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Chapter 1

Introduction

The GAP package QDistRnd implements a probabilistic algorithm for finding the distance of a g-ary
quantum low-density parity-check code linear over a finite field F = GF(g). While there is no guar-
antee of the performance of the algorithm (the existing bounds in the case of quantum LDPC codes
are weak, see 3.2.2), an empirical convergence criterion is given to estimate the probability that a
minimum weight codeword has been found. Versions for CSS and regular stabilizer codes are given,
see Section 4.1

In addition, a format for storing matrices associated with g-ary quantum codes is introduced and
implemented, see Chapter 5 and Sec. 4.2. The format is based on the well establised MaTrix market
eXchange (MTX) Coordinate format developed at NIST, and is designed for full backward compati-
bility with this format. Thus, the files are readable by any software package which supports MTX.

The routines in the package are derived from the code originally written by one of the authors
(LPP). A related Covering Set algorithm has a provable performance for generic (non-LDPC) quan-
tum codes based on random matrices [DKP17]. Implemented version is a variant of the random
information set (1S) algorithm based on random column permutations and Gauss’ elimination [Leo88]
[Kru89] [CGI0].

The GAP computer algebra system was chosen because of its excellent support for linear algebra
over finite fields. Here we give a reference implementation of the algorithm, with a focus on matrix
formats and generality, as opposed to performance. Nevertheless, the routines are sufficiently fast
when dealing with codes of practically important block lengths n < 103,



Chapter 2

Examples

A few simple examples illustrating the use of the package. For more information see Chapter 4

2.1 The 5-qubit code

In this example, we generate the matrix of the 5-qubit code over GF(3) with the stabilizer group
generated by cyclic shifts of the operator XoZ;Z,X3 which corresponds to the polynomial h(x) =
14+ x% —x° — x5 (a factor X;" corresponds to a monomial ax?, and a factor Zf’ to a monomial bx?t1),
calculate the distance, save into a file using the function WriteMTXE (), and read the file back in using

the function ReadMTXE().
Example

gap> q:=3;; F:=GF(q);;

gap> x:=Indeterminate(F,"x");; poly:=One(F)*(1+x~3-x"5-x"6);;

gap> n:=5;;

gap> mat:=QDR_DoCirc(poly,n-1,2*n,F);; #construct circulant matrix with 4 rows
gap> Display(mat) ;

1. .1.22.

.10 01022 .

2. . .1..1.2

.22 .. .10 .1
gap> d:=DistRandStab(mat,100,1,0 : field:=F,maxav:=20/n);
3

gap> tmp_file_name:=Filename (DirectoryTemporary(),"n5_q3_complex.mtx");;
gap> WriteMTXE(tmp_file_name,3,mat,

> "% The 5-qubit code [[5,1,3]]1_3",
> "% Generated from h(x)=1+x"3-x"5-x"6",
> "% Example from the QDistRnd GAP package" : field:=F);;

gap> lis:=ReadMTXE(tmp_file_name);; # Filename(filedir,"n5_q3_complex.mtx")
gap> lis[1]; # the field
GF(3)
gap> lis[2]; # converted to ‘pair=1°¢

1
gap> Display(lis[3]);

1..1.22.

1..1.22.

.22 .. .10 .01
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The function WriteMTXE() takes several arguments which specify the details of the output file format
and the optional comments, see Section 4.2 for the details. These ensure that all information about the
code is written into the file, so that for reading with the function ReadMTXE() only the file name is
needed. Output is a list: [field,pair,matrix,(list of comments)], where the pair parameter
describes the ordering of columns in the matrix, see 5. Notice that a pair=2 or pair=3 matrix is
always converted to pair=1, i.e., with 2n intercalated columns (a;,b;,az,bs,...). The remaining
portion is the list of comments. Notice that the 1st and the last comment lines have been added

automatically.
Example

gap> lis[4];
[ "% Field: GF(3)", "% The 5-qubit code [[5,1,3]]1_3",
"% Generated from h(x)=1+x"3-x"5-x"6",
"% Example from the QDistRnd GAP package", ") Values Z(3) are given" ]

Here is the contents of the created file which illustrates the coordinate complex data format. Here
a pair (aiﬁj,b,yj) in row i and column j is written as a row of 4 integers, "i j a; ; b; ;", e.g.,"1 20 1" for
the second entry in the 1st row, so that the matrix in the file has n columns, each containing a pair of
integers.

Example
%hkMatrixMarket matrix coordinate complex general
% Field: GF(3)
% The 5-qubit code [[5,1,3]1]1_3
% Generated from h(x)=1+x"3-x"5-x"6
% Example from the QDistRnd GAP package
% Values Z(3) are given
4 5 20
1110
1201
1302
1420
2210
2301
2402
2520
3120
3310
3401
3502
4102
4220
4410
4501

2.2 Hyperbolic codes from a file

Here we read two CSS matrices from two different files which correspond to a hyperbolic code
[[80,18,5]] with row weight w = 5 and the asymptotic rate 1/5. Notice that pair=0 is used for both
files (regular matrices).
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Example

gap>
gap>
gap>
gap>
gap>
gap>
5

filedir:=DirectoriesPackagelLibrary("QDistRnd","matrices");;

lisX:=ReadMTXE(Filename (filedir,"QX80.mtx"),0);;
GX:=1isX[3];;
lisZ:=ReadMTXE(Filename (filedir,"QZ80.mtx"),0);;
GZ:=1isZ[3];;

DistRandCSS(GX,GZ,100,1,2:field:=GF(2));

Here are the matrices for a much bigger hyperbolic code [[900, 182, 8]] from the same family. Note that
the distance here scales only logarithmically with the code length (this code takes about 15 seconds
on a typical notebook and will not actually be executed).

