value of a homalg matrix C
Let R := HomalgRing(C) and RP := homalgTable(R). If the homalgTable component RP!.Involution is bound then the method Eval (C.4.7) returns RP!.Involution applied to the content of the attribute EvalInvolution(C) = M.

B.1.6 TransposedMatrix (homalgTable entry)

▷ TransposedMatrix(M) (function)
 Returns: the Eval value of a homalg matrix C
Let R := HomalgRing(C) and RP := homalgTable(R). If the homalgTable component RP!.TransposedMatrix is bound then the method Eval (C.4.8) returns RP!.TransposedMatrix applied to the content of the attribute EvalTransposedMatrix(C) = M.

B.1.7 CertainRows (homalgTable entry)

▷ CertainRows(M, plist) (function)
 Returns: the Eval value of a homalg matrix C
Let R := HomalgRing(C) and RP := homalgTable(R). If the homalgTable component RP!.CertainRows is bound then the method Eval (C.4.10) returns RP!.CertainRows applied to the content of the attribute EvalCertainRows(C) = [M, plist].

B.1.8 CertainColumns (homalgTable entry)

▷ CertainColumns(M, plist) (function)
 Returns: the Eval value of a homalg matrix C
Let R := HomalgRing(C) and RP := homalgTable(R). If the homalgTable component RP!.CertainColumns is bound then the method Eval (C.4.11) returns RP!.CertainColumns applied to the content of the attribute EvalCertainColumns(C) = [M, plist].

B.1.9 UnionOfRows (homalgTable entry)

▷ UnionOfRows(L) (function)
 Returns: the Eval value of a homalg matrix C
Let R := HomalgRing(C) and RP := homalgTable(R). If the homalgTable component RP!.UnionOfRows is bound then the method Eval (C.4.12) returns RP!.UnionOfRows applied to the content of the attribute EvalUnionOfRows(C) = L.
B.1.10 UnionOfRowsPair (homalgTable entry)

▷ UnionOfRowsPair(A, B) (function)

Returns: the Eval value of a homalg matrix C

Let \(R := \text{HomalgRing}(C) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!\text{UnionOfRowsPair} \) is bound and the homalgTable component \(RP!\text{UnionOfRows} \) is not bound then the method Eval (C.4.12) returns \(RP!\text{UnionOfRowsPair} \) applied recursively to a balanced binary tree created from the content of the attribute EvalUnionOfRows(C).

B.1.11 UnionOfColumns (homalgTable entry)

▷ UnionOfColumns(L) (function)

Returns: the Eval value of a homalg matrix C

Let \(R := \text{HomalgRing}(C) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!\text{UnionOfColumns} \) is bound then the method Eval (C.4.13) returns \(RP!\text{UnionOfColumns} \) applied to the content of the attribute EvalUnionOfColumns(C) = L.

B.1.12 UnionOfColumnsPair (homalgTable entry)

▷ UnionOfColumnsPair(A, B) (function)

Returns: the Eval value of a homalg matrix C

Let \(R := \text{HomalgRing}(C) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!\text{UnionOfColumnsPair} \) is bound and the homalgTable component \(RP!\text{UnionOfColumns} \) is not bound then the method Eval (C.4.13) returns \(RP!\text{UnionOfColumnsPair} \) applied recursively to a balanced binary tree created from the content of the attribute EvalUnionOfRows(C).

B.1.13 DiagMat (homalgTable entry)

▷ DiagMat(e) (function)

Returns: the Eval value of a homalg matrix C

Let \(R := \text{HomalgRing}(C) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!\text{DiagMat} \) is bound then the method Eval (C.4.14) returns \(RP!\text{DiagMat} \) applied to the content of the attribute EvalDiagMat(C) = e.

B.1.14 KroneckerMat (homalgTable entry)

▷ KroneckerMat(A, B) (function)

Returns: the Eval value of a homalg matrix C

Let \(R := \text{HomalgRing}(C) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!\text{KroneckerMat} \) is bound then the method Eval (C.4.15) returns \(RP!\text{KroneckerMat} \) applied to the content of the attribute EvalKroneckerMat(C) = [A, B].

B.1.15 DualKroneckerMat (homalgTable entry)

▷ DualKroneckerMat(A, B) (function)

Returns: the Eval value of a homalg matrix C
Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{DualKroneckerMat}$ is bound then the method $\text{Eval}(C.4.16)$ returns $RP!.\text{DualKroneckerMat}$ applied to the content of the attribute $\text{EvalDualKroneckerMat}(C) = [A,B]$.

B.1.16 MulMat (homalgTable entry)

\[\text{MulMat}(a, A) \]

Returns: the Eval value of a homalg matrix C

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{MulMat}$ is bound then the method $\text{Eval}(C.4.17)$ returns $RP!.\text{MulMat}$ applied to the content of the attribute $\text{EvalMulMat}(C) = [a,A]$.

B.1.17 AddMat (homalgTable entry)

\[\text{AddMat}(A, B) \]

Returns: the Eval value of a homalg matrix C

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{AddMat}$ is bound then the method $\text{Eval}(C.4.18)$ returns $RP!.\text{AddMat}$ applied to the content of the attribute $\text{EvalAddMat}(C) = [A,B]$.

B.1.18 SubMat (homalgTable entry)

\[\text{SubMat}(A, B) \]

Returns: the Eval value of a homalg matrix C

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{SubMat}$ is bound then the method $\text{Eval}(C.4.19)$ returns $RP!.\text{SubMat}$ applied to the content of the attribute $\text{EvalSubMat}(C) = [A,B]$.

B.1.19 Compose (homalgTable entry)

\[\text{Compose}(A, B) \]

Returns: the Eval value of a homalg matrix C

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{Compose}$ is bound then the method $\text{Eval}(C.4.20)$ returns $RP!.\text{Compose}$ applied to the content of the attribute $\text{EvalCompose}(C) = [A,B]$.

B.1.20 IsZeroMatrix (homalgTable entry)

\[\text{IsZeroMatrix}(M) \]

Returns: true or false

Let $R := \text{HomalgRing}(M)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{IsZeroMatrix}$ is bound then the standard method for the property IsZero (5.3.1) shown below returns $RP!.\text{IsZeroMatrix}(M)$.

```plaintext
InstallMethod( IsZero,  "for homalg matrices",  [ IsHomalgMatrix ],
  function( M )
```
local R, RP;

R := HomalgRing(M);

RP := homalgTable(R);

if IsBound(RP!.IsZeroMatrix) then
 ## CAUTION: the external system must be able
 ## to check zero modulo possible ring relations!

 return RP!.IsZeroMatrix(M); ## with this, \= can fall back to IsZero
fi;

#=====# the fallback method #=====#

from the GAP4 documentation: ?Zero
`ZeroSameMutability(<obj>)' is equivalent to '0 * <obj>'.

return M = 0 * M; ## hence, by default, IsZero falls back to \= (see below)
end);

B.1.21 NumberRows (homalgTable entry)

▷ NumberRows(C)

Returns: a nonnegative integer

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.NumberRows$ is bound then the standard method for the attribute NumberRows (5.4.1) shown below returns $RP!.NumberRows(C)$.

Code

\begin{verbatim}
InstallMethod(NumberRows, "for homalg matrices", [IsHomalgMatrix],

function(C)
 local R, RP;

 R := HomalgRing(C);

 RP := homalgTable(R);

 if IsBound(RP!.NumberRows) then
 return RP!.NumberRows(C);
 fi;

 if not IsHomalgInternalMatrixRep(C) then
 Error("could not find a procedure called NumberRows ",
 "in the homalgTable of the non-internal ring\n");
 fi;

 #=====# can only work for homalg internal matrices #=====#
\end{verbatim}
B.1.22 NumberColumns (homalgTable entry)

▷ NumberColumns(C)

Returns: a nonnegative integer

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{NumberColumns}$ is bound then the standard method for the attribute NumberColumns (5.4.2) shown below returns $RP!.\text{NumberColumns}(C)$.

```plaintext
InstallMethod( NumberColumns,  
    "for homalg matrices",  
    [ IsHomalgMatrix ],

    function( C )
    local R, RP;

    R := HomalgRing( C );
    RP := homalgTable( R );
    if IsBound(RP!.NumberColumns) then
        return RP!.NumberColumns( C );
    fi;
    if not IsHomalgInternalMatrixRep( C ) then
        Error( "could not find a procedure called NumberColumns ",  
            "in the homalgTable of the non-internal ring\n" );
    fi;
    #=====# can only work for homalg internal matrices #=====#
    return Length( Eval( C )!.matrix[ 1 ] );
end );
```

B.1.23 Determinant (homalgTable entry)

▷ Determinant(C)

Returns: a ring element

Let $R := \text{HomalgRing}(C)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{Determinant}$ is bound then the standard method for the attribute DeterminantMat (5.4.3) shown below returns $RP!.\text{Determinant}(C)$.

```plaintext
InstallMethod( DeterminantMat,  
    "for homalg matrices",  
    [ IsHomalgMatrix ],
```
function(C)
local R, RP;

R := HomalgRing(C);
RP := homalgTable(R);

if NumberRows(C) <> NumberColumns(C) then
 Error("the matrix is not a square matrix\n");
fi;

if IsEmptyMatrix(C) then
 return One(R);
elif IsZero(C) then
 return Zero(R);
fi;

if IsBound(RP!.Determinant) then
 return RingElementConstructor(R)(RP!.Determinant(C), R);
fi;

if not IsHomalgInternalMatrixRep(C) then
 Error("could not find a procedure called Determinant ",
 "in the homalgTable of the non-internal ring\n");
fi;

can only work for homalg internal matrices
return Determinant(Eval(C)!.matrix);
end);

InstallMethod(Determinant,
 "for homalg matrices",
 [IsHomalgMatrix],
 function(C)
 return DeterminantMat(C);
end);

B.1.24 CoefficientsWithGivenMonomials (homalgTable entry)

Returns: the Eval value of a homalg matrix C

Let \(R := \text{HomalgRing}(C) \) and \(RP := \text{homalgTable}(R) \). If the \text{homalgTable} component \(RP!.\text{CoefficientsWithGivenMonomials} \) is bound then the method \text{Eval} \text{(C.4.21)} returns \(RP!.\text{CoefficientsWithGivenMonomials} \) applied to the content of the attribute
EvalCoefficientsWithGivenMonomials(C) = [M, monomials].

B.2 The Tool Operations with a Fallback Method

These are the methods for which it is recommended for performance reasons to have a homalgTable entry for non-internal rings. homalg only provides a generic fallback method.

B.2.1 AreEqualMatrices (homalgTable entry)

▷ AreEqualMatrices(M1, M2)

Returns: true or false

Let $R := \text{HomalgRing}(M1)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{AreEqualMatrices}$ is bound then the standard method for the operation \neq (5.5.23) shown below returns $RP!.\text{AreEqualMatrices}(M1, M2)$.

<table>
<thead>
<tr>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstallMethod(\neq,</td>
</tr>
<tr>
<td>"for homalg comparable matrices",</td>
</tr>
<tr>
<td>[IsHomalgMatrix, IsHomalgMatrix],</td>
</tr>
<tr>
<td>function(M1, M2)</td>
</tr>
<tr>
<td>local R, RP, are_equal;</td>
</tr>
<tr>
<td>## do not touch mutable matrices</td>
</tr>
<tr>
<td>if not (IsMutable(M1) or Ismutable(M2)) then</td>
</tr>
<tr>
<td>if IsBound(M1!.AreEqual) then</td>
</tr>
<tr>
<td>are_equal := _ElmWPObj_ForHomalg(M1!.AreEqual, M2, fail);</td>
</tr>
<tr>
<td>if are_equal <> fail then</td>
</tr>
<tr>
<td>return are_equal;</td>
</tr>
<tr>
<td>fi;</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>M1!.AreEqual :=</td>
</tr>
<tr>
<td>ContainerForWeakPointers(</td>
</tr>
<tr>
<td>TheTypeContainerForWeakPointersOnComputedValues,</td>
</tr>
<tr>
<td>["operation", "AreEqual"]) ;</td>
</tr>
<tr>
<td>fi;</td>
</tr>
<tr>
<td>if IsBound(M2!.AreEqual) then</td>
</tr>
<tr>
<td>are_equal := _ElmWPObj_ForHomalg(M2!.AreEqual, M1, fail);</td>
</tr>
<tr>
<td>if are_equal <> fail then</td>
</tr>
<tr>
<td>return are_equal;</td>
</tr>
<tr>
<td>fi;</td>
</tr>
<tr>
<td>fi;</td>
</tr>
<tr>
<td>## do not store things symmetrically below to 'save' memory</td>
</tr>
<tr>
<td>fi;</td>
</tr>
<tr>
<td>R := HomalgRing(M1);</td>
</tr>
<tr>
<td>RP := homalgTable(R);</td>
</tr>
</tbody>
</table>

if IsBound(RP!.AreEqualMatrices) then
 ## CAUTION: the external system must be able to check equality
 ## modulo possible ring relations (known to the external system)!
 are_equal := RP!.AreEqualMatrices(M1, M2);
elif IsBound(RP!.Equal) then
 ## CAUTION: the external system must be able to check equality
 ## modulo possible ring relations (known to the external system)!
 are_equal := RP!.Equal(M1, M2);
elif IsBound(RP!.IsZeroMatrix) then ## ensuring this avoids infinite loops
 are_equal := IsZero(M1 - M2);
fi;
if IsBound(are_equal) then
 ## do not touch mutable matrices
 if not (IsMutable(M1) or IsMutable(M2)) then
 if are_equal then
 MatchPropertiesAndAttributes(M1, M2,
 LIMAT.intrinsic_properties,
 LIMAT.intrinsic_attributes,
 LIMAT.intrinsic_components,
 LIMAT.intrinsic_attributes_do_not_check_their_equality
);
 fi;
 ## do not store things symmetrically to ‘‘save’’ memory
 _AddTwoElmWPObj_ForHomalg(M1!.AreEqual, M2, are_equal);
 fi;
 return are_equal;
fi;
TryNextMethod();

B.2.2 IsIdentityMatrix (homalgTable entry)
▷ IsIdentityMatrix(M) (function)

Returns: true or false
Let $R := \text{HomalgRing}(M)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{IsIdentityMatrix}$ is bound then the standard method for the property IsOne (5.3.2) shown below returns $RP!.\text{IsIdentityMatrix}(M)$.

