
PackageManager
Easily download and install GAP

packages

1.4.3

12 January 2024

Michael Young

Michael Young
Email: mct25@st-andrews.ac.uk
Homepage: https://mct25.host.cs.st-andrews.ac.uk/
Address: School of Computer Science

University of St Andrews
Jack Cole Building, North Haugh
St Andrews, Fife, KY16 9SX
United Kingdom

mailto://mct25@st-andrews.ac.uk
https://mct25.host.cs.st-andrews.ac.uk/


Contents

1 Introduction 3
1.1 What does the PackageManager package do? . . . . . . . . . . . . . . . . . . . . 3
1.2 What does the PackageManager package not do? . . . . . . . . . . . . . . . . . . 3
1.3 A quick example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Commands 5
2.1 Installing and updating packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Removing packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Index 10

2



Chapter 1

Introduction

1.1 What does the PackageManager package do?

This package provides the ability to install or remove a package using a single command:
InstallPackage (2.1.1) or RemovePackage (2.2.1). The user can specify a package to install us-
ing its name, or using a URL to an archive, a repository, or a PackageInfo.g file. When installing,
PackageManager also attempts to compile the package, build its documentation if necessary, and
ensure that its dependencies are also installed.

1.2 What does the PackageManager package not do?

At present, PackageManager is fairly basic, without many of the advanced features available in pack-
age managers such as pip or apt. For instance, the user cannot update all packages in one command.
Removing a package will not remove any of its dependencies, since we do not track how packages
were installed. When a package is installed, no tests are run to ensure that it is compatible with the in-
stalled version of GAP. Any of these features might be added in the future. Other feature requests can
be posted on the issue tracker at https://github.com/gap-packages/PackageManager/issues.

1.3 A quick example

To install the latest deposited version of the Digraphs package, use the following:
Example

gap> LoadPackage("PackageManager");
gap> InstallPackage("digraphs");

To uninstall it later, use the following:
Example

gap> LoadPackage("PackageManager");
gap> RemovePackage("digraphs");

PackageManager also supports version control repositories. To install the latest version of the
curlInterface package from GitHub, use the following:

3

https://github.com/gap-packages/PackageManager/issues
https://github.com/gap-packages/curlInterface.git


PackageManager 4

Example
gap> LoadPackage("PackageManager");
gap> InstallPackage("https://github.com/gap-packages/curlInterface.git");



Chapter 2

Commands

2.1 Installing and updating packages

2.1.1 InstallPackage

▷ InstallPackage(string[, version][, interactive]) (function)

Returns: true or false
Attempts to download and install a package. The argument string should be a string containing

one of the following:

• the name of a package;

• the URL of a package archive, ending in .tar.gz or .tar.bz2;

• the URL of a git repository, ending in .git;

• the URL of a mercurial repository;

• the URL of a valid PackageInfo.g file.

The package will then be downloaded and installed, along with any additional packages that are
required in order for it to be loaded. Its documentation will also be built if necessary. If this installation
is successful, or if this package is already installed, true is returned; otherwise, false is returned.

By default, packages will be installed in the pkg subdirectory of the user’s home directory, see
UserHomeExpand (Reference: UserHomeExpand). Note that this location is not the default user
pkg location on Mac OSX, but it will be created on any system if not already present. Note also that
starting GAP with the -r flag will cause all packages in this directory to be ignored.

Certain decisions, such as installing newer versions of packages, will be confirmed by the user via
an interactive shell – to avoid this interactivity and use sane defaults instead, the optional argument
interactive can be set to false.

To see more information about this process while it is ongoing, see InfoPackageManager (2.1.4).
If string is the name of the package in question then one can specify a required package version

via a string as value of the optional argument version , which is interpreted as described in Section
(Reference: Version Numbers). In particular, if version starts with = then the function will try
to install exactly the given version, and otherwise it will try to install a version that is not smaller
than the given one. If an installed version satisfies the condition on the version then true is returned
without an attempt to upgrade the package. If the package is not yet installed or if no installed version

5



PackageManager 6

satisfies the version condition then an upgrade is tried only if the package version that is listed on the
GAP webpages satisfies the condition. (The function will not update a dev version of the package
if a version number is prescribed; otherwise it could happen that one updates the installation and
afterwards notices that the version condition is still not satisfied.)

Example
gap> InstallPackage("digraphs");
true

2.1.2 UpdatePackage

▷ UpdatePackage(name[, interactive]) (function)

Returns: true or false
Attempts to update an installed package to the latest version. The first argument name should be

a string specifying the name of a package installed in the user GAP root (for example, one installed
using InstallPackage (2.1.1)), see (Reference: GAP Root Directories). The second argument
interactive is optional, and should be a boolean specifying whether to confirm interactively before
any directories are deleted (default value true).

If the package was installed via archive, the new version will be installed in a new directory, and
the old version will be deleted. If installed via git or mercurial, it will be updated using git pull or
hg pull -u, so long as there are no outstanding changes. If no newer version is available, no changes
will be made.

This process will also attempt to fix the package if it is broken, for example if it needs to be
recompiled or if one of its dependencies is missing or broken.

Returns true if a newer version was installed successfully, or if no newer version is available.
Returns false otherwise.