Example
gap> lisX:=ReadMTXE(Filename(filedir,"QX900.mtx"),0);;
gap> GX:=1isX[3];;
gap> lisZ:=ReadMTXE(Filename (filedir,"QZ900.mtx"),0);;
gap> GZ:=1isZ[3];;
gap> DistRandCSS(GX,GZ,1000,1,0:field:=GF(2));
8

2.3 Randomly generated cyclic codes

As a final and hopefully somewhat useful example, the file "examples/cyclic.g" contains a piece of
code searching for random one-generator cyclic codes of length n := 15 over the field GF(8), and
generator weight wei:=6. Note how the mindist parameter and the option maxav are used to speed
up the calculation.



Chapter 3

Description of the algorithm

3.1 Elementary version

3.1.1 What it does?

In the simplest possible terms, we are given a pair of matrices P and Q with orthogonal rows, PQT = 0.
The matrices have entries in a finite field F = GF(q), where ¢ is a power of a prime. The goal is to
find the smallest weight of a non-zero vector ¢ over the same field F, such that ¢ be orthogonal with
the rows of P, Pc’ = 0, and linearly independent from the rows of Q.

3.1.2 The algorithm

We first construct a generator matrix G whose rows form a basis of the F'-linear space of all vectors
orthogonal to the rows of P. At each step, a random permutation S is generated and applied to the
columns of G. Then, Gauss’ elimination with back substitution renders the resulting matrix to the
reduced row echelon form, after which the inverse permutation S~! is applied to the columns. Rows
of the resulting matrix Gy that are linearly independent from the rows of Q are considered as candidates
for the minimum weight vectors. Thus, after NV steps, we are getting an upper bound on the distance
which is improving with increasing N.

3.1.3 Intuition

The intuition is that each row of Gy is guaranteed to contain at least rank(Gs) — 1 zeros. Thus, we are
sampling mostly lower-weight vectors from the linear space orthogonal to the rows of P. Further, it
is easy to see that any vector obtained this way is irreducible [DKP15], i.e., it cannot be decomposed
into a pair of zero-syndrome vectors with non-overlapping supports.

Furthermore, the eventual convergence is guaranteed. Indeed, if ¢ is a minimum-weight codeword
of weight d, consider a permutation S which places one position from its support into the 1st column,
and the remaining positions into the last d — 1 columns. Vector ¢ being the lowest-weight non-trivial
vector, no pivot column may be in the block of last d — 1 columns. This guarantees that vector ¢
is obtained as the first row of Gg. (This argument is adapted to degenerate quantum codes from
[CGTLN21])).
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3.1.4 CSS version of the algorithm

The described version of the algorithm is implemented in the function DistRandCSS (4.1). It ap-
plies to the case of Calderbank-Shor-Steane (CSS) codes, where the matrices P = Hy and Q = Hy
are called the CSS generator matrices, and the computed minimum weight is the distance dz of the
code. The number of columns n is the block length of the code, and it encodes k qudits, where
k = n—rank(Hy)—rank(Hz). To completely characterize the code, we also need the distance dy
which can be obtained by calling the same function with the two matrices interchanged. The con-
ventional code distance d is the minimum of dy and dz. Parameters of such a g-ary CSS code are
commonly denoted as [[n,k, (dx,dz)]],, or simply [[n,k,d]], as for a general g-ary stabilizer code.

3.1.5 Generic version of the algorithm

CSS codes are a subclass of general F'-linear stabilizer codes which are specified by a single stabilizer
generator matrix H = (A|B) written in terms of two blocks of n columns each. The orthogonality
condition is given in a symplectic form,

ABT —BAT =0,

or, equivalently, as orthogonality between the rows of H and the symplectic-dual matrix H = (B| —A).
Non-trivial vectors in the code must be orthogonal to the rows of P = H and linearly independent from
the rows of Q = H. The difference with the CSS version of the algorithm is that we must minimize
the symplectic weight of ¢ = (a|b), given by the number of positions i, 1 < i < n, such that either a; or
b; (or both) be non-zero.

The parameters of such a code are denoted as [[n,k,d]];, where k = n—rankH is the number of
encoded qudits, and d is the minimal symplectic weight of a non-trivial vector in the code. It is easy to
check that a CSS code can also be represented in terms of a single stabilizer generator matrix. Namely,
for a CSS code with generators Hx and Hz, the stabilizer generator matrix has a block-diagonal form,
H :diag<Hx,Hz).

A version of the algorithm for general F-linear stabilizer codes is implemented in the function
DistRandStab (4.1).

Important Notice: In general, here one could use most general permutations of 2n columns, or
restricted permutations of n two-column blocks preserving the pair structure of the matrix. While the
latter method would be much faster, there is no guarantee that every vector would be found. As a
result, we decided to use general permutations of 2n columns.