InstallMethod(IsOne,
 "for homalg matrices",
 [IsHomalgMatrix],
 function(M)
local R, RP;
if NumberRows(M) <> NumberColumns(M) then
 return false;
fi;
R := HomalgRing(M);
RP := homalgTable(R);
if IsBound(RP!.IsIdentityMatrix) then
 return RP!.IsIdentityMatrix(M);
fi;
#=====# the fallback method #=====#
return M = HomalgIdentityMatrix(NumberRows(M), HomalgRing(M));
end);

B.2.3 IsDiagonalMatrix (homalgTable entry)
▷ IsDiagonalMatrix(M)
(function)
Returns: true or false
Let $R := \text{HomalgRing}(M)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{IsDiagonalMatrix}$ is bound then the standard method for the property IsDiagonalMatrix (5.3.13) shown below returns $RP!.\text{IsDiagonalMatrix}(M)$.

```
InstallMethod( IsDiagonalMatrix, 
    "for homalg matrices",
    [ IsHomalgMatrix ],
    function( M )
    local R, RP, diag;
    R := HomalgRing( M );
    RP := homalgTable( R );
    if IsBound(RP!.IsDiagonalMatrix) then
        return RP!.IsDiagonalMatrix( M );
    fi;
    #=====# the fallback method #=====#
    diag := DiagonalEntries( M );
    return M = HomalgDiagonalMatrix( diag, NumberRows( M ), NumberColumns( M ), R );
end );
```
B.2.4 ZeroRows (homalgTable entry)

▷ ZeroRows(C)

Returns: a (possibly empty) list of positive integers

Let \(R := \text{HomalgRing}(C) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!.\text{ZeroRows} \) is bound then the standard method of the attribute \(\text{ZeroRows} \) (5.4.4) shown below returns \(RP!.\text{ZeroRows}(C) \).

```plaintext
InstallMethod( ZeroRows, 
  "for homalg matrices",
  [ IsHomalgMatrix ],
  function( C )
    local R, RP, z;
    R := HomalgRing( C );
    RP := homalgTable( R );
    if IsBound(RP!.ZeroRows) then
      return RP!.ZeroRows( C );
    fi;
    #=====# the fallback method #=====#
    z := HomalgZeroMatrix( 1, NumberColumns( C ), R );
    return Filtered( [ 1 .. NumberRows( C )], a -> CertainRows( C, [ a ] ) = z );
end );
```

B.2.5 ZeroColumns (homalgTable entry)

▷ ZeroColumns(C)

Returns: a (possibly empty) list of positive integers

Let \(R := \text{HomalgRing}(C) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!.\text{ZeroColumns} \) is bound then the standard method of the attribute \(\text{ZeroColumns} \) (5.4.5) shown below returns \(RP!.\text{ZeroColumns}(C) \).

```plaintext
InstallMethod( ZeroColumns, 
  "for homalg matrices",
  [ IsHomalgMatrix ],
  function( C )
    local R, RP, z;
    R := HomalgRing( C );
    RP := homalgTable( R );
    if IsBound(RP!.ZeroColumns) then
```
return RP!.ZeroColumns(C);
fi;

#=====# the fallback method #=====#

z := HomalgZeroMatrix(NumberRows(C), 1, R);
return Filtered([1 .. NumberColumns(C)], a -> CertainColumns(C, [a]) = z);
end);

B.2.6 GetColumnIndependentUnitPositions (homalgTable entry)

▷ GetColumnIndependentUnitPositions(M, poslist) (function)

Returns: a (possibly empty) list of pairs of positive integers

Let \(R := \text{HomalgRing}(M) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!.\text{GetColumnIndependentUnitPositions} \) is bound then the standard method of the operation \(\text{GetColumnIndependentUnitPositions} \) (5.5.24) shown below returns \(RP!.\text{GetColumnIndependentUnitPositions}(M,poslist) \).

\[
\text{InstallMethod} \left(\text{GetColumnIndependentUnitPositions}, \right.
\quad \text{"for homalg matrices","}
\left. \quad \text{[IsHomalgMatrix, IsHomogeneousList]}, \right.
\quad \text{function(M, poslist)} \right.
\]

\[
\begin{align*}
\text{local} & \; \text{cache}, R, RP, \text{rest}, \text{pos}, i, j, k; \\
\text{if} & \; \text{IsBound}(M!.\text{GetColumnIndependentUnitPositions} \text{) then} \\
\quad & \; \text{cache} := M!.\text{GetColumnIndependentUnitPositions}; \\
\quad & \; \text{if} \; \text{IsBound}(\text{cache.(String(poslist))} \text{) then} \\
\quad & \; \text{return} \; \text{cache.(String(poslist))}; \\
\quad & \; \text{fi}; \\
\text{else} & \; \\
\quad & \; \text{cache} := \text{rec}(); \\
\quad & \; M!.\text{GetColumnIndependentUnitPositions} := \text{cache}; \\
\quad & \; \text{fi}; \\
\text{R} & \; := \text{HomalgRing}(M); \\
\text{RP} & \; := \text{homalgTable}(R); \\
\text{if} & \; \text{IsBound(RP!.\text{GetColumnIndependentUnitPositions}) then} \\
\quad & \; \text{pos} := \text{RP!.GetColumnIndependentUnitPositions}(M, poslist); \\
\quad & \; \text{if} \; \text{pos <> [] then} \\
\quad & \; \text{SetIsZero}(M, \text{false}); \\
\quad & \; \text{fi}; \\
\quad & \; \text{cache.(String(poslist))} := \text{pos}; \\
\quad & \; \text{return} \; \text{pos}; \\
\quad & \; \text{fi}; \\
\end{align*}
\]

#=====# the fallback method #=====#
rest := [1 .. NumberColumns(M)];

pos := [];

for i in [1 .. NumberRows(M)] do
 for k in Reversed(rest) do
 if not [i, k] in poslist and
 IsUnit(R, M[i, k]) then
 Add(pos, [i, k]);
 rest := Filtered(rest,
 a -> IsZero(M[i, a]));
 break;
 fi;
 od;
od;

if pos <> [] then
 SetIsZero(M, false);
fi;

cache.(String(poslist)) := pos;

return pos;
end);

B.2.7 GetRowIndependentUnitPositions (homalgTable entry)

▷ GetRowIndependentUnitPositions(M, poslist)

(function)

Returns: a (possibly empty) list of pairs of positive integers

Let $R := \text{HomalgRing}(M)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{GetRowIndependentUnitPositions}$ is bound then the standard method of the operation $\text{GetRowIndependentUnitPositions}$ (5.5.25) shown below returns $RP!.\text{GetRowIndependentUnitPositions}(M,poslist)$.

```
InstallMethod( GetRowIndependentUnitPositions,
    "for homalg matrices",
    [ IsHomalgMatrix, IsHomogeneousList ],

    function( M, poslist )
        local cache, R, RP, rest, pos, j, i, k;

        if IsBound( M!.GetRowIndependentUnitPositions ) then
            cache := M!.GetRowIndependentUnitPositions;
        else
            cache := rec();
        fi;

        return cache.(String( poslist ));
    end );
```
MatricesForHomalg

B.2.8 GetUnitPosition (homalgTable entry)

GetUnitPosition(M, poslist) (function)

Returns: a (possibly empty) list of pairs of positive integers

Let $R := \text{HomalgRing}(M)$ and $RP := \text{homalgTable}(R)$. If the homalgTable component $RP!.\text{GetUnitPosition}$ is bound then the standard method of the operation GetUnitPosition shown below returns $RP!.\text{GetUnitPosition}(M,\text{poslist})$. Otherwise, the fallback method is used.
function(M, poslist)
 local R, RP, pos, m, n, i, j;

 R := HomalgRing(M);
 RP := homalgTable(R);

 if IsBound(RP!.GetUnitPosition) then
 pos := RP!.GetUnitPosition(M, poslist);
 if IsList(pos) and IsPosInt(pos[1]) and IsPosInt(pos[2]) then
 SetIsZero(M, false);

 return pos;
 fi;

 #=====# the fallback method #=====#

 m := NumberRows(M);
 n := NumberColumns(M);

 for i in [1 .. m] do
 for j in [1 .. n] do
 if not [i, j] in poslist and not j in poslist and
 IsUnit(R, M[i, j]) then
 SetIsZero(M, false);

 return [i, j];
 fi;
 od;
 od;

 return fail;
end);

B.2.9 PositionOfFirstNonZeroEntryPerRow (homalgTable entry)

▷ PositionOfFirstNonZeroEntryPerRow(M, poslist) (function)
Returns: a list of nonnegative integers

Let \(R := \text{HomalgRing}(M) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!.\text{PositionOfFirstNonZeroEntryPerRow} \) is bound then the standard method of the attribute \(\text{PositionOfFirstNonZeroEntryPerRow} \) (5.4.8) shown below returns \(RP!.\text{PositionOfFirstNonZeroEntryPerRow}(M) \).

InstallMethod(PositionOfFirstNonZeroEntryPerRow,
 "for homalg matrices",
 [IsHomalgMatrix],
 function(M)
)
local R, RP, pos, entries, r, c, i, k, j;

R := HomalgRing(M);

RP := homalgTable(R);

if IsBound(RP!.PositionOfFirstNonZeroEntryPerRow) then
 return RP!.PositionOfFirstNonZeroEntryPerRow(M);
elif IsBound(RP!.PositionOfFirstNonZeroEntryPerColumn) then
 return PositionOfFirstNonZeroEntryPerColumn(Involution(M));
fi;

#=====# the fallback method #=====#

entries := EntriesOfHomalgMatrix(M);

r := NumberOfRows(M);

for i in [1 .. r] do
 for j in [1 .. c] do
 if not IsZero(entries[k + j]) then
 pos[i] := j;
 break;
 fi;
 od;
od;

return pos;
end);

B.2.10 PositionOfFirstNonZeroEntryPerColumn (homalgTable entry)

▷ PositionOfFirstNonZeroEntryPerColumn(M, poslist)

Returns: a list of nonnegative integers

Let \(R := \text{HomalgRing}(M) \) and \(RP := \text{homalgTable}(R) \). If the homalgTable component \(RP!.\text{PositionOfFirstNonZeroEntryPerColumn} \) is bound then the standard method of the attribute PositionOfFirstNonZeroEntryPerColumn (5.4.9) shown below returns \(RP!.\text{PositionOfFirstNonZeroEntryPerColumn}(M) \).

InstallMethod(PositionOfFirstNonZeroEntryPerColumn,
 "for homalg matrices",
 [IsHomalgMatrix],
 function(M)
 local R, RP, pos, entries, r, c, j, i, k;
R := HomalgRing(M);

RP := homalgTable(R);

if IsBound(RP!.PositionOfFirstNonZeroEntryPerColumn) then
 return RP!.PositionOfFirstNonZeroEntryPerColumn(M);
elif IsBound(RP!.PositionOfFirstNonZeroEntryPerRow) then
 return PositionOfFirstNonZeroEntryPerRow(Involution(M));
fi;

#=====# the fallback method #=====#

entries := EntriesOfHomalgMatrix(M);

r := NumberRows(M);
c := NumberColumns(M);

pos := ListWithIdenticalEntries(c, 0);

for j in [1 .. c] do
 for i in [1 .. r] do
 k := (i - 1) * c;
 if not IsZero(entries[k + j]) then
 pos[j] := i;
 break;
 fi;
 od;
od;

return pos;
end);
Appendix C

Logic Subpackages

C.1 LIRNG: Logical Implications for Rings

C.2 LIMAP: Logical Implications for Ring Maps

C.3 LIMAT: Logical Implications for Matrices

C.4 COLEM: Clever Operations for Lazy Evaluated Matrices

Most of the matrix tool operations listed in Appendix B.1 which return a new matrix are lazy evaluated. The value of a homalg matrix is stored in the attribute Eval. Below is the list of the installed methods for the attribute Eval.