Example
gap> UpdatePackage("io");
#I io version 4.6.0 will be installed, replacing 4.5.4
#I Saved archive to /tmp/tm7r5Ug7/io-4.6.0.tar.gz
Remove old version of io at /home/user/.gap/pkg/io-4.5.4 ? [y/N] y
true

2.1.3 CompilePackage

▷ CompilePackage(name) (function)

Returns: true or false
Attempts to compile an installed package. Takes one argument name , which should be a string

specifying the name of a package installed in the user GAP root (for example, one installed using
InstallPackage (2.1.1)), see (Reference: GAP Root Directories). Compilation is done automati-
cally when a package is installed or updated, so in most cases this command is not needed. However,
it may sometimes be necessary to recompile some packages if you update or move your GAP instal-
lation.

Compilation is done using the etc/BuildPackages.sh script bundled with PackageManager.
If the specified package does not have a compiled component, this function should have no effect.

Returns true if compilation was successful or if no compilation was necessary. Returns false
otherwise.



PackageManager 7

Example
gap> CompilePackage("orb");
#I Running compilation script on /home/user/.gap/pkg/orb-4.8.3 ...
true

2.1.4 InfoPackageManager

▷ InfoPackageManager (info class)

Info class for the PackageManager package. Set this to the following levels for different levels
of information:

• 0 - No messages

• 1 - Problems only: messages describing what went wrong, with no messages if an operation is
successful

• 2 - Directories and versions: also displays informations about package versions and installation
directories

• 3 - Progress: also shows step-by-step progress of operations

• 4 - All: includes extra information such as whether curlInterface is being used

Set this using, for example SetInfoLevel(InfoPackageManager, 1). Default value is 3.

2.1.5 InstallPackageFromName

▷ InstallPackageFromName(name[, version][, interactive]) (function)

Returns: true or false
Attempts to download and install a package given only its name. Returns false if something went

wrong, and true otherwise.
Certain decisions, such as installing newer versions of packages, will be confirmed by the user via

an interactive shell – to avoid this interactivity and use sane defaults instead, the optional argument
interactive can be set to false.

A required version can also be specified using the optional argument version . It works as de-
scribed in the InstallPackage (2.1.1) function.

2.1.6 InstallPackageFromInfo

▷ InstallPackageFromInfo(info) (function)

Returns: true or false
Attempts to download and install a package from a valid PackageInfo.g file. The argument

info should be either a valid package info record, or a URL that points to a valid PackageInfo.g
file. Returns true if the installation was successful, and false otherwise.



PackageManager 8

2.1.7 InstallPackageFromArchive

▷ InstallPackageFromArchive(url) (function)

Returns: true or false
Attempts to download and install a package from an archive located at the given URL. Returns

true if the installation was successful, and false otherwise.

2.1.8 InstallPackageFromGit

▷ InstallPackageFromGit(url[, interactive][, branch]) (function)

Returns: true or false
Attempts to download and install a package from a git repository located at the given URL. Returns

false if something went wrong, and true otherwise.
If the optional string argument branch is specified, this function will install the branch with this

name. Otherwise, the repository’s default branch will be used.
Certain decisions, such as installing newer versions of packages, will be confirmed by the user

via an interactive shell – to avoid this interactivity and use sane defaults instead, the optional second
argument interactive can be set to false.

2.1.9 InstallPackageFromHg

▷ InstallPackageFromHg(url[, interactive][, branch]) (function)

Returns: true or false
Attempts to download and install a package from a Mercurial repository located at the given URL.

Returns false if something went wrong, and true otherwise.
If the optional string argument branch is specified, this function will install the branch with this

name. Otherwise, the repository’s default branch will be used.
Certain decisions, such as installing newer versions of packages, will be confirmed by the user

via an interactive shell – to avoid this interactivity and use sane defaults instead, the optional second
argument interactive can be set to false.

2.1.10 InstallRequiredPackages

▷ InstallRequiredPackages() (function)

Returns: true or false
Attempts to download and install the latest versions of all packages required for GAP to run. Cur-

rently these packages are GAPDoc, primgrp, SmallGrp, and transgrp. Returns false if something
went wrong, and true otherwise.

Clearly, since these packages are required for GAP to run, they must be loaded before this function
can be executed. However, this function installs the packages in the ~/.gap/pkg directory, so that
they can be managed by PackageManager in the future, and are available for other GAP installations
on the machine.



PackageManager 9

2.2 Removing packages

2.2.1 RemovePackage

▷ RemovePackage(name[, interactive]) (function)

Returns: true or false
Attempts to remove an installed package using its name. The first argument name should be a

string specifying the name of a package installed in the user GAP root, see (Reference: GAP Root
Directories). The second argument interactive is optional, and should be a boolean specifying
whether to confirm certain decisions interactively (default value true).

Returns true if the removal was successful, and false otherwise.
Example

gap> RemovePackage("digraphs");
Really delete directory /home/user/.gap/pkg/digraphs-0.13.0 ? [y/N] y
true



Index

CompilePackage, 6

InfoPackageManager, 7
InstallPackage, 5
InstallPackageFromArchive, 8
InstallPackageFromGit, 8
InstallPackageFromHg, 8
InstallPackageFromInfo, 7
InstallPackageFromName, 7
InstallRequiredPackages, 8

RemovePackage, 9

UpdatePackage, 6

10


	Introduction
	What does the PackageManager package do?
	What does the PackageManager package not do?
	A quick example

	Commands
	Installing and updating packages
	Removing packages

	Index