3.2 Some more details

3.2.1 Quantum stabilizer codes

Representation of quantum codes in terms of linear spaces is just a convenient map. In the case
q = 2 (qubits), the details can be found, e.g., in the book of Nielsen and Chuang, [NC00O]. Further
details on the theory of stabilizer quantum error correcting codes based on qubits can be found in the
Caltech Ph.D. thesis of Daniel Gottesman [Got97] and in the definitive 1997 paper by Calderbank,
Rains, Shor, and Sloane [CRSS98]. Theory of stabilizer quantum codes based on qudits (g-state
quantum systems) was developed by Ashikhmin and Knill [AKO1] (prime fields with g prime) and by
Ketkar, Klappenecker, Kumar, & Sarvepalli [KKKSO06] (extension fields with ¢ a non-trivial power of
a prime).
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In the binary case (more generally, when g is a prime), F'-linear codes coincide with additive
codes. The linear codes [e.g., over GF(4) in the binary case [CRSS98]] is a different construction
which assumes an additional symmetry. A brief summary of F-linear quantum codes [where F =
GF(q) with ¢ = p™, m > 1 a non-trivial power of a prime] can be found in the introduction of Ref.
[ZP20]. The construction is equivalent to a more physical approach in terms of a lifted Pauli group
suggested by Gottesman [Got14].

3.2.2 The algorithm

Case of classical linear codes

The algorithm 3.1.2 is closely related to the algorithm for finding minimum-weight codewords
in a classical linear code as presented by Leon [Leo88], and a related family of information set (IS)
decoding algorithms [Kru89] [CG90].

Consider a classical linear g-ary code [n,k,d|, encoding k symbols into n, specified by a generator
matrix G of rank k. Using Gauss’ algorithm and column permutations, the generator matrix can be
rendered into a systematic form, G = (I|A), where the two blocks are /, the size-k identity matrix, and
a k by n — k matrix A. In such a representation, the first k positions are called the information set of
the code (since the corresponding symbols are transmitted directly) and the remaining n — k symbols
provide the redundancy. Any k linearly-independent columns of G can be chosen as the information
set, which defines the systematic form of G up to a permutation of the rows of A.

The IS algorithm and the original performance bounds [Leo88] [Kru89] [CG90] are based on the
observation that for a long random code a set of k 4+ A randomly selected columns, with A of order
one, are likely to contain an information set. ISs are (approximately) in one-to-one correspondence
with the column permutations, and a random IS can thus be generated as a set of pivot columns in the
Gauss’ algorithm after a random column permutation. Thus, if there is a codeword ¢ of weight d, the
probability to find it among the rows of reduced-row-echelon form Gg after a column permutation S
can be estimated as that for a randomly selected set of k columns to hit exactly one non-zero position
inc.

The statistics of ISs is more complicated in other ensembles of random codes, e.g., in linear
low-density parity-check (LDPC) codes where the check matrix H (of rank n — k and with rows
orthogonal to those of G) is additionally required to be sparse. Nevertheless, a provable bound can be
obtained for a related covering set (CS) algorithm where a randomly selected set of s > k— 1 positions
of a putative codeword are set to be zero, and the remaining positions are constructed with the help of
linear algebra. In this case, the optimal choice [DKP17] is to take s ~ n(1 — 0), where 6 is the erasure
threshold of the family of the codes under consideration. Since 8 > R (here R = k/n is the code rate),
here more zeros must be selected, and the complexity would grow (assuming the distance d remains
the same, which is usually not the case for LDPC codes).

Note however that rows of Gy other than the last are not expected to contain as many zeros (e.g.,
the first row is only guaranteed to have k — 1 zeros), so it is possible that the performance of the IS
algorithm on classical LDPC codes is actually closer to that on random codes as estimated by Leon
[Leo88].

Case of quantum CSS codes

In the case of a random CSS code (with matrices P and Q selected randomly, with the only re-
quirement being the orthogonality between the rows of P and Q), the performance of the algorithm
3.1.2 can be estimated as that of the CS algorithm, in terms of the erasure threshold of a linear code
with the parity matrix P, see [DKP17].
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Unfortunately, such an estimate fails dramatically in the case of quantum LDPC codes, where
rows of P and Q have weights bounded by some constant w. This is a reasonable requirement since
the corresponding quantum operators (supported on w qudits) have to actually be measured frequently
as a part of the operation of the code, and it is reasonable to expect that the measurement accuracy
goes down (exponentially) quickly as w is increased. Then, the linear code orthogonal to the rows of P
has the distance < w (the minimal weight of the rows of (), and the corresponding erasure threshold is
exactly zero. In other words, there is a finite probability that a randomly selected w symbols contain a
vector orthogonal to the rows of P (and such a vector would likely have nothing to do with non-trivial
quantum codewords which must be linearly independent from the rows of Q).

On the other hand, for every permutation S in the algorithm 3.1.2, the matrix Gg contains exactly
k = n—rank(P)—rank(Q) rows orthogonal to rows of P and linearly independent from rows of Q
(with columns properly permuted). These vectors contain at least s zeros, where [1 — 0, (P,Q)|n < s <
n—rank(Q), where 6,(P, Q) is the erasure threshold for Z-like codewords in the quantum CSS code
with Hy = P and Hz; = Q.

What is it that we do not understand?

What missing is an understanding of the statistics of the ISs of interest, namely, the ISs that overlap
with a minimum-weight codeword in one (or a few) positions.