C.4.1 Eval (for matrices created with HomalgInitialMatrix)

▷ Eval(C) (method)

Returns: the Eval value of a homalg matrix C

In case the matrix C was created using HomalgInitialMatrix (5.2.1) then the filter IsInitialMatrix for C is set to true and the homalgTable function (→ InitialMatrix (B.1.1)) will be used to set the attribute Eval and resets the filter IsInitialMatrix.

```
InstallMethod( Eval, 
 "for homalg matrices (IsInitialMatrix)",
 [ IsHomalgMatrix and IsInitialMatrix and 
   HasNumberRows and HasNumberColumns ],

    function( C )
      local R, RP, z, zz;

      R := HomalgRing( C );

      RP := homalgTable( R );

      if IsBound( RP!.InitialMatrix ) then
        ResetFilterObj( C, IsInitialMatrix );
        SetEval( C, RP!.InitialMatrix( C ) );
    
```
return Eval(C);
fi;

if not IsHomalgInternalMatrixRep(C) then
 Error("could not find a procedure called InitialMatrix in the ",
 "homalgTable to evaluate a non-internal initial matrix\n");
fi;

#=====# can only work for homalg internal matrices #=====#
z := Zero(HomalgRing(C));
ResetFilterObj(C, IsInitialMatrix);
zz := ListWithIdenticalEntries(NumberColumns(C), z);
SetEval(C, homalgInternalMatrixHull(List([1 .. NumberRows(C)], i -> ShallowCopy(zz)))
return Eval(C);
end);

C.4.2 Eval (for matrices created with HomalgInitialIdentityMatrix)

> Eval(C)

Returns: the Eval value of a homalg matrix C

In case the matrix C was created using HomalgInitialIdentityMatrix (5.2.2) then the
filter IsInitialIdentityMatrix for C is set to true and the homalgTable function (→
InitialIdentityMatrix (B.1.2)) will be used to set the attribute Eval and resets the filter
IsInitialIdentityMatrix.

<table>
<thead>
<tr>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstallMethod(Eval,</td>
</tr>
<tr>
<td>"for homalg matrices (IsInitialIdentityMatrix)",</td>
</tr>
<tr>
<td>[IsHomalgMatrix and IsInitialIdentityMatrix and</td>
</tr>
<tr>
<td>HasNumberOfRows and HasNumberOfColumns],</td>
</tr>
<tr>
<td>function(C)</td>
</tr>
<tr>
<td>local R, RP, o, z, zz, id;</td>
</tr>
<tr>
<td>R := HomalgRing(C);</td>
</tr>
<tr>
<td>RP := homalgTable(R);</td>
</tr>
<tr>
<td>if IsBound(RP!.InitialIdentityMatrix) then</td>
</tr>
<tr>
<td>ResetFilterObj(C, IsInitialIdentityMatrix);</td>
</tr>
<tr>
<td>SetEval(C, RP!.InitialIdentityMatrix(C));</td>
</tr>
<tr>
<td>return Eval(C);</td>
</tr>
<tr>
<td>fi;</td>
</tr>
<tr>
<td>if not IsHomalgInternalMatrixRep(C) then</td>
</tr>
<tr>
<td>Error("could not find a procedure called InitialIdentityMatrix in the ",</td>
</tr>
<tr>
<td>"homalgTable to evaluate an internal initial matrix\n");</td>
</tr>
<tr>
<td>fi;</td>
</tr>
</tbody>
</table>
"homalgTable to evaluate a non-internal initial identity matrix\n"];
fi;

#=====# can only work for homalg internal matrices #=====#

z := Zero(HomalgRing(C));
o := One(HomalgRing(C));

ResetFilterObj(C, IsInitialIdentityMatrix);

zz := ListWithIdenticalEntries(NumberColumns(C), z);

id := List([1 .. NumberRows(C)],
 function(i)
 local z;
 z := ShallowCopy(zz); z[i] := o; return z;
 end);

SetEval(C, homalgInternalMatrixHull(id));

return Eval(C);
end);

C.4.3 Eval (for matrices created with HomalgZeroMatrix)

▷ Eval(C) (method)

Returns: the Eval value of a homalg matrix C

In case the matrix C was created using HomalgZeroMatrix (5.2.3) then the filter IsZeroMatrix
for C is set to true and the homalgTable function (→ ZeroMatrix (B.1.3)) will be used to set the
attribute Eval.

InstallMethod(Eval,
 "for homalg matrices (IsZero)",
 [IsHomalgMatrix and IsZero and HasNumberOfRows and HasNumberOfColumns], 40,
 function(C)
 local R, RP, z;

 R := HomalgRing(C);

 RP := homalgTable(R);

 if (NumberRows(C) = 0 or NumberColumns(C) = 0) and
 not (IsBound(R!.SafeToEvaluateEmptyMatrices) and
 R!.SafeToEvaluateEmptyMatrices = true) then
 Info(InfoWarning, 1, "\033[0m\033[5;31;47m",
 "an empty matrix is about to get evaluated!",
 "\033[0m");
 fi;

 if IsBound(RP!.ZeroMatrix) then

return RP!.ZeroMatrix(C);
fi;

if not IsHomalgInternalMatrixRep(C) then
 Error("could not find a procedure called ZeroMatrix ",
 "homalgTable to evaluate a non-internal zero matrix\n");
fi;

#=====# can only work for homalg internal matrices #=====#
z := Zero(HomalgRing(C));

copying the rows saves memory;
we assume that the entries are never modified!!!
return homalgInternalMatrixHull(
 ListWithIdenticalEntries(NumberRows(C),
 ListWithIdenticalEntries(NumberColumns(C), z)));
end);

C.4.4 Eval (for matrices created with HomalgIdentityMatrix)
▷
Eval(C) (method)

Returns: the Eval value of a homalg matrix C

In case the matrix C was created using HomalgIdentityMatrix (5.2.4) then the filter IsOne for
C is set to true and the homalgTable function (→IdentityMatrix (B.1.4)) will be used to set the
attribute Eval.

```
InstallMethod( Eval,
    "for homalg matrices (IsOne)",
    [ IsHomalgMatrix and IsOne and HasNumberRows and HasNumberColumns ], 10,
    function( C )
        local R, id, RP, o, z, zz;
        R := HomalgRing( C );

        if IsBound( R!.IdentityMatrices ) then
            id := ElmWPObj( R!.IdentityMatrices!.weak_pointers, NumberColumns( C ) );
            if id <> fail then
                R!.IdentityMatrices!.cache_hits := R!.IdentityMatrices!.cache_hits + 1;
                return id;
            fi;
            ## we do not count cache_misses as it is equivalent to counter
            fi;

        RP := homalgTable( R );

        if IsBound( RP!.IdentityMatrix ) then
            id := RP!.IdentityMatrix( C );
            SetElmWPObj( R!.IdentityMatrices!.weak_pointers, NumberColumns( C ), id );
            R!.IdentityMatrices!.counter := R!.IdentityMatrices!.counter + 1;
```

```
MatricesForHomalg

return id;
fi;

if not IsHomalgInternalMatrixRep( C ) then
  Error( "could not find a procedure called IdentityMatrix",
    "homalgTable to evaluate a non-internal identity matrix\n" );
fi;

#=====# can only work for homalg internal matrices #=====#

z := Zero( HomalgRing( C ) );
o := One( HomalgRing( C ) );

zz := ListWithIdenticalEntries( NumberColumns( C ), z );

id := List( [1 .. NumberRows( C )],
  function(i)
    local z;
    z := ShallowCopy( zz ); z[i] := o; return z;
  end );

id := homalgInternalMatrixHull( id );

SetElmWPobj( R!.IdentityMatrices!.weak_pointers, NumberColumns( C ), id );
return id;
end );

C.4.5 Eval (for matrices created with LeftInverseLazy)

Eval(LI)  (method)

Returns: see below

In case the matrix LI was created using LeftInverseLazy (5.5.4) then the filter
HasEvalLeftInverse for LI is set to true and the method listed below will be used to set the at-
tribute Eval. (→LeftInverse (5.5.2))

Code

InstallMethod( Eval,
  "for homalg matrices",
  [ IsHomalgMatrix and HasEvalLeftInverse ],

  function( LI )
    local left_inv;

    left_inv := LeftInverse( EvalLeftInverse( LI ) );

    if IsBool( left_inv ) then
      return false;
    fi;

    return Eval( left_inv );
  );
C.4.6 Eval (for matrices created with RightInverseLazy)

\[ \text{Eval}(RI) \] (method)

**Returns:** see below

In case the matrix \( RI \) was created using RightInverseLazy (5.5.5) then the filter HasEvalRightInverse for \( RI \) is set to true and the method listed below will be used to set the attribute Eval. (\( \rightarrow \) RightInverse (5.5.3))

\begin{verbatim}
InstallMethod( Eval,
    "for homalg matrices",
    [ IsHomalgMatrix and HasEvalRightInverse ],

    function( RI )
        local right_inv;
        right_inv := RightInverse( EvalRightInverse( RI ) );
        if IsBool( right_inv ) then
            return false;
        fi;
        return Eval( right_inv );
    end );
\end{verbatim}

C.4.7 Eval (for matrices created with Involution)

\[ \text{Eval}(C) \] (method)

**Returns:** the Eval value of a homalg matrix \( C \)

In case the matrix was created using Involution (5.5.6) then the filter HasEvalInvolution for \( C \) is set to true and the homalgTable function Involution (B.1.5) will be used to set the attribute Eval.

\begin{verbatim}
InstallMethod( Eval,
    "for homalg matrices (HasEvalInvolution)",
    [ IsHomalgMatrix and HasEvalInvolution ],

    function( C )
        local R, RP, M;
        R := HomalgRing( C );
        RP := homalgTable( R );
        M := EvalInvolution( C );
        if IsBound(RP!.Involution) then
\end{verbatim}
C.4.8 **Eval (for matrices created with TransposedMatrix)**

Returns: the Eval value of a homalg matrix C

In case the matrix was created using TransposedMatrix (5.5.7) then the filter HasEvalTransposedMatrix for C is set to true and the homalgTable function TransposedMatrix (B.1.6) will be used to set the attribute Eval.

```
InstallMethod(Eval, "for homalg matrices (HasEvalTransposedMatrix)", [IsHomalgMatrix and HasEvalTransposedMatrix],

function(C)
 local R, RP, M;
 R := HomalgRing(C);
 RP := homalgTable(R);
 M := EvalTransposedMatrix(C);
 if IsBound(RP!.TransposedMatrix) then return RP!.TransposedMatrix(M); fi;
 if not IsHomalgInternalMatrixRep(C) then
 Error("could not find a procedure called TransposedMatrix ",
 "in the homalgTable of the non-internal ring\n"); fi;
 #=====# can only work for homalg internal matrices #=====#
 return homalgInternalMatrixHull(TransposedMat(Eval(M)!.matrix));
end);
```
C.4.9 Eval (for matrices created with CoercedMatrix)

▷ Eval(C) (method)

Returns: the Eval value of a homalg matrix C

In case the matrix was created using CoercedMatrix (5.2.12) then the filter HasEvalCoercedMatrix for C is set to true and the Eval value of a copy of EvalCoercedMatrix(C) in HomalgRing(C) will be used to set the attribute Eval.

```
InstallMethod(Eval,
 "for homalg matrices (HasEvalCoercedMatrix)",
 [IsHomalgMatrix and HasEvalCoercedMatrix],

 function(C)
 local R, RP, m;
 R := HomalgRing(C);
 RP := homalgTable(R);
 m := EvalCoercedMatrix(C);
 # delegate to the non-lazy coercening
 return Eval(R * m);
 end);
```

C.4.10 Eval (for matrices created with CertainRows)

▷ Eval(C) (method)

Returns: the Eval value of a homalg matrix C

In case the matrix was created using CertainRows (5.5.8) then the filter HasEvalCertainRows for C is set to true and the homalgTable function CertainRows (B.1.7) will be used to set the attribute Eval.

```
InstallMethod(Eval,
 "for homalg matrices (HasEvalCertainRows)",
 [IsHomalgMatrix and HasEvalCertainRows],

 function(C)
 local R, RP, e, M, plist;
 R := HomalgRing(C);
 RP := homalgTable(R);
 e := EvalCertainRows(C);
 M := e[1];
 plist := e[2];
 ResetFilterObj(C, HasEvalCertainRows);
```

## delete the component which was left over by GAP
Unbind( C!.EvalCertainRows );

if IsBound(RP!.CertainRows) then
    return RP!.CertainRows( M, plist );
fi;

if not IsHomalgInternalMatrixRep( C ) then
    Error( "could not find a procedure called CertainRows ",
    "in the homalgTable of the non-internal ring\n" );
fi;

#=====# can only work for homalg internal matrices #=====#
return homalgInternalMatrixHull( Eval( M )!.matrix{ plist } );
end );

C.4.11  Eval (for matrices created with CertainColumns)

▶ Eval(C)  

**Returns:** the Eval value of a homalg matrix C

In case the matrix was created using CertainColumns (5.5.9) then the filter HasEvalCertainColumns for C is set to true and the homalgTable function CertainColumns (B.1.8) will be used to set the attribute Eval.