Second, we know that a given column permutation S leads to the unique information set, and that
every information set can be obtained by a suitably chosen column permutation. However, there is no
guarantee that the resulting information sets have equal probabilities. In fact, it is easy to construct
small matrices where different information sets are obtained from different numbers of column per-
mutations (and thus have different probabilities). It is not clear whether some of the ISs may have
vanishingly small probabilities in the limit of large codes; in such a case the algorithm may take an
excessively long time to converge.

3.3 Empirical estimate of the success probability

The probability to find a codeword after N rounds of the algorithm can be estimated empirically, by
counting the number of times each codeword of the minimum weight was discovered. We expect the
probability P(c) to discover a given codeword ¢ to depend only on its (symplectic) weight wgt(c),
with the probability a monotonously decreasing function of the weight. If, after N steps, codewords
c1, €2, ... , Cy Of the same (minimal) weight w are discovered ny, ny, ..., n,, times, respectively, we
can estimate the corresponding Poisson parameter as

1 m

Ay =—
" Nmf&

n;.
Then, the probability that a codeword cg of the true minimal weight d < w be not discovered after

N steps can be upper bounded as (the inequalities tend to saturate and become equalities in the limit
of small A,,)

m

Pait < (1= 2) < eV = exp <—ml an> = exp(—(n)).
i=1
Thus, the probability to fail is decreasing as an exponent of the parameter (n), the average number of
times a minimum-weight codeword has been found.
The hypothesis about all P(c;) being equal to 4, is testable, e.g., if one considers the distribution
of the ratios x; = n; /N, where N =Y./ | n; is the total number of codewords found. These quantities
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sum up to one and are distributed according to multinomial distribution[Ste53]. Further, under our
assumption of all P(c;) being equal, we also expect the outcome probabilities in the multinomial
distribution to be all equal, m; = 1/m, 1 <i < m.
This hypothesis can be tested using Pearson’s y? test. Namely, in the limit where the total number
of observations N diverges, the quantity
X2 = ii(”"*m")z Ny UV ETCLE S
= Nm i=1 N=
is expected to be distributed according to the )(3171 distribution with m — 1 parameters, see [CL54]
[Cra99].

In practice, we can approximate with the )(,%l_l distribution as long as the total N be large compared
to the number m of the codewords found (i.e., the average (n) must be large, which is the same
condition as needed for confidence in the result.)

With debug[4] set (binary value 8) in DistRandCSS and DistRandStab (4.1), whenever more
than one minimum-weight vector is found, the quantity X is computed and output along with the
average number of times (n) a minimum-weight codeword has been found. However, no attempt is
made to analyze the corresponding value or calculate the likelihood of the null hypothesis that the
codewords be equiprobable.



Chapter 4

All Functions

4.1 Functions for computing the distance

4.1.1 DistRandCSS

> DistRandCSS(HX, HZ, num, mindist[, debug]: field := GF(2), maxav := fail)
(function)
Returns: An upper bound on the CSS distance dz
Computes an upper bound on the distance dz of the g-ary code with stabilizer generator matrices
Hy, Hz whose rows are assumed to be orthogonal (orthogonality is not verified). Details of the input
parameters

* HX, HZ: the input matrices with elements in the Galois field F
* num: number of information sets to construct (should be large)

* mindist - the algorithm stops when distance equal or below mindist is found and returns the
result with negative sign. Set mindist to O if you want the actual distance.

* debug: optional integer argument containing debug bitmap (default: 0)

1 (Os bit set) : print 1st of the vectors found

2 (1st bit set) : check orthogonality of matrices and of the final vector

4 (2nd bit set) : show occasional progress update

8 (3rd bit set) : maintain cw count and estimate the success probability
* field (Options stack): Galois field, default: GF(2).
* maxav (Options stack): if set, terminate when (n)>maxav, see Section 3.3. Not set by default.
See Section 3.1 for the description of the algorithm.
4.1.2 DistRandStab

> DistRandStab(G, num, mindist[, debug]: field := GF(2), maxav := fail) (func-
tion)

Returns: An upper bound on the code distance d

13
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Computes an upper bound on the distance d of the F'-linear stabilizer code with generator matrix G
whose rows are assumed to be symplectic-orthogonal, see Section 3.1.5 (orthogonality is not verified).
Details of the input parameters:

* G: the input matrix with elements in the Galois field F with 2n columns
(a1,b1,a3,bs,...,a,,b,). The remaining options are identical to those in the function
DistRandCSS 4.1.

* num: number of information sets to construct (should be large)

* mindist - the algorithm stops when distance equal or smaller than mindist is found - set it to
0 if you want the actual distance

* debug: optional integer argument containing debug bitmap (default: 0)

1 (Os bit set) : print 1st of the vectors found

2 (Ist bit set) : check orthogonality of matrices and of the final vector

4 (2nd bit set) : show occasional progress update

8 (3rd bit set) : maintain cw count and estimate the success probability
» field (Options stack): Galois field, default: GF(2).

* maxav (Options stack): if set, terminate when (n)>maxav, see Section 3.3. Not set by default.

4.1.3 Examples

Here are a few simple examples illustrating the use of distance functions. In all examples, we use
functions DistRandCSS and DistRandStab with debug=2 to ensure that row orthogonality in the
input matrices is verified.

Example
gap> F:=GF(5);;

gap> Hx:=One(F)*[[1,-1,0,0 1,[0,0,1,-111;;
gap> Hz:=One(F)*[[1, 1,1,1]1];;

gap> DistRandCSS(Hz,Hx,100,0,2 : field:=F);
2

Now, if we set the minimum distance mindist parameter too large, the function terminates imme-
diately after a codeword with such a weight is found; in such a case the result is returned with the
negative sign.

Example
gap> DistRandCSS(Hz,Hx,100,2,2 : field:=F);
-2

The function DistRandStab takes only one matrix. This example uses the same CSS code but written

into a single matrix. Notice how the values from the previous example are intercalated with zeros.
Example

gap> F:=GF(5);;

gap> H:=One(F)*[[1,0, -1,0, 0,0, 0,0 ], # original Hx in odd positions

> [O,O’ O’O: 110, _110 :I:
> (0,1, 0,1, 0,1, 0,1 1];; # original Hz in even positions
gap> DistRandStab(H,100,0,2 : field:=F);

2
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4.2 Input/Output Functions

4.2.1 ReadMTXE

> ReadMTXE(FilePath[, pair]: field := GF(2)) (function)
Returns: alist [field, pair, Matrix, array_of_comment_strings]
Read matrix from an MTX file, an extended version of Matrix Market eXchange coordinate format
supporting finite Galois fields and two-block matrices (A|B) with columns A = (ay,az,...,a,) and
B = (by,bs,...,by), see Chapter 5.

* FilePath name of existing file storing the matrix

* pair (optional argument): specifies column ordering; must correlate with the variable type in
the file

pair=0 for regular single-block matrices (e.g., CSS) type=integer (if pair not speci-
fied, pair=0 is set by default for integer)

pair=1 intercalated columns with type=integer (aj,by,a2,by,...)

pair=2 grouped columns with type=integer (aj,as,...,a, by,by,...,by)

pair=3 this is the only option for type=complex with elements specified as "complex"
pairs

» field (Options stack): Galois field, default: GF(2).

Must match that given in the file (if any). Notice: with pair=1 and pair=2, the number of matrix
columns specified in the file must be even, twice the block length of the code. This version of the
format is deprecated and should be avoided.

Ist line of file must read:

Code
%hMatrixMarket matrix coordinate ‘type‘ general

with type being either integer or complex
2nd line (optional) may contain:

Code

% Field: ‘valid_field_name_in_Gap*

or
Code
% Field: ‘valid_field_name_in_Gap‘ PrimitiveP(x): ‘polynomialf

Any additional entries in the second line are silently ignored. By default, GF(2) is assumed; the
default can be overriden by the optional field argument. If the field is specified both in the file and
by the optional argument, the corresponding values must match. Primitive polynomial (if any) is only
checked in the case of an extension field; it is silently ignored for a prime field.

See Chapter 5 for the details of how the elements of the group are represented depending on
whether the field is a prime field (g a prime) or an extension field with ¢ = p", p prime, and m > 1.
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4.2.2 WriteMTXE

> WriteMTXE(StrPath, pair, matrix[, comment[, comment]]: field := GF(2)) (func-
tion)

Returns: no output

Export a matrix in Extended MatrixMarket format, with options specified by the pair argument.

e StrPath - name of the file to be created;

* pair: parameter to control the file format details, must match the storage type of the matrix.

pair=0 for regular matrices (e.g., CSS) with type=integer

pair=1 for intercalated columns (ay,by,az,by,...) with type=integer (deprecated)

pair=2 for grouped columns with type=integer (this is not supported!)

pair=3 for columns specified in pairs with type=complex.
* Columns of the input matrix must be intercalated unless pair=0

* optional comment: one or more strings (or a single list of strings) to be output after the MTX
header line.

The second line specifying the field will be generated automatically only if the GAP Option field
is present. As an option, the line can also be entered explicitly as the first line of the comments, e.g.,
"% Field: GF(256)"

See Chapter 5 for the details of how the elements of the group are represented depending on
whether the field is a prime field (¢ a prime) or an extension field with g = p™, m > 1.

4.3 Helper Functions

4.3.1 QDR_AverageCalc

> QDR_AverageCalc(vector) (function)

Calculate the average of the components of a numerical vector

4.3.2 QDR_SymplVecWeight

> QDR_SymplVecWeight(vector, field) (function)
Returns: symplectic weight of a vector
Calculate the symplectic weight of a vector with an even number of entries from the field field.
The elements of the pairs are intercalated: (ay,by,az,bz,...).
Note: the parity of vector length and the format are not verified!!!

4.3.3 QDR_WeightMat

> QDR_WeightMat (matrix) (function)
Returns: number of non-zero elements
count the total number of non-zero entries in a matrix.
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4.3.4 QDR_DoProbOut

> QDR_DoProbOut(vector, n, num) (function)
Returns: nothing
Aux function to print out the relevant probabilities given the list vector of multiplicities of the
codewords found. Additional parameters are n, the code length, and num, the number of repetitions;
these are ignored in the present version of the program. See 3.3 for related discussion.

4.3.5 QDR_ParseFieldStr

> QDR_ParseFieldStr(str) (function)
Returns: the corresponding Galois field
Parse a string describing a Galois field Supported formats: Z(p), GF(q), and GF(qg~m), where p
must be a prime, g a prime or a power of a prime, and m a natural integer. No spaces are allowed.

4.3.6 QDR_ParsePolyStr

> QDR_ParsePolyStr(F, str) (function)
Returns: the corresponding polynomial
Parse string str as a polynomial over the field F. Only characters in "0123456789*+-~x" are
allowed in the string. In particular, no spaces are allowed.