```
InstallMethod(Eval,
 "for homalg matrices (HasEvalCertainColumns)",
 [IsHomalgMatrix and HasEvalCertainColumns],

 function(C)
 local R, RP, e, M, plist;

 R := HomalgRing(C);
 RP := homalgTable(R);
 e := EvalCertainColumns(C);
 M := e[1];
 plist := e[2];

 ResetFilterObj(C, HasEvalCertainColumns);

 ## delete the component which was left over by GAP
 Unbind(C!.EvalCertainColumns);

 if IsBound(RP!.CertainColumns) then
 return RP!.CertainColumns(M, plist);
 fi;
)
```
if not IsHomalgInternalMatrixRep( C ) then
    Error( "could not find a procedure called CertainColumns ",
        "in the homalgTable of the non-internal ring\n" );
fi;

#=====# can only work for homalg internal matrices #=====#
return homalgInternalMatrixHull(
    Eval( M )!.matrix{[ 1 .. NumberRows( M )]}{plist} );
end );

C.4.12 Eval (for matrices created with UnionOfRows)

▷ Eval( C )

Returns: the Eval value of a homalg matrix C

In case the matrix was created using UnionOfRows (5.5.10) then the filter HasEvalUnionOfRows for C is set to true and the homalgTable function UnionOfRows (B.1.9) or the homalgTable function UnionOfRowsPair (B.1.10) will be used to set the attribute Eval.

Code

```
InstallMethod(Eval,
 "for homalg matrices (HasEvalUnionOfRows)",
 [IsHomalgMatrix and HasEvalUnionOfRows],
 function(C)
 local R, RP, e, i, combine;
 R := HomalgRing(C);
 RP := homalgTable(R);
 # Make it mutable
 e := ShallowCopy(EvalUnionOfRows(C));
 # In case of nested UnionOfRows, we try to avoid
 # recursion, since the gap stack is rather small
 # additionally unpack PreEvals
 i := 1;
 while i <= Length(e) do
 if HasPreEval(e[i]) and not HasEval(e[i]) then
 e[i] := PreEval(e[i]);
 elif HasEvalUnionOfRows(e[i]) and not HasEval(e[i]) then
 e := Concatenation(e{[1 .. (i-1)]}, EvalUnionOfRows(e[i]), e{[(i+1) .. Length(e)]};
 else
 i := i + 1;
```

# Combine zero matrices
i := 1;
while i + 1 <= Length(e) do
    if HasIsZero(e[i]) and IsZero(e[i]) and HasIsZero(e[i+1]) and IsZero(e[i+1]) then
        e[i] := HomalgZeroMatrix(NumberRows(e[i]) + NumberRows(e[i+1]), NumberColumns(e[i]));
        Remove(e, i + 1);
    else
        i := i + 1;
    fi;
end;

# After combining zero matrices only a single one might be left
if Length(e) = 1 then
    return e[1];
fi;

# Use RP!.UnionOfRows if available
if IsBound(RP!.UnionOfRows) then
    return RP!.UnionOfRows(e);
fi;

# Fall back to RP!.UnionOfRowsPair or manual fallback for internal matrices
# Combine the matrices
# Use a balanced binary tree to keep the sizes small (heuristically)
# to avoid a huge memory footprint
if not IsBound(RP!.UnionOfRowsPair) and not IsHomalgInternalMatrixRep(C) then
    Error("could neither find a procedure called UnionOfRows ",
          "nor a procedure called UnionOfRowsPair ",
          "in the homalgTable of the non-internal ring\ninnerText");
fi;

combine := function(A, B)
    local result, U;
    if IsBound(RP!.UnionOfRowsPair) then
        if }

fi;

od;

# Combine zero matrices
i := 1;
while i + 1 <= Length(e) do
    if HasIsZero(e[i]) and IsZero(e[i]) and HasIsZero(e[i+1]) and IsZero(e[i+1]) then
        e[i] := HomalgZeroMatrix(NumberRows(e[i]) + NumberRows(e[i+1]), NumberColumns(e[i]));
        Remove(e, i + 1);
    else
        i := i + 1;
    fi;
end;

# After combining zero matrices only a single one might be left
if Length(e) = 1 then
    return e[1];
fi;

# Use RP!.UnionOfRows if available
if IsBound(RP!.UnionOfRows) then
    return RP!.UnionOfRows(e);
fi;

# Fall back to RP!.UnionOfRowsPair or manual fallback for internal matrices
# Combine the matrices
# Use a balanced binary tree to keep the sizes small (heuristically)
# to avoid a huge memory footprint
if not IsBound(RP!.UnionOfRowsPair) and not IsHomalgInternalMatrixRep(C) then
    Error("could neither find a procedure called UnionOfRows ",
          "nor a procedure called UnionOfRowsPair ",
          "in the homalgTable of the non-internal ring\ninnerText");
fi;

combine := function(A, B)
    local result, U;
    if IsBound(RP!.UnionOfRowsPair) then
        if }

fi;
result := RP!.UnionOfRowsPair( A, B );

else

### can only work for homalg internal matrices ###

U := ShallowCopy( Eval( A )!.matrix );

U[ [ NumberRows( A ) + 1 .. NumberRows( A ) + NumberRows( B ) ] ] := Eval( B )!.matrix;

result := homalgInternalMatrixHull( U );

fi;

return HomalgMatrixWithAttributes( [ Eval, result, EvalUnionOfRows, [ A, B ], NumberRows, NumberRows( A ) + NumberRows( B ), NumberColumns, NumberColumns( A ), ], R );

end;

while Length( e ) > 1 do

for i in [ 1 .. Int( Length( e ) / 2 ) ] do

  e[ 2 * i - 1 ] := combine( e[ 2 * i - 1 ], e[ 2 * i ] );
  Unbind( e[ 2 * i ] );

od;

e := Compacted( e );

od;

return Eval( e[1] );
end );

C.4.13 Eval (for matrices created with UnionOfColumns)

▷ Eval( C ) (method)

**Returns:** the Eval value of a homalg matrix C

In case the matrix was created using UnionOfColumns (5.5.11) then the filter HasEvalUnionOfColumns for C is set to true and the homalgTable function UnionOfColumns (B.1.11) or the homalgTable function UnionOfColumnsPair (B.1.12) will be used to set the attribute Eval.
function( C )
    local R, RP, e, i, combine;

    R := HomalgRing( C );
    RP := homalgTable( R );

    # Make it mutable
    e := ShallowCopy( EvalUnionOfColumns( C ) );

    # In case of nested UnionOfColumns, we try to avoid
    # recursion, since the gap stack is rather small
    # additionally unpack PreEvals
    i := 1;
    while i <= Length( e ) do
        if HasPreEval( e[i] ) and not HasEval( e[i] ) then
            e[i] := PreEval( e[i] );
        elif HasEvalUnionOfColumns( e[i] ) and not HasEval( e[i] ) then
            e := Concatenation( e[1 .. (i-1)], EvalUnionOfColumns( e[i] ), e[(i+1) .. Length( e )] );
        else
            i := i + 1;
        fi;
    od;

    # Combine zero matrices
    i := 1;
    while i + 1 <= Length( e ) do
        if HasIsZero( e[i] ) and IsZero( e[i] ) and HasIsZero( e[i+1] ) and IsZero( e[i+1] ) then
            e[i] := HomalgZeroMatrix( NumberRows( e[i] ), NumberColumns( e[i] ) + NumberColumns( e[i+1] ), HomalgRing( e[i] ) );
            Remove( e, i + 1 );
        else
            i := i + 1;
        fi;
    od;

    # After combining zero matrices only a single one might be left
if Length(e) = 1 then
    return e[1];
fi;

# Use RP!.UnionOfColumns if available
if IsBound(RP!.UnionOfColumns) then
    return RP!.UnionOfColumns(e);
fi;

# Fall back to RP!.UnionOfColumnsPair or manual fallback for internal matrices
# Combine the matrices
# Use a balanced binary tree to keep the sizes small (heuristically)
# to avoid a huge memory footprint
if not IsBound(RP!.UnionOfColumnsPair) and not IsHomalgInternalMatrixRep(C) then
    Error("could neither find a procedure called UnionOfColumns",
          "nor a procedure called UnionOfColumnsPair",
          "in the homalgTable of the non-internal ring\n" );
fi;

combine := function(A, B)
    local result, U;
    if IsBound(RP!.UnionOfColumnsPair) then
        result := RP!.UnionOfColumnsPair(A, B);
    else
        # can only work for homalg internal matrices #=====#
        U := List(Eval(A)!.matrix, ShallowCopy);
        U[1..NumberRows(A)]
        { [NumberColumns(A) + 1..NumberColumns(A) + NumberColumns(B)]
        := Eval(B)!.matrix;
        result := homalgInternalMatrixHull(U);
    fi;
    return HomalgMatrixWithAttributes([Eval, result,
        EvalUnionOfColumns, [A, B],
        NumberRows, NumberRows(A),
        NumberColumns, NumberColumns(A) + NumberColumns(B)], R);
while Length(e) > 1 do
    for i in [1 .. Int(Length(e)/2)] do
        e[2*i - 1] := combine(e[2*i - 1], e[2*i]);
        Unbind(e[2*i]);
    od;
    e := Compacted(e);
    od;
return Eval(e[1]);
end);

C.4.14 Eval (for matrices created with DiagMat)

▷ Eval(C)  (method)

Returns: the Eval value of a homalg matrix C

In case the matrix was created using DiagMat (5.5.16) then the filter HasEvalDiagMat for C is
set to true and the homalgTable function DiagMat (B.1.13) will be used to set the attribute Eval.

Code

InstallMethod( Eval, "for homalg matrices (HasEvalDiagMat)", [ IsHomalgMatrix and HasEvalDiagMat ],
    function( C )
        local R, RP, e, l, z, m, n, diag, mat;
        R := HomalgRing( C );
        RP := homalgTable( R );
        e := EvalDiagMat( C );
        if IsBound(RP!.DiagMat) then
            return RP!.DiagMat( e );
        fi;
        l := Length(e);
        if not IsHomalgInternalMatrixRep( C ) then
            return UnionOfRows(
                List([1 .. 1],
                    i -> UnionOfColumns(
                        List([1 .. 1],
                            function( j )
                                if i = j then
                                    e[i] := Eval(e[i]);
                                end;
    while Length(e) > 1 do
        for i in [1 .. Int(Length(e)/2)] do
            e[2*i - 1] := combine(e[2*i - 1], e[2*i]);
            Unbind(e[2*i]);
        od;
        e := Compacted(e);
        od;
return Eval(e[1]);
end);

C.4.14 Eval (for matrices created with DiagMat)

▷ Eval(C)  (method)

Returns: the Eval value of a homalg matrix C

In case the matrix was created using DiagMat (5.5.16) then the filter HasEvalDiagMat for C is
set to true and the homalgTable function DiagMat (B.1.13) will be used to set the attribute Eval.

Code

InstallMethod( Eval, "for homalg matrices (HasEvalDiagMat)", [ IsHomalgMatrix and HasEvalDiagMat ],
    function( C )
        local R, RP, e, l, z, m, n, diag, mat;
        R := HomalgRing( C );
        RP := homalgTable( R );
        e := EvalDiagMat( C );
        if IsBound(RP!.DiagMat) then
            return RP!.DiagMat( e );
        fi;
        l := Length(e);
        if not IsHomalgInternalMatrixRep( C ) then
            return UnionOfRows(
                List([1 .. 1],
                    i -> UnionOfColumns(
                        List([1 .. 1],
                            function( j )
                                if i = j then
                                    e[i] := Eval(e[i]);
                                end;
    while Length(e) > 1 do
        for i in [1 .. Int(Length(e)/2)] do
            e[2*i - 1] := combine(e[2*i - 1], e[2*i]);
            Unbind(e[2*i]);
        od;
        e := Compacted(e);
        od;
return Eval(e[1]);
end);
C.4.15 Eval (for matrices created with KroneckerMat)

\texttt{Eval(C)}  
\begin{tabular}{ll}
\textbf{Returns:} & the Eval value of a homalg matrix \texttt{C} \\
\end{tabular}

In case the matrix was created using \texttt{KroneckerMat (5.5.17)} then the filter \texttt{HasEvalKroneckerMat} for \texttt{C} is set to true and the \texttt{homalgTable} function \texttt{KroneckerMat (B.1.14)} will be used to set the attribute \texttt{Eval}.

\begin{verbatim}
InstallMethod( Eval, "for homalg matrices (HasEvalKroneckerMat)", [ IsHomalgMatrix and HasEvalKroneckerMat ], function( C )

  local R, RP, A, B;

  R := HomalgRing( C );

  if ( HasIsCommutative( R ) and not IsCommutative( R ) ) and
     ( HasIsSuperCommutative( R ) and not IsSuperCommutative( R ) ) then

    R := HomalgRing( C );
  fi;

  return e[i];

fi;
return HomalgZeroMatrix( NumberRows( e[i]), NumberColumns( e[i] ) );
end)

#=====# can only work for homalg internal matrices #=====#

z := Zero( R );
m := Sum( List( e, NumberRows ) );
n := Sum( List( e, NumberColumns ) );
diag := List( [ 1 .. m ], a -> List( [ 1 .. n ], b -> z ) );
m := 0;
n := 0;
for mat in e do
  diag{ [ m + 1 .. m + NumberRows( mat ) ] }{ [ n + 1 .. n + NumberColumns( mat ) ] } := Eval( mat )!.matrix;
  m := m + NumberRows( mat );
  n := n + NumberColumns( mat );
od;
return homalgInternalMatrixHull( diag );
end);
\end{verbatim}
```
Info(InfoWarning, 1, "\033[01m\033[5;31;47m",
 "the Kronecker product is only defined for (super) commutative rings!",
 "\033[0m");
fi;
RP := homalgTable(R);
A := EvalKroneckerMat(C)[1];
B := EvalKroneckerMat(C)[2];
if IsBound(RP!.KroneckerMat) then
 return RP!.KroneckerMat(A, B);
fi;
if not IsHomalgInternalMatrixRep(C) then
 Error("could not find a procedure called KroneckerMat ",
 "in the homalgTable of the non-internal ring\n");
fi;
can only work for homalg internal matrices
return homalgInternalMatrixHull(
 KroneckerProduct(Eval(A)!.matrix, Eval(B)!.matrix));
this was easy, thanks GAP :)
end);
```

C.4.16  Eval (for matrices created with DualKroneckerMat)

**Returns:** the Eval value of a homalg matrix C

In case the matrix was created using DualKroneckerMat (5.5.18) then the filter HasEvalDualKroneckerMat for C is set to true and the homalgTable function DualKroneckerMat (B.1.15) will be used to set the attribute Eval.