4.3.7 QDR_FieldHeaderStr

> QDR_FieldHeaderStr(F) (function)
Returns: the created header string
Create a header string describing the field F for use in the function WriteMTXE. If F is a prime
Galois field, just specify it: For an extension field GF(p™) with p prime and m > 1, also give the
primitive polynomial which should not contain any spaces. For example, See Chapter 5 for details.

4.3.8 QDR_ProcessFieldHeader

> QDR_ProcessFieldHeader (recs, optF) (function)
Returns: the list [Field, ConversionDegree, FormatIndex] (plus anything else we may need in the
future); the list is to be used as the second parameter in QDR_ProcEntry ()
Process the field header (second line in the MTXE file format), including the field, PrimitiveP

record, and anything else. Supported format options:

Code
Field: ‘field‘ PrimitiveP(x): ‘polynomial‘ Format: ‘format®

Here the records should be separated by one or more spaces; while field, polynomial, and
format should not contain any spaces. Any additional records in this line will be silently ignored.

The field option should specify a valid field, GF(g) or GF(p™), where g > 1 should be a power
of the prime p.

The polynomial should be a valid expanded monic polynomial with integer coefficients, with a
single independent variable x; it should contain no spaces. An error will be signaled if polynomial
is not a valid primitive polynomial of the field. This argument is optional; by default, Conway
polynomial will be used.
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The optional format string (not implemented) should be "Additivelnt" (the default for prime
fields), "PowerInt" (the default for extension fields with m > 1) or "VectorInt".

AdditiveInt indicates that values listed are expected to be in the corresponding prime field and
should be interpreted as integers mod p. PowerInt indicates that field elements are represented as
integers powers of the primitive element, root of the primitive polynomial, or —1 for the zero field
element. VectorInt corresponds to encoding coefficients of a degree-(m — 1) p-ary polynomial
representing field elements into a p-ary integer. In this notation, any negative value will be taken mod
p, thus —1 will be interpreted as p — 1, the additive inverse of the field 1.

On input, recs should contain a list of tokens obtained by splitting the field record line; optF
should be assigned to ValueOption("field") or fail.

4.3.9 QDR_ProcEntry

> QDR_ProcEntry(str, fmt, FileName, LineNo) (function)
Returns: the converted field element
Convert a string entry which should represent an integer to the Galois Field element as specified
in the fmt.

* str is the string representing an integer.
* fmt is a list [Field, ConversionDegree, FormatIndex]

— Field is the Galois field GF(p™) of the code

— ConversionDegree c : every element x read is replaces with x°. This may be needed if a
non-standard primitive polynomial is used to define the field.

— FormatIndex in {0,1,2}. 0 indicates no conversion (just a modular integer). 1 indicates
that the integer represents a power of the primitive element, or —1 for 0. 2 indicates that
the integer encodes coordinates of a length m vector as the digits of a p-ary integer (not
yet implemented).

* FileName, LineNo are the line number and the name of the input file; these are used to signal
an error.

4.3.10 Examples

Example
gap> QDR_AverageCalc([2,3,4,5]);
3.5

Example
gap> F:=GF(3);;
gap> x:=Indeterminate(F,"x");; poly:=0ne(F)*(1-x);;
gap> n:=5;;
gap> mat:=QDR_DoCirc(poly,n,2#n,F);; # make a circulant matrix with 5 rows
gap> Display(mat) ;
.12 0 ..
.12 0 ..
.12 ..
.12
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These examples illustrate the allowed format of field definitions in the header of an MTXE file:
Example

gap> QDR_ParseFieldStr("Z(5)");

Z(5)

gap> QDR_ParseFieldStr("Z(17)");
Z(17)

gap> QDR_ParseFieldStr("GF(5°2)");
GF(5~2)

gap> QDR_ParseFieldStr("GF(25)");
GF(5°2)

gap> QDR_ParseFieldStr ("GF(125°2)");
GF(576)

Example
gap> QDR_ParsePolyStr (GF(25),"x~2+1");
x~2+Z(5)~0

4.3.11 QDR_MakeH

> QDR_MakeH(matrix, field) (function)
Returns: H (the check matrix constructed)
Given a two-block matrix with intercalated columns (ay,b;,az,bs,...), calculate the correspond-
ing check matrix H with columns (—by,a1,—b;,az,...).
The parity of the number of columns is verified.

4.3.12 QDR_DoCirc

> QDR_DoCirc(poly, m, n, field) (function)
Returns: m by 2*n circulant matrix constructed from the polynomial coefficients
Given the polynomial poly ag+ box + a1x* + b1 + ... with coefficients from the field F, con-
structs the corresponding m by 2n double circulant matrix obtained by m repeated cyclic shifts of the
coefficients’ vector by s = 2 positions at a time.



Chapter 5

Extended MTX (MTXE) File Format

5.1 General information

The code supports reading matrices from an MTX file using ReadMTXE and writing new MTX file
using WriteMTXE functions. Below a description of the format is given.

5.1.1 Representation of field elements via integers
Every finite field is isomorphic to a Galois field F = GF(q), where ¢ is a power of a prime, g = p™.

* For a prime field, with ¢ = p a prime, F is a prime field, isomorphic to the ring Z(g) of integers
modulo ¢g. In such a case, elements of the field are stored directly as integers. After reading,
these are taken modulo p, thus, e.g., with p =7, values —1, 6, or 13 are all equivalent.