```
InstallMethod(Eval,
 "for homalg matrices (HasEvalDualKroneckerMat)",
 [IsHomalgMatrix and HasEvalDualKroneckerMat],
 function(C)
 local R, RP, A, B;
 R := HomalgRing(C);
 if (HasIsCommutative(R) and not IsCommutative(R)) and
 (HasIsSuperCommutative(R) and not IsSuperCommutative(R)) then
 Info(InfoWarning, 1, "\033[01m\033[5;31;47m",
 "the dual Kronecker product is only defined for (super) commutative rings!",
 "\033[0m");
 fi;
 RP := homalgTable(R);
```

A := EvalDualKroneckerMat( C )[1];
B := EvalDualKroneckerMat( C )[2];

# work around errors in Singular when taking the opposite ring of a ring with ordering lp
# https://github.com/Singular/Singular/issues/1011
# fixed in version 4.2.0
if IsBound(RP!.DualKroneckerMat) and not (IsBound( R!.ring ) and
IsBound( R!.ring!.stream ) and
IsBound( R!.ring!.stream.cas ) and R!.ring!.stream.cas = "singular" and
( not IsBound( R!.ring!.stream.version ) or R!.ring!.stream.version < 4200 ) and
IsBound( R!.order ) and IsString( R!.order ) and StartsWith( R!.order, "lex" )
) then
    return RP!.DualKroneckerMat( A, B );
fi;

if HasIsCommutative( R ) and IsCommutative( R ) then
    return Eval( KroneckerMat( B, A ) );
else
    return Eval(
        TransposedMatrix( Involution(
            KroneckerMat( TransposedMatrix( Involution( B ) ), TransposedMatrix( Involution( )
        )
    ));
fi;
end;

C.4.17 Eval (for matrices created with MulMat)

Returns: the Eval value of a homalg matrix C

In case the matrix was created using \*(5.5.19) then the filter HasEvalMulMat for C is set to true and the homalgTable function MulMat (B.1.16) will be used to set the attribute Eval.

Code

InstallMethod( Eval,
    "for homalg matrices (HasEvalMulMat)",
    [ IsHomalgMatrix and HasEvalMulMat ],

    function( C )
        local R, RP, e, a, A;
        R := HomalgRing( C );
        RP := homalgTable( R );
    );
e := EvalMulMat( C );

a := e[1];
A := e[2];

if IsBound(RP!.MulMat) then
    return RP!.MulMat( a, A );
fi;

if not IsHomalgInternalMatrixRep( C ) then
    Error( "could not find a procedure called MulMat",
            "in the homalgTable of the non-internal ring\n"
    );
fi;

#=====# can only work for homalg internal matrices #=====#
return a * Eval( A );
end );

InstallMethod( Eval,
    "for homalg matrices (HasEvalMulMatRight)",
    [ IsHomalgMatrix and HasEvalMulMatRight ],
    function( C )
        local R, RP, e, A, a;
        R := HomalgRing( C );
        RP := homalgTable( R );
        e := EvalMulMatRight( C );
        A := e[1];
        a := e[2];
        if IsBound(RP!.MulMatRight) then
            return RP!.MulMatRight( A, a );
        fi;
        if not IsHomalgInternalMatrixRep( C ) then
            Error( "could not find a procedure called MulMatRight",
                    "in the homalgTable of the non-internal ring\n"
            );
        fi;
        #=====# can only work for homalg internal matrices #=====#
        return Eval( A ) * a;
    end );
C.4.18  Eval (for matrices created with AddMat)

Returns: the Eval value of a homalg matrix C

In case the matrix was created using \( \oplus \) (5.5.20) then the filter \texttt{HasEvalAddMat} for \( C \) is set to true and the \texttt{homalgTable} function \texttt{AddMat} (B.1.17) will be used to set the attribute \texttt{Eval}.

\[
\begin{align*}
\text{Code} & \quad \text{InstallMethod( Eval,}
\text{ "for homalg matrices (HasEvalAddMat)"},
\text{ [ IsHomalgMatrix and HasEvalAddMat ]},
\text{ function( C )}
\text{ local R, RP, e, A, B;}
\text{ R := HomalgRing( C );}
\text{ RP := homalgTable( R );}
\text{ e := EvalAddMat( C );}
\text{ A := e[1];}
\text{ B := e[2];}
\text{ ResetFilterObj( C, HasEvalAddMat );}
\text{ if IsBound(RP!.AddMat) then}
\text{ \quad return RP!.AddMat( A, B );}
\text{ fi;}
\text{ if not IsHomalgInternalMatrixRep( C ) then}
\text{ \quad Error( "could not find a procedure called AddMat ",}
\text{ \quad \quad "in the homalgTable of the non-internal ring\n" );}
\text{ fi;}
\text{ \quad \# can only work for homalg internal matrices \#}
\text{ \quad \#}
\text{ \quad return Eval( A ) + Eval( B );}
\text{ end );}
\end{align*}
\]

C.4.19  Eval (for matrices created with SubMat)

Returns: the Eval value of a homalg matrix C

In case the matrix was created using \( \ominus \) (5.5.21) then the filter \texttt{HasEvalSubMat} for \( C \) is set to true and the \texttt{homalgTable} function \texttt{SubMat} (B.1.18) will be used to set the attribute \texttt{Eval}.

\[
\begin{align*}
\text{Code} & \quad \text{InstallMethod( Eval,}
\text{ "for homalg matrices (HasEvalSubMat)"},
\text{ function( C )}
\text{ local R, RP, e, A, B;}
\text{ R := HomalgRing( C );}
\text{ RP := homalgTable( R );}
\text{ e := EvalAddMat( C );}
\text{ A := e[1];}
\text{ B := e[2];}
\text{ ResetFilterObj( C, HasEvalAddMat );}
\text{ if IsBound(RP!.AddMat) then}
\text{ \quad return RP!.AddMat( A, B );}
\text{ fi;}
\text{ if not IsHomalgInternalMatrixRep( C ) then}
\text{ \quad Error( "could not find a procedure called AddMat ",}
\text{ \quad \quad "in the homalgTable of the non-internal ring\n" );}
\text{ fi;}
\text{ \quad \# can only work for homalg internal matrices \#}
\text{ \quad \#}
\text{ \quad return Eval( A ) + Eval( B );}
\text{ end );}
\end{align*}
\]
function( C )
    local R, RP, e, A, B;
    R := HomalgRing( C );
    RP := homalgTable( R );
    e := EvalSubMat( C );
    A := e[1];
    B := e[2];
    ResetFilterObj( C, HasEvalSubMat );
    ## delete the component which was left over by GAP
    Unbind( C!.EvalSubMat );
    if IsBound(RP!.SubMat) then
        return RP!.SubMat( A, B );
    fi;
    if not IsHomalgInternalMatrixRep( C ) then
        Error( "could not find a procedure called SubMat",
            "in the homalgTable of the non-internal ring\n"
        );
    fi;
    #=====# can only work for homalg internal matrices #=====#
    return Eval( A ) - Eval( B );
end );

C.4.20   Eval (for matrices created with Compose)

▷ Eval(C)  

Returns: the Eval value of a homalg matrix C

In case the matrix was created using $\ast$ (5.5.22) then the filter HasEvalCompose for C is set to true and the homalgTable function Compose (B.1.19) will be used to set the attribute Eval.

```
e := EvalCompose(C);
A := e[1];
B := e[2];

ResetFilterObj(C, HasEvalCompose);

delete the component which was left over by GAP
Unbind(C!.EvalCompose);

if IsBound(RP!.Compose) then
 return RP!.Compose(A, B);
fi;

if not IsHomalgInternalMatrixRep(C) then
 Error("could not find a procedure called Compose ",
 "in the homalgTable of the non-internal ring\n");
fi;

#=====# can only work for homalg internal matrices #=====#
return Eval(A) * Eval(B);
end);

C.4.21 Eval (for matrices created with CoefficientsWithGivenMonomials)

▷ Eval(C) (method)

Returns: the Eval value of a homalg matrix C
In case the matrix was created using CoefficientsWithGivenMonomials (5.5.64) then the filter HasEvalCoefficientsWithGivenMonomials for C is set to true and the homalgTable function CoefficientsWithGivenMonomials (B.1.24) will be used to set the attribute Eval.

Code

InstallMethod(Eval,
 "for homalg matrices (HasEvalCoefficientsWithGivenMonomials)",
 [IsHomalgMatrix and HasEvalCoefficientsWithGivenMonomials],
 function(C)
 local R, RP, pair, M, monomials;
 R := HomalgRing(C);
 RP := homalgTable(R);
 pair := EvalCoefficientsWithGivenMonomials(C);
 M := pair[1];
 monomials := pair[2];
 if IsBound(RP!.CoefficientsWithGivenMonomials) then
 return RP!.CoefficientsWithGivenMonomials(M, monomials);
 end;
fi;

Error("could not find a procedure called CoefficientsWithGivenMonomials ",
 "in the homalgTable of the ring\n");
end);
Appendix D

The subpackage ResidueClassRingForHomalg as a sample ring package

D.1 The Mandatory Basic Operations

D.1.1 BasisOfRowModule (ResidueClassRing)

\[\text{BasisOfRowModule}(M) \text{ (function)} \]

\textbf{Returns:} a homalg matrix over the ambient ring

\begin{verbatim}
BasisOfRowModule :=
function(M)
 local Mrel;
 Mrel := StackedRelations(M);
 Mrel := HomalgResidueClassMatrix(
 BasisOfRowModule(Mrel), HomalgRing(M));
 return GetRidOfObsoletRows(Mrel);
end,
\end{verbatim}

D.1.2 BasisOfColumnModule (ResidueClassRing)

\[\text{BasisOfColumnModule}(M) \text{ (function)} \]

\textbf{Returns:} a homalg matrix over the ambient ring

\begin{verbatim}
BasisOfColumnModule :=
function(M)
 local Mrel;
 Mrel := AugmentedRelations(M);
\end{verbatim}
D.1.3 DecideZeroRows (ResidueClassRing)

▷ DecideZeroRows(A, B) (function)

Returns: a homalg matrix over the ambient ring

DecideZeroRows :=
 function(A, B)
 local Brel;
 Brel := StackedRelations(B);
 Brel := BasisOfRowModule(Brel);
 return HomalgResidueClassMatrix(DecideZeroRows(Eval(A), Brel), HomalgRing(A));
end,

D.1.4 DecideZeroColumns (ResidueClassRing)

▷ DecideZeroColumns(A, B) (function)

Returns: a homalg matrix over the ambient ring

DecideZeroColumns :=
 function(A, B)
 local Brel;
 Brel := AugmentedRelations(B);
 Brel := BasisOfColumnModule(Brel);
 return HomalgResidueClassMatrix(DecideZeroColumns(Eval(A), Brel), HomalgRing(A));
end,