* When g = p™ with m > 1, F is an extension field. Non-zero elements of such a field can be
represented as integer powers of a primitive element ¢, a primitive root of unity in the field.
Primitive element is a root of a primitive polynomial f(x), that is, an irreducible polynomial
with coefficients in the corresponding prime field GF(p), with the property that the smallest
integer n such that f(x) divides x" — 1 is n = p™ — 1. Alternatively, field elements can be
represented as p-ary polynomials modulo the chosen primitive polynomial f(x).

Either definition requires that the primitive polynomial be specified. By default, GAP uses Con-
way polynomials to represent field elements. For details, as well as a large collection of Conway
polynomials, please see the web page maintained by Frank Luebeck [Liib21].

In the actual file format, three different and mutually exclusive storage options for elements of an
extension field can in be used.

* First, assuming all elements needed are actually in the corresponding prime field GF(p), the
integer values (mod p) directly correspond to the values of field elements. This is the case, e.g.,
with 0,£1 matrices which obey the orthogonality condition already over integers, and retain
orthogonality over Z(g) with any ¢ (what is more relevant here, the same matrix would work
with any prime field). (this is currently not implemented)

* Second option, and the only option currently implemented for extension fields, is to store the
powers of the primitive element for each non-zero element in the field, and —1 for zero.

« Third option, is to take the coefficients of p-ary polynomial ag + ajx + axx> + ...+ ap_1x™ !

as digits of a p-ary integer (am—1am—2...axay)p. (this is currently not implemented)

20
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5.1.2 Matrix storage format

There are two recommended storage formats.
1. For CSS matrices stored in separate files, the MTX header should use the integer type, with
matrix elements stored in the usual order.
2. For general stabilizer codes, or to store both CSS matrices in a single file, the MTX header
should use the complex type. In this case the block matrix (A, B) is stored as a complex matrix A + iB.
In both format versions, the number of columns specified in the file coincides with the code length.
Two additional matrix format versions supported by ReadMTXE and WriteMTXE are provided
for compatibility. Here, the columns a; and b; in the blocks A and B are listed individually, and

are either intercalated [the ordering (ai,by,a2,b2,...,a,,b,)] or are separated into column blocks
(a,...,an,by,...,b,). In both cases the number of columns in the matrix stored is twice the code
length.

The ordering of the columns is governed by a parameter pair, optional in the function ReadMTXE
and required in WriteMTXE.

* With pair=0 the matrix elements are stored in the usual order. In this case the MTX header
should use the integer type. This is the defailt storage format for stabilizer generator matrices
of CSS codes, and also the internal matrix format for single-block matrices accepted by the
function DistRandCSS, see Section 4.1.

* With pair=1 the block matrix (A, B) is stored with intercalated columns (ay,by,...,a,,by); the
MTX header should use the integer type. This is the internal matrix format for two-block
matrices accepted by the functions DistRandStab (4.1) and WriteMTXE (4.2), and returned by
ReadMTXE (4.2).

* With pair=2 the block matrix (A,B) is stored with separated columns (ay,...,a,,b1,...,by);
the MTX header should also use the integer type.

» With pair=3 the block matrix (A, B) is stored as a complex matrix A + iB, with columns (a; +
iby,...,a,+ib,). In this case type=complex, since matrix elements are represented as complex
integers.

By default, pair=0 corresponds to type=integer and pair=3 corresponds to type=complex. It
is strongly recommended that matrices intended for use by others should only use these two variants
of the MTXE format.

For efficiency reasons, the function DistRandStab (4.1) assumes the generator matrix with inter-
calated columns.

5.1.3 Explicit format of each line

The first line must have the following form:

Code
%hMatrixMarket matrix coordinate ‘type‘ general

with type either integer or complex.
The second line is optional and specifies the field, the primitive polynomial used (in the case of an
extension field), and the storage format of field elements.
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Code
Field: ‘field‘ PrimitiveP(x): ‘polynomial‘ Format: ‘format®

Here the records should be separated by one or more spaces; while field, polynomial, and
format should not contain any spaces. Any additional records in this line will be silently ignored.

The field option should specify a valid field, GF (q) or GF (p~m), where ¢ > 1 should be a power
of the prime p.

The polynomial should be a valid expanded monic polynomial with integer coefficients, with a
single independent variable x; it should contain no spaces. An error will be signaled if polynomial
is not a valid primitive polynomial of the field. This argument is optional; if not specified, one may
assume that the Conway polynomial should be used.

The optional format string should be "Additivelnt" (the default for prime fields), "PowerInt"
(currently the default for extension fields with m > 1) or "VectorInt".

* AdditiveInt indicates that values listed are expected to be in the corresponding prime field
and should be interpreted as integers mod p.

* PowerInt indicates that field elements are represented as integers powers of the primitive ele-
ment, root of the primitive polynomial, or —1 for the zero field element.

* VectorInt corresponds to encoding coefficients of a degree-(m — 1) p-ary polynomial repre-
senting field elements into a p-ary integer. In this notation, any negative value will be taken
mod p, thus —1 will be interpreted as p — 1, the additive inverse of the field 1.

The primitive polynomial must be written explicitly as X" + a1 * X"V 4 ay xx+ap, where
the integer coefficients @; will be interpreted modulo p. The primitive polynomial should not contain
any spaces.

Code
% Field: GF(‘q‘) PrimitiveP(x): ‘polynomial®

For example, with ¢ = 52, the Conway polynomial fso(x) = x%> —x+2, and the second line can

read
Code
% Field: GF(25) PrimitiveP(x): x~2-x+2 Format: PowerInt

The following is an equivalent form of the same polynomial and can also be used
Code
% Field: GF(25) PrimitiveP(x): x~2+4*x+2

The field may be left undefined; by default, it is GF(2), or it can be specified by hand when reading
the matrices. If the primitive polynomial is undefined, it will be assumed that the Conway polynomial
used internally by GAP should be used.

Next follows the comment section, with each line either empty or starting with the % symbol:
Code

% Example of the comment line

After the comment section, in agreement with MTX format, goes the line giving the dimensions
of the matrix and the number of non-zero elements:
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Code
rows columns ‘ (number of non-zero elements)®

Then all non-zero elements are listed as three or four integers according to the type:

* type=integer:
Code

i j element[i,j]

* type=complex:
Code

i j ali,j] bli,]j]

Notice that column and row numbers must start with 1, as prescribed in the original MTX format.

5.1.4 Matrix Storage Implementation Details

Neither the WriteMTXE nor ReadMTXE currently support the Format : parameter. Prime field elements
are only stored "as is", i.e., as integers to be taken modulo p, while extension field elements are only
stored in the PowerInt format, i.e., with the power of the primitive element specified, or "-1" for zero.

The function WriteMTXE can only save field elements with the primitive polynomial used inter-
nally by GAP, i.e., the Conway polynomial.

The function ReadMTXE can read matrix elements specified (in the case of an extension field) with
any primitive polynomial as specified in the file.

Given the field GF(p™) and the primitive polynomial p(x) specified in the file, the function
ReadMTXE first checks that the degree of p(x) is indeed m and that it is a primitive polynomial in
the corresponding prime field GF(p). If either of these tests fail, ReadMTXE produces an error. Oth-
erwise, it will attempt to find the conversion coefficient ¢ such that a“ is a root of p(x), starting with
¢ = 1. When found, the multiplicative inverse s such that sc = 1 mod (¢ — 1) will be used to convert
the elements being read, i.e., for any matrix element y read, y* will be used instead.

Notice that, unless the Conway polynomial was used (in which case ¢ = s = 1, and the conversion
is trivial), this search can be slow for large fields, as all integer values in [1,2,..., g — 2] will be tested
sequentially. To help ensure that the correct polynomial is used, it is recommended that orthogonality
of matrices be checked.

5.2 Example MTXE files

In this section we give two sample MTXE files storing the stabilizer generator matrix of 5-qubit codes.

First, matrix (with one redundant linearly-dependent row) stored with type=integer and pair=1
(intercalated columns [a;,b;,az,by, . ..]) is presented. Notice that the number of columns is twice the
actual length of the code. Even though the field is specified explicitly, this matrix would work with
any prime field.

Code
%hMatrixMarket matrix coordinate integer general

% Field: GF(7)

% 5-qubit code generator matrix / normal storage with intercalated cols
5 10 20
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10 -1

3 -1

OO OO DD D WWWWNNNNNRE R =
(o]
S

This same matrix is stored in the file matrices/n5k1A.mtx. This is how the matrix can be read

and distance calculated:

Example
gap> filedir:=DirectoriesPackageLibrary("QDistRnd","matrices");;
gap> lis:=ReadMTXE(Filename(filedir,"nbk1A.mtx" ));;
gap> Print ("field ",lis[1],"\n");
field GF(7)
gap> dist:=DistRandStab(1lis[3],100,0 : field:=1is[1]);
3

The same matrix can also be stored with type=complex and pair=3 (complex pairs [a| +ib;,a, +

iby, . ..]). In this format, the number of columns equals the code length.

Code

%hMatrixMarket matrix coordinate complex general
% works with any prime field

% 5-qubit code generator matrix / normal storage with intercalated cols
[[5,1,311_p

5 16

10

01

0 -1

-10

10

01

0 -1

-10

-10

10

01

0 -1

0 -1

=
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The matrix above is written in the file matrices/nbk1.mtx. To calculate the distance, we need
to specify the field [unless we want to use the default binary field].

Example
gap> lis:=ReadMTXE(Filename(filedir,"n5k1l.mtx" ));;
gap> Print ("field ",lis[1],"\n");
field GF(2)
gap> dist:=DistRandStab(1is[3],100,0,2 : field:=1lis[1]);
3
gap> q:=17;;
gap> lis:=ReadMTXE(Filename(filedir,"nbkl.mtx") : field:= GF(q));;
gap> Print ("field ",1lis[1],"\n");
field GF(17)
gap> dist:=DistRandStab(1is[3],100,0,2 : field:=1lis[1]);
3

Finally, the following is an example of a five-qudit code over GF(2?) constructed by the script
examples/cyclic.g.
Code

%hMatrixMarket matrix coordinate complex general
% Field: GF(2°3) PrimitiveP(x): x~3+x+1

% code [[5,1,3]1]1_8

% cyclic w=4 x~6+Z(2°3) ~4*x~5+Z(2°3) ~4*x~3+Z(2)"0
% Powers of GF(8) primitive element and -1 for Zero are given
20

0 -1

-14

-14

0 -1

0 -1

-14

-14

0 -1

0 -1

0 -1

-14

-14

-14

0 -1

0 -1

-14

-14

-14

0 -1

0 -1
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