D.1.5 SyzygiesGeneratorsOfRows (ResidueClassRing)

▷ SyzygiesGeneratorsOfRows(M) (function)

Returns: a homalg matrix over the ambient ring

SyzygiesGeneratorsOfRows :=
 function(M)
local R, ring_rel, rel, S;

R := HomalgRing(M);

ring_rel := RingRelations(R);
rel := MatrixOfRelations(ring_rel);

if IsHomalgRingRelationsAsGeneratorsOfRightIdeal(ring_rel) then
 rel := Involution(rel);
fi;

rel := DiagMat(ListWithIdenticalEntries(NumberColumns(M), rel));

S := SyzygiesGeneratorsOfRows(Eval(M), rel);
S := HomalgResidueClassMatrix(S, R);
S := GetRidOfObsoleteRows(S);

if IsZero(S) then
 SetIsLeftRegular(M, true);
fi;
return S;
end,

D.1.6 SyzygiesGeneratorsOfColumns (ResidueClassRing)

▷ SyzygiesGeneratorsOfColumns(M) (function)

Returns: a homalg matrix over the ambient ring

SyzygiesGeneratorsOfColumns :=
 function(M)
 local R, ring_rel, rel, S;

 R := HomalgRing(M);
 ring_rel := RingRelations(R);
 rel := MatrixOfRelations(ring_rel);
 if IsHomalgRingRelationsAsGeneratorsOfLeftIdeal(ring_rel) then
 rel := Involution(rel);
 fi;
 rel := DiagMat(ListWithIdenticalEntries(NumberRows(M), rel));
 S := SyzygiesGeneratorsOfColumns(Eval(M), rel);
 end,
S := HomalgResidueClassMatrix(S, R);
S := GetRidOfObsoleteColumns(S);
if IsZero(S) then
 SetIsRightRegular(M, true);
fi;
return S;
end,

D.1.7 BasisOfRowsCoeff (ResidueClassRing)

▷ BasisOfRowsCoeff(M, T) (function)

Returns: a homalg matrix over the ambient ring

Code
BasisOfRowsCoeff := function(M, T)
 local Mrel, TT, bas, nz;
 Mrel := StackedRelations(M);
 TT := HomalgVoidMatrix(HomalgRing(Mrel));
 bas := BasisOfRowsCoeff(Mrel, TT);
 bas := HomalgResidueClassMatrix(bas, HomalgRing(M));
 nz := NonZeroRows(bas);
 SetEval(T, CertainRows(CertainColumns(TT, [1 .. NumberRows(M)]), nz));
 ResetFilterObj(T, IsVoidMatrix);
 ## the generic BasisOfRowsCoeff will assume that
 ## (NumberRows(B) = 0) = IsZero(B)
 return CertainRows(bas, nz);
end,

D.1.8 BasisOfColumnsCoeff (ResidueClassRing)

▷ BasisOfColumnsCoeff(M, T) (function)

Returns: a homalg matrix over the ambient ring

Code
BasisOfColumnsCoeff := function(M, T)
local Mrel, TT, bas, nz;

Mrel := AugmentedRelations(M);

TT := HomalgVoidMatrix(HomalgRing(Mrel));

bas := BasisOfColumnsCoeff(Mrel, TT);

bas := HomalgResidueClassMatrix(bas, HomalgRing(M));

nz := NonZeroColumns(bas);

SetEval(T, CertainColumns(CertainRows(TT, [1 .. NumberColumns(M)]), nz));

ResetFilterObj(T, IsVoidMatrix);

the generic BasisOfColumnsCoeff will assume that
(NumberColumns(B) = 0) = IsZero(B)
return CertainColumns(bas, nz);
end,

D.1.9 DecideZeroRowsEffectively (ResidueClassRing)

▷ DecideZeroRowsEffectively(A, B, T)

Returns: a homalg matrix over the ambient ring

DecideZeroRowsEffectively :=
function(A, B, T)
local Brel, TT, red;

Brel := StackedRelations(B);

TT := HomalgVoidMatrix(HomalgRing(Brel));

red := DecideZeroRowsEffectively(Eval(A), Brel, TT);

SetEval(T, CertainColumns(TT, [1 .. NumberRows(B)]));

ResetFilterObj(T, IsVoidMatrix);

return HomalgResidueClassMatrix(red, HomalgRing(A));
end,

D.1.10 DecideZeroColumnsEffectively (ResidueClassRing)

▷ DecideZeroColumnsEffectively(A, B, T)

Returns: a homalg matrix over the ambient ring
DecideZeroColumnsEffectively :=
 function(A, B, T)
 local Brel, TT, red;

 Brel := AugmentedRelations(B);

 TT := HomalgVoidMatrix(HomalgRing(Brel));

 red := DecideZeroColumnsEffectively(Eval(A), Brel, TT);

 SetEval(T, CertainRows(TT, [1 .. NumberColumns(B)]));

 ResetFilterObj(T, IsVoidMatrix);

 return HomalgResidueClassMatrix(red, HomalgRing(A));
 end,

D.1.11 RelativeSyzygiesGeneratorsOfRows (ResidueClassRing)

▷ RelativeSyzygiesGeneratorsOfRows(M, M2) (function)
 Returns: a homalg matrix over the ambient ring

RelativeSyzygiesGeneratorsOfRows :=
 function(M, M2)
 local M2rel, S;

 M2rel := StackedRelations(M2);

 S := SyzygiesGeneratorsOfRows(Eval(M), M2rel);

 S := HomalgResidueClassMatrix(S, HomalgRing(M));

 S := GetRidOfObsoleteRows(S);

 if IsZero(S) then
 SetIsLeftRegular(M, true);
 fi;

 return S;
 end,

D.1.12 RelativeSyzygiesGeneratorsOfColumns (ResidueClassRing)

▷ RelativeSyzygiesGeneratorsOfColumns(M, M2) (function)
 Returns: a homalg matrix over the ambient ring
MatricesForHomalg

D.2 The Mandatory Tool Operations

Here we list those matrix operations for which homalg provides no fallback method.

D.2.1 InitialMatrix (ResidueClassRing)

▷ InitialMatrix()

Returns: a homalg matrix over the ambient ring

$\text{InitialMatrix}(C) \rightarrow \text{HomalgInitialMatrix}(\text{NumberRows}(C), \text{NumberColumns}(C), \text{AmbientRing}(\text{HomalgRing}(C)))$

D.2.2 InitialIdentityMatrix (ResidueClassRing)

▷ InitialIdentityMatrix()

Returns: a homalg matrix over the ambient ring

$\text{InitialIdentityMatrix}(C) \rightarrow \text{HomalgInitialIdentityMatrix}(\text{NumberRows}(C), \text{NumberColumns}(C), \text{AmbientRing}(\text{HomalgRing}(C)))$

D.2.3 ZeroMatrix (ResidueClassRing)

▷ ZeroMatrix()

Returns: a homalg matrix over the ambient ring

RelativeSyzygiesGeneratorsOfColumns :=
function(M, M2)
 local M2rel, S;

 M2rel := AugmentedRelations(M2);
 S := SyzygiesGeneratorsOfColumns(Eval(M), M2rel);
 S := HomalgResidueClassMatrix(S, HomalgRing(M));
 S := GetRidOfObsoleteColumns(S);
 if IsZero(S) then
 SetIsRightRegular(M, true);
 fi;
 return S;
end,
D.2.4 IdentityMatrix (ResidueClassRing)

▷ IdentityMatrix()

\textbf{Returns:} a homalg matrix over the ambient ring

\textbf{Code}

\begin{verbatim}
IdentityMatrix := C -> HomalgIdentityMatrix(
 NumberRows(C), AmbientRing(HomalgRing(C))),
\end{verbatim}

D.2.5 Involution (ResidueClassRing)

▷ Involution()

\textbf{Returns:} a homalg matrix over the ambient ring

\textbf{Code}

\begin{verbatim}
Involution :=
 function(M)
 local N, R;

 N := Involution(Eval(M));

 R := HomalgRing(N);

 if not (HasIsCommutative(R) and IsCommutative(R) and
 HasIsReducedModuloRingRelations(M) and
 IsReducedModuloRingRelations(M)) then
 ## reduce the matrix N w.r.t. the ring relations
 N := DecideZero(N, HomalgRing(M));
 fi;

 return N;
end,
\end{verbatim}

D.2.6 TransposedMatrix (ResidueClassRing)

▷ TransposedMatrix()

\textbf{Returns:} a homalg matrix over the ambient ring

\textbf{Code}

\begin{verbatim}
TransposedMatrix :=
 function(M)
 local N, R;
\end{verbatim}
N := TransposedMatrix(Eval(M));

R := HomalgRing(N);

if not (HasIsCommutative(R) and IsCommutative(R) and
 HasIsReducedModuloRingRelations(M) and
 IsReducedModuloRingRelations(M)) then

 ## reduce the matrix N w.r.t. the ring relations
 N := DecideZero(N, HomalgRing(M));
 fi;

return N;
end,

D.2.7 CertainRows (ResidueClassRing)

▷ CertainRows()

Returns: a homalg matrix over the ambient ring

(→ CertainRows (B.1.7))

Code

CertainRows :=
 function(M, plist)
 local N;

 N := CertainRows(Eval(M), plist);

 if not (HasIsReducedModuloRingRelations(M) and
 IsReducedModuloRingRelations(M)) then

 ## reduce the matrix N w.r.t. the ring relations
 N := DecideZero(N, HomalgRing(M));
 fi;

 return N;
 end,

D.2.8 CertainColumns (ResidueClassRing)

▷ CertainColumns()

Returns: a homalg matrix over the ambient ring

(→ CertainColumns (B.1.8))

Code

CertainColumns :=
 function(M, plist)
 local N;

 N := CertainColumns(Eval(M), plist);
if not (HasIsReducedModuloRingRelations(M) and
 IsReducedModuloRingRelations(M)) then
 ## reduce the matrix N w.r.t. the ring relations
 N := DecideZero(N, HomalgRing(M));
fi;
return N;
end,

D.2.9 UnionOfRows (ResidueClassRing)

▷ UnionOfRows() (function)

Returns: a homalg matrix over the ambient ring
(→ UnionOfRows (B.1.9))

Code

UnionOfRows :=
 function(L)
 local N;
 N := UnionOfRows(List(L, Eval));
 if not ForAll(L, HasIsReducedModuloRingRelations and
 IsReducedModuloRingRelations) then
 ## reduce the matrix N w.r.t. the ring relations
 N := DecideZero(N, HomalgRing(L[1]));
 fi;
 return N;
 end,

D.2.10 UnionOfColumns (ResidueClassRing)

▷ UnionOfColumns() (function)

Returns: a homalg matrix over the ambient ring
(→ UnionOfColumns (B.1.11))

Code

UnionOfColumns :=
 function(L)
 local N;
 N := UnionOfColumns(List(L, Eval));
 if not ForAll(L, HasIsReducedModuloRingRelations and
 IsReducedModuloRingRelations) then
 ## reduce the matrix N w.r.t. the ring relations
 N := DecideZero(N, HomalgRing(L[1]));
 fi;
D.2.11 DiagMat (ResidueClassRing)

DiagMat() (function)

Returns: a homalg matrix over the ambient ring

\(\rightarrow \text{DiagMat (B.1.13)} \)

\[
\text{DiagMat} := \\
\text{function}(e) \\
\text{local } N; \\
N := \text{DiagMat}(\text{List}(e, \text{Eval})); \\
\text{if not ForAll}(e, \text{HasIsReducedModuloRingRelations and} \\
\text{IsReducedModuloRingRelations) then} \\
\quad ## \text{reduce the matrix } N \text{ w.r.t. the ring relations} \\
\quad N := \text{DecideZero}(N, \text{HomalgRing}(\text{e[1]})); \\
\quad \text{fi}; \\
\text{return } N; \\
\text{end},
\]

D.2.12 KroneckerMat (ResidueClassRing)

KroneckerMat() (function)

Returns: a homalg matrix over the ambient ring

\(\rightarrow \text{KroneckerMat (B.1.14)} \)

\[
\text{KroneckerMat} := \\
\text{function}(A, B) \\
\text{local } N; \\
N := \text{KroneckerMat}(\text{Eval}(A), \text{Eval}(B)); \\
\text{if not ForAll}([A, B], \text{HasIsReducedModuloRingRelations and} \\
\text{IsReducedModuloRingRelations) then} \\
\quad ## \text{reduce the matrix } N \text{ w.r.t. the ring relations} \\
\quad N := \text{DecideZero}(N, \text{HomalgRing}(A)); \\
\quad \text{fi}; \\
\text{return } N; \\
\text{end},
\]
D.2.13 DualKroneckerMat (ResidueClassRing)

▷ DualKroneckerMat()
(function)

Returns: a homalg matrix over the ambient ring
(→ DualKroneckerMat (B.1.15))

Code

DualKroneckerMat :=
 function(A, B)
 local N;
 N := DualKroneckerMat(Eval(A), Eval(B));
 if not ForAll([A, B], HasIsReducedModuloRingRelations and IsReducedModuloRingRelations) then
 ## reduce the matrix N w.r.t. the ring relations
 N := DecideZero(N, HomalgRing(A));
 fi;
 return N;
 end,

D.2.14 MulMat (ResidueClassRing)

▷ MulMat()
(function)

Returns: a homalg matrix over the ambient ring
(→ MulMat (B.1.16))

Code

MulMat :=
 function(a, A)
 return DecideZero(EvalRingElement(a) * Eval(A), HomalgRing(A));
 end,
MulMatRight :=
 function(A, a)
 return DecideZero(Eval(A) * EvalRingElement(a), HomalgRing(A));
 end,

D.2.15 AddMat (ResidueClassRing)

▷ AddMat()
(function)

Returns: a homalg matrix over the ambient ring
(→ AddMat (B.1.17))

Code

AddMat :=
 function(A, B)
D.2.16 SubMat (ResidueClassRing)

▷ SubMat()
 (function)

 Returns: a homalg matrix over the ambient ring
 (→ SubMat (B.1.18))

Code

SubMat :=
 function(A, B)
 return DecideZero(Eval(A) - Eval(B), HomalgRing(A));
 end,

D.2.17 Compose (ResidueClassRing)

▷ Compose()
 (function)

 Returns: a homalg matrix over the ambient ring
 (→ Compose (B.1.19))

Code

Compose :=
 function(A, B)
 return DecideZero(Eval(A) * Eval(B), HomalgRing(A));
 end,

D.2.18 IsZeroMatrix (ResidueClassRing)

▷ IsZeroMatrix(M)
 (function)

 Returns: true or false
 (→ IsZeroMatrix (B.1.20))

Code

IsZeroMatrix := M -> IsZero(DecideZero(Eval(M), HomalgRing(M))),

D.2.19 NumberRows (ResidueClassRing)

▷ NumberRows(C)
 (function)

 Returns: a nonnegative integer
 (→ NumberRows (B.1.21))

Code

NumberRows := C -> NumberRows(Eval(C)),
D.2.20 NumberColumns (ResidueClassRing)

▷ NumberColumns(C)
 (function)
 Returns: a nonnegative integer
 (→ NumberColumns (B.1.22))
 Code
 NumberColumns := C -> NumberColumns(Eval(C)),

D.2.21 Determinant (ResidueClassRing)

▷ Determinant(C)
 (function)
 Returns: an element of ambient homalg ring
 (→ Determinant (B.1.23))
 Code
 Determinant := C -> DecideZero(Determinant(Eval(C)), HomalgRing(C)),

D.3 Some of the Recommended Tool Operations

Here we list those matrix operations for which homalg does provide a fallback method. But specifying
the below homalgTable functions increases the performance by replacing the fallback method.

D.3.1 AreEqualMatrices (ResidueClassRing)

▷ AreEqualMatrices(A, B)
 (function)
 Returns: true or false
 (→ AreEqualMatrices (B.2.1))
 Code
 AreEqualMatrices :=
 function(A, B)
 return IsZero(DecideZero(Eval(A) - Eval(B), HomalgRing(A)));
 end,

D.3.2 IsOne (ResidueClassRing)

▷ IsOne(M)
 (function)
 Returns: true or false
 (→ IsIdentityMatrix (B.2.2))
 Code
 IsIdentityMatrix := M ->
 IsOne(DecideZero(Eval(M), HomalgRing(M))),

D.3.3 IsDiagonalMatrix (ResidueClassRing)

▷ IsDiagonalMatrix(M)
 (function)
 Returns: true or false
 (→ IsDiagonalMatrix (B.2.3))
D.3.4 ZeroRows (ResidueClassRing)

▷ ZeroRows(C)
Returns: a homalg matrix over the ambient ring
(→ ZeroRows (B.2.4))

Code

ZeroRows := C -> ZeroRows(DecideZero(Eval(C), HomalgRing(C))),

D.3.5 ZeroColumns (ResidueClassRing)

▷ ZeroColumns(C)
Returns: a homalg matrix over the ambient ring
(→ ZeroColumns (B.2.5))

Code

ZeroColumns := C -> ZeroColumns(DecideZero(Eval(C), HomalgRing(C))),
Appendix E

Debugging MatricesForHomalg

Beside the GAP builtin debugging facilities (→ (Reference: Debugging and Profiling Facilities)) MatricesForHomalg provides two ways to debug the computations.

E.1 Increase the assertion level

MatricesForHomalg comes with numerous builtin assertion checks. They are activated if the user increases the assertion level using

SetAssertionLevel(level);

(→ (Reference: AssertionLevel)), where level is one of the values below:

<table>
<thead>
<tr>
<th>level</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no assertion checks whatsoever</td>
</tr>
<tr>
<td>4</td>
<td>assertions about basic matrix operations are checked (→ Appendix A) (these are among the operations often delegated to external systems)</td>
</tr>
</tbody>
</table>

In particular, if MatricesForHomalg delegates matrix operations to an external system then SetAssertionLevel(4); can be used to let MatricesForHomalg debug the external system.

Below you can find the record of the available level-4 assertions, which is a GAP-component of every homalg ring. Each assertion can thus be overwritten by package developers or even ordinary users.

```gten
asserts := rec(
    BasisOfRowModule :=
    function( B ) return ( NumberRows( B ) = 0 ) = IsZero( B ); end,
    BasisOfColumnModule :=
    function( B ) return ( NumberColumns( B ) = 0 ) = IsZero( B ); end,
)
```

113
BasisOfRowsCoeff :=
 function(B, T, M) return B = T * M; end,
BasisOfColumnsCoeff :=
 function(B, M, T) return B = M * T; end,
DecideZeroRows_Effectively :=
 function(M, A, B) return M = DecideZeroRows(A, B); end,
DecideZeroColumns_Effectively :=
 function(M, A, B) return M = DecideZeroColumns(A, B); end,
DecideZeroRowsEffectively :=
 function(M, A, T, B) return M = A + T * B; end,
DecideZeroColumnsEffectively :=
 function(M, A, B, T) return M = A + B * T; end,
DecideZeroRowsWRTNonBasis :=
 function(B)
 local R;
 R := HomalgRing(B);
 if not (HasIsBasisOfRowsMatrix(B) and
 IsBasisOfRowsMatrix(B)) and
 IsBound(R!.DecideZeroWRTNonBasis) then
 if R!.DecideZeroWRTNonBasis = "warn" then
 Info(InfoWarning, 1,
 "about to reduce with respect to a matrix",
 "with IsBasisOfRowsMatrix not set to true");
 elif R!.DecideZeroWRTNonBasis = "error" then
 Error("about to reduce with respect to a matrix",
 "with IsBasisOfRowsMatrix not set to true\n");
 fi;
 fi;
 end,
DecideZeroColumnsWRTNonBasis :=
 function(B)
 local R;
 R := HomalgRing(B);
 if not (HasIsBasisOfColumnsMatrix(B) and
 IsBasisOfColumnsMatrix(B)) and
 IsBound(R!.DecideZeroWRTNonBasis) then
 if R!.DecideZeroWRTNonBasis = "warn" then
 Info(InfoWarning, 1,
 "about to reduce with respect to a matrix",
 "with IsBasisOfColumnsMatrix not set to true");
 elif R!.DecideZeroWRTNonBasis = "error" then
 Error("about to reduce with respect to a matrix",
 "with IsBasisOfColumnsMatrix not set to true\n");
 fi;
 fi;
end,

ReducedBasisOfRowModule :=
function(M, B)
 return GenerateSameRowModule(B, BasisOfRowModule(M));
end,

ReducedBasisOfColumnModule :=
function(M, B)
 return GenerateSameColumnModule(B, BasisOfColumnModule(M));
end,

ReducedSyzygiesGeneratorsOfRows :=
function(M, S)
 return GenerateSameRowModule(S, SyzygiesGeneratorsOfRows(M));
end,

ReducedSyzygiesGeneratorsOfColumns :=
function(M, S)
 return GenerateSameColumnModule(S, SyzygiesGeneratorsOfColumns(M));
end,

E.2 Using homalgMode

E.2.1 homalgMode

> homalgMode(str[, str2])

This function sets different modes which influence how much of the basic matrix operations and
the logical matrix methods become visible (→ Appendices A, C). Handling the string str is not case-
sensitive. If a second string str2 is given, then homalgMode(str2) is invoked at the end. In case
you let homalg delegate matrix operations to an external system the you might also want to check
homalgIOMode in the HomalgToCAS package manual.

<table>
<thead>
<tr>
<th>str</th>
<th>str (long form)</th>
<th>mode description</th>
</tr>
</thead>
</table>
| "" | "" | the default mode, i.e. the computation protocol won't be visible
| | | (homalgMode() is a short form for homalgMode("")) |
| "b" | "basic" | make the basic matrix operations visible + homalgMode("logic") |
| "d" | "debug" | same as "basic" but also makes Row/ReducedColumnEchelonForm visible |
| "l" | "logic" | make the logical methods in LIMAT and COLEM visible |

All modes other than the "default"-mode only set their specific values and leave the other values
untouched, which allows combining them to some extent. This also means that in order to get from one mode to a new mode (without the aim to combine them) one needs to reset to the "default"-mode first. This can be done using \texttt{homalgMode("", new_mode);}

\begin{verbatim}
InstallGlobalFunction(homalgMode,
 function(arg)
 local nargs, mode, s;

 nargs := Length(arg);

 if nargs = 0 or (IsString(arg[1]) and arg[1] = "") then
 mode := "default";
 elif IsString(arg[1]) then ## now we know, the string is not empty
 s := arg[1];
 if LowercaseString(s[1]) = "b" then
 mode := "basic";
 elif LowercaseString(s[1]) = "d" then
 mode := "debug";
 elif LowercaseString(s[1]) = "l" then
 mode := "logic";
 else
 mode := "";
 fi;
 else
 Error("the first argument must be a string\n");
 fi;

 if mode = "default" then
 HOMALG_MATRICES.color_display := false;
 for s in HOMALG_MATRICES.matrix_logic_infolevels do
 SetInfoLevel(s, 1);
 od;
 SetInfoLevel(InfoHomalgBasicOperations, 1);
 elif mode = "basic" then
 SetInfoLevel(InfoHomalgBasicOperations, 3);
 homalgMode("logic");
 elif mode = "debug" then
 SetInfoLevel(InfoHomalgBasicOperations, 4);
 homalgMode("logic");
 elif mode = "logic" then
 HOMALG_MATRICES.color_display := true;
 for s in HOMALG_MATRICES.matrix_logic_infolevels do
 SetInfoLevel(s, 2);
 od;
 fi;

 if nargs > 1 and IsString(arg[2]) then
 homalgMode(arg[2]);
 fi;
 end);
\end{verbatim}
Appendix F

Overview of the MatricesForHomalg Package Source Code

F.1 Rings, Ring Maps, Matrices, Ring Relations

<table>
<thead>
<tr>
<th>Filename .gd/.gi</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>homalg</td>
<td>definitions of the basic GAP4 categories and some tool functions (e.g. homalgMode)</td>
</tr>
<tr>
<td>homalgTable</td>
<td>dictionaries between MatricesForHomalg and the computing engines</td>
</tr>
<tr>
<td>HomalgRing</td>
<td>internal and external rings</td>
</tr>
<tr>
<td>HomalgRingMap</td>
<td>ring maps</td>
</tr>
<tr>
<td>HomalgMatrix</td>
<td>internal and external matrices</td>
</tr>
<tr>
<td>HomalgRingRelations</td>
<td>a set of ring relations</td>
</tr>
</tbody>
</table>

Table: The MatricesForHomalg package files

F.2 The Low Level Algorithms

In the following CAS or CASystem mean computer algebra systems.

117
the elementary matrix operations that can be overwritten using the homalgTable (and hence delegable even to other CASystems)

<table>
<thead>
<tr>
<th>Service</th>
<th>the three operations: basis, reduction, and syzygies; they can also be overwritten using the homalgTable (and hence delegable even to other CASystems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>higher level operations for matrices (cannot be overwritten using the homalgTable)</td>
</tr>
</tbody>
</table>

Table: The MatricesForHomalg package files (continued)

F.3 Logical Implications for MatricesForHomalg Objects

<table>
<thead>
<tr>
<th>Filename .gd/.gi</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIRNG</td>
<td>logical implications for rings</td>
</tr>
<tr>
<td>LIMAP</td>
<td>logical implications for ring maps</td>
</tr>
<tr>
<td>LIMAT</td>
<td>logical implications for matrices</td>
</tr>
<tr>
<td>COLEM</td>
<td>clever operations for lazy evaluated matrices</td>
</tr>
</tbody>
</table>

Table: The MatricesForHomalg package files (continued)

F.4 The subpackage ResidueClassRingForHomalg

<table>
<thead>
<tr>
<th>Filename .gd/.gi</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResidueClassRingForHomalg</td>
<td>some global variables</td>
</tr>
<tr>
<td>ResidueClassRing</td>
<td>residue class rings, their elements, and matrices, together with their constructors and operations</td>
</tr>
<tr>
<td>ResidueClassRingTools</td>
<td>the elementary matrix operations for matrices over residue class rings</td>
</tr>
<tr>
<td>ResidueClassRingBasic</td>
<td>the three operations: basis, reduction, and syzygies for matrices over residue class rings</td>
</tr>
</tbody>
</table>

Table: The MatricesForHomalg package files (continued)
F.5 The homalgTable for GAP4 built-in rings

For the purposes of homalg, the ring of integers is, at least up till now, the only ring which is properly supported in GAP4. The GAP4 built-in capabilities for polynomial rings (also univariate) and group rings do not satisfy the minimum requirements of homalg. The GAP4 package Gauss enables GAP to fulfill the homalg requirements for prime fields, and \mathbb{Z}/p^n.

<table>
<thead>
<tr>
<th>Filename</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integers</td>
<td>the homalgTable for the ring of integers</td>
</tr>
</tbody>
</table>

Table: The MatricesForHomalg package files (continued)
References

Index

MatricesForHomalg, 4

 *
copy a matrix over a different ring, 30
copy a matrix over a different ring (right), 30
for composable matrices, 43
for ring elements and matrices, 42

 +
for matrices, 42

 -
for matrices, 42

 /
constructor for residue class rings, 9

 =
for matrices, 43

AddMat
 homalgTable entry, 60
 ResidueClassRing, 108

AffineDegree, 37

AffineDimension, 37

AreEqualMatrices
 homalgTable entry, 64
 ResidueClassRing, 110

AreUnitsCentral, 16

AssociatedGradedRing, 21

BasisAlgorithmRespectsPrincipalIdeals, 16

BasisOfColumnModule
 for matrices, 44
 ResidueClassRing, 97

BasisOfColumns
 for matrices, 48
 for pairs of matrices, 48

BasisOfColumnsCoeff
 for matrices, 47
 ResidueClassRing, 100

BasisOfRowModule
 for matrices, 44

 ResidueClassRing, 97

BasisOfRows
 for matrices, 47
 for pairs of matrices, 47

BasisOfRowsCoeff
 for matrices, 47
 ResidueClassRing, 100

CanBeUsedToDecideZero, 54

CertainColumns
 for matrices, 41
 homalgTable entry, 58
 ResidueClassRing, 105

CertainRows
 for matrices, 41
 homalgTable entry, 58
 ResidueClassRing, 105

CoefficientsOfNumeratorOfHilbert- PoincareSeries, 36
CoefficientsOfUnreducedNumeratorOf- HilbertPoincareSeries, 36

CoefficientsRing, 20

CoefficientsWithGivenMonomials
 for two homalg matrices, 52
 homalgTable entry, 63

CoercedMatrix
 copy a matrix over a different ring, 30
 copy a matrix over a different ring (conve- nience), 30

ColumnRankOfMatrix, 36

Compose
 homalgTable entry, 60
 ResidueClassRing, 109

ConstantTermOfHilbertPolynomialn, 37

ConstructorForHomalgMatrices, 18

ContainsAField, 10

ConvertColumnToMatrix
 for matrices, 41

ConvertMatrixToColumn
MatricesForHomalg

for matrices, 42
ConvertMatrixToRow
for matrices, 41
ConvertRowToMatrix
for matrices, 41
CoordinateRingOfGraph
for ring maps, 24

DecideZero
for matrices and relations, 48
DecideZeroColumns
for pairs of matrices, 45
ResidueClassRing, 98
DecideZeroColumnsEffectively
for pairs of matrices, 47
ResidueClassRing, 101
DecideZeroRows
for pairs of matrices, 45
ResidueClassRing, 98
DecideZeroRowsEffectively
for pairs of matrices, 47
ResidueClassRing, 101
DegreeOfMorphism
for ring maps, 24
Determinant
homalgTable entry, 62
ResidueClassRing, 110
DeterminantMat, 35
DiagMat
for a homalg ring and a list of homalg matrices, 42
homalgTable entry, 59
ResidueClassRing, 107
DualKroneckerMat
for matrices, 42
homalgTable entry, 59
ResidueClassRing, 108
ElementaryRank, 21
Eliminate, 44
Eval
for matrices created with AddMat, 93
for matrices created with CertainColumns, 82
for matrices created with CertainRows, 81
for matrices created with CoefficientsWithGivenMonomials, 95
for matrices created with CoercedMatrix, 81
for matrices created with Compose, 94
for matrices created with DiagMat, 88
for matrices created with DualKroneckerMat, 90
for matrices created with HomalgIdentityMatrix, 77
for matrices created with HomalgInitialIdentityMatrix, 75
for matrices created with HomalgInitialMatrix, 74
for matrices created with HomalgZeroMatrix, 76
for matrices created with Involution, 79
for matrices created with KroneckerMat, 89
for matrices created with LeftInverseLazy, 78
for matrices created with MulMat, 91
for matrices created with RightInverseLazy, 79
for matrices created with SubMat, 93
for matrices created with TransposedMatrix, 80
for matrices created with UnionOfColumns, 85
for matrices created with UnionOfRows, 83
GeneralLinearRank, 20
GenerateSameColumnModule
for pairs of matrices, 52
GenerateSameRowModule
for pairs of matrices, 51
GetColumnIndependentUnitPositions
for matrices, 43
homalgTable entry, 68
GetRowIndependentUnitPositions
for matrices, 44
homalgTable entry, 69
GetUnitPosition
for matrices, 44
homalgTable entry, 70
GlobalDimension, 20
HasInvariantBasisProperty, 12
HilbertPoincareSeries, 37
HilbertPolynomial, 37
HomalgColumnVector
constructor for matrices with a single column, 29
HomalgDiagonalMatrix
 constructor for diagonal matrices, 29
HomalgIdentityMatrix
 constructor for identity matrices, 27
HomalgInitialIdentityMatrix
 constructor for initial quadratic matrices with ones on the diagonal, 26
HomalgInitialMatrix
 constructor for initial matrices filled with zeros, 25
HomalgMatrix
 constructor for matrices using a list, 28
 constructor for matrices using a listlist, 28
 constructor for matrices using a listlist with given dimensions, 28
 constructor for matrices using a string of a list, 28
 constructor for matrices using a string of a listlist, 28
HomalgMatrixListList
 constructor for matrices using a listlist with given dimensions, 29
homalgMode, 114
HomalgRing
 for matrices, 38
HomalgRingOfIntegers
 constructor for the integers, 8
 constructor for the residue class rings of the integers, 8
HomalgRowVector
 constructor for matrices with a single row, 29
homalgTable, 18
HomalgVoidMatrix
 constructor for void matrices, 27
HomalgZeroMatrix
 constructor for zero matrices, 27

IdentityMatrix
 homalgTable entry, 58
 ResidueClassRing, 104
IndeterminateAntiCommutingVariablesOfExteriorRing, 19
IndeterminateCoordinatesOfRingOfDerivations, 19
IndeterminatesOfExteriorRing, 20
IndeterminatesOfPolynomialRing, 19
InitialIdentityMatrix
 homalgTable entry for initial identity matrices, 57
 ResidueClassRing, 103
InitialMatrix
 homalgTable entry for initial matrices, 57
 ResidueClassRing, 103
Inverse
 for homalg ring elements, 17
Involution
 for matrices, 40
 homalgTable entry, 58
 ResidueClassRing, 104
IsArtinian
 for rings, 14
IsAutomorphism
 for ring maps, 23
IsBasisOfColumnsMatrix, 34
IsBasisOfRowsMatrix, 34
IsBezoutRing, 11
IsCohenMacaulay, 14
IsDedekindDomain, 11
IsDiagonalMatrix, 32
 homalgTable entry, 66
 ResidueClassRing, 110
IsDiscreteValuationRing, 11
IsDivisionRingForHomalg, 10
IsEmptyMatrix, 32
IsEpimorphism
 for ring maps, 23
IsFieldForHomalg, 10
IsFiniteFreePresentationRing, 15
IsFreePolynomialRing, 11
IsGlobalDimensionFinite, 12
IsGorenstein, 14
IsHereditary, 13
IsHermite, 13
IsHomalgInternalMatrixRep, 25
IsHomalgInternalRingRep, 8
IsHomalgMatrix, 25
IsHomalgRing, 7
IsHomalgRingElement, 7
MatricesForHomalg

for rings, 10
IsZeroMatrix
 homalgTable entry, 60
 ResidueClassRing, 109
KroneckerMat
 for matrices, 42
 homalgTable entry, 59
 ResidueClassRing, 107
KrullDimension, 20
LeftDivide
 for pairs of matrices, 49
 for triples of matrices, 50
LeftGlobalDimension, 20
LeftInverse, 36
 for matrices, 38
LeftInverseLazy
 for matrices, 40
MatrixOfSymbols, 38
MinusOne, 18
MulMat
 homalgTable entry, 60
 ResidueClassRing, 108
NonZeroColumns, 35
NonZeroRows, 35
NumberColumns, 35
 homalgTable entry, 62
 ResidueClassRing, 110
NumberRows, 34
 homalgTable entry, 61
 ResidueClassRing, 109
NumeratorOfHilbertPoincareSeries, 37
One
 for homalg rings, 18
PositionOfFirstNonZeroEntryPerColumn, 36
 homalgTable entry, 72
PositionOfFirstNonZeroEntryPerRow, 35
 homalgTable entry, 71
ProductOfIndeterminates, 18
ProjectiveDegree, 37
Range
 for ring maps, 24
 RationalParameters, 19
 ReducedBasisOfColumnModule
 for matrices, 46
 ReducedBasisOfRowModule
 for matrices, 46
 ReducedSyzygiesGeneratorsOfColumns
 for matrices, 47
 ReducedSyzygiesGeneratorsOfRows
 for matrices, 46
 ReducedSyzygiesOfColumns
 for matrices, 49
 for pairs of matrices, 49
 ReducedSyzygiesOfRows
 for matrices, 48
 for pairs of matrices, 48
 RelativeIndeterminateAntiCommuting-VariablesOfExteriorRing, 20
 RelativeIndeterminateCoordinatesOf-RingOfDerivations, 19
 RelativeIndeterminateDerivationsOf-RingOfDerivations, 19
 RelativeIndeterminatesOfPolynomial-Ring, 19
 RelativeSyzygiesGeneratorsOfColumns
 ResidueClassRing, 102
 RelativeSyzygiesGeneratorsOfRows
 ResidueClassRing, 102
RightDivide
 for pairs of matrices, 49
 for triples of matrices, 49
RightGlobalDimension, 20
RightInverse, 36
 for matrices, 3
 RightInverseLazy
 for matrices, 39
 RingElementConstructor, 18
RingMap
 constructor for ring maps, 22
RowRankOfMatrix, 36
SafeLeftDivide
 for pairs of matrices, 51
SafeRightDivide
 for pairs of matrices, 51
SimplifyHomalgMatrixByLeftAndRight-MultiplicationWithInvertible-Matrices
for matrices, 52
SimplifyHomalgMatrixByLeft-MultiplicationWithInvertible-Matrix
for matrices, 52
SimplifyHomalgMatrixByRight-MultiplicationWithInvertible-Matrix
for matrices, 52
Source
for ring maps, 24
StableRank, 21
SubMat
 homalgTable entry, 60
 ResidueClassRing, 109
SyzygiesGeneratorsOfColumns
 for matrices, 45
 for pairs of matrices, 46
 ResidueClassRing, 99
SyzygiesGeneratorsOfRows
 for matrices, 45
 for pairs of matrices, 46
SyzygiesOfColumns
 for matrices, 48
 for pairs of matrices, 48
SyzygiesOfRows
 for matrices, 48
 for pairs of matrices, 48
TransposedMatrix
 for matrices, 40
 homalgTable entry, 58
 ResidueClassRing, 104
TypeOfHomalgMatrix, 18

UnionOfColumns
 for a homalg ring, an integer and a list of
 homalg matrices, 41
 homalgTable entry, 59
 ResidueClassRing, 106
UnionOfColumnsPair
 homalgTable entry, 59
UnionOfRows
 for a homalg ring, an integer and a list of
 homalg matrices, 41
 homalgTable entry, 58
ResidueClassRing, 106
UnionOfRowsPair
 homalgTable entry, 59
UniqueLeftDivide
 for pairs of matrices, 51
UniqueRightDivide
 for pairs of matrices, 51
UnreducedNumeratorOfHilbertPoincare-Series, 37
Zero
 for homalg rings, 18
ZeroColumns, 35
 homalgTable entry, 67
 ResidueClassRing, 111
ZeroMatrix
 homalgTable entry, 57
 ResidueClassRing, 111
ZeroRows, 35
 homalgTable entry, 67
 ResidueClassRing, 111