QDistRnd
 Calculate the distance of a q-ary quantum stabilizer code
 0.9.4

23 February 2024

Leonid P. Pryadko

V. A. Shabashov

V. K. Kozin

Leonid P. Pryadko

Email: leonid.pryadko@gmail.com
Homepage: http://faculty.ucr.edu/~1eonid
Address: Department of Physics \& Astronomy
University of California
Riverside, CA 92521
USA
V. A. Shabashov

Email: vadim.art.shabashov@gmail.com
Homepage: https://sites.google.com/view/vadim-shabashov/

V. K. Kozin

Email: kozin.valera@gmail.com
Address: Department of Physics, University of Basel
Klingelbergstrasse 82, CH-4056 Basel,
Switzerland

Copyright

© 2021--2024 by L. P. Pryadko, V. K. Kozin, and V. A. Shabashov
QDistRnd package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Acknowledgements

We appreciate very much all past and future comments, suggestions and contributions to this package and its documentation provided by GAP users and developers.

Contents

1 Introduction 4
2 Examples 5
2.1 The 5-qubit code 5
2.2 Hyperbolic codes from a file 6
2.3 Randomly generated cyclic codes 7
3 Description of the algorithm 8
3.1 Elementary version 8
3.2 Some more details 9
3.3 Empirical estimate of the success probability 11
4 All Functions 13
4.1 Functions for computing the distance 13
4.2 Input/Output Functions 15
4.3 Helper Functions 16
5 Extended MTX (MTXE) File Format 20
5.1 General information 20
5.2 Example MTXE files 23
References 27
Index 28

Chapter 1

Introduction

The GAP package QDistRnd implements a probabilistic algorithm for finding the distance of a q-ary quantum low-density parity-check code linear over a finite field $F=\mathrm{GF}(q)$. While there is no guarantee of the performance of the algorithm (the existing bounds in the case of quantum LDPC codes are weak, see 3.2.2), an empirical convergence criterion is given to estimate the probability that a minimum weight codeword has been found. Versions for CSS and regular stabilizer codes are given, see Section 4.1

In addition, a format for storing matrices associated with q-ary quantum codes is introduced and implemented, see Chapter 5 and Sec. 4.2. The format is based on the well establised MaTrix market eXchange (MTX) Coordinate format developed at NIST, and is designed for full backward compatibility with this format. Thus, the files are readable by any software package which supports MTX.

The routines in the package are derived from the code originally written by one of the authors (LPP). A related Covering Set algorithm has a provable performance for generic (non-LDPC) quantum codes based on random matrices [DKP17]. Implemented version is a variant of the random information set (IS) algorithm based on random column permutations and Gauss' elimination [Leo88] [Kru89] [CG90].

The GAP computer algebra system was chosen because of its excellent support for linear algebra over finite fields. Here we give a reference implementation of the algorithm, with a focus on matrix formats and generality, as opposed to performance. Nevertheless, the routines are sufficiently fast when dealing with codes of practically important block lengths $n \lesssim 10^{3}$.

Chapter 2

Examples

A few simple examples illustrating the use of the package. For more information see Chapter 4

2.1 The 5-qubit code

In this example, we generate the matrix of the 5 -qubit code over $\operatorname{GF}(3)$ with the stabilizer group generated by cyclic shifts of the operator $X_{0} Z_{1} \bar{Z}_{2} \bar{X}_{3}$ which corresponds to the polynomial $h(x)=$ $1+x^{3}-x^{5}-x^{6}$ (a factor X_{i}^{a} corresponds to a monomial $a x^{2 i}$, and a factor Z_{i}^{b} to a monomial $b x^{2 i+1}$), calculate the distance, save into a file using the function WriteMTXE (), and read the file back in using the function ReadMTXE().

Example

```
gap> q:=3;; F:=GF(q);;
gap> x:=Indeterminate(F,"x"); ; poly:=One(F)*(1+x^3-x^5-x^6); ;
gap> n:=5;;
gap> mat:=QDR_DoCirc(poly,n-1,2*n,F); ; #construct circulant matrix with 4 rows
gap> Display(mat);
    1 . . 1 . 2 2 . . .
    . . 1 . . 1 . 2 2 .
    2 . . . 1 . . 1 . 2
    . 2 2 . . . 1 . . 1
gap> d:=DistRandStab(mat,100,1,0 : field:=F,maxav:=20/n);
3
gap> tmp_file_name:=Filename(DirectoryTemporary(),"n5_q3_complex.mtx"); ;
gap> WriteMTXE(tmp_file_name,3,mat,
> "% The 5-qubit code [[5,1,3]]_3",
> "% Generated from h(x)=1+x^3-x^5-x^6",
> "% Example from the QDistRnd GAP package" : field:=F); ;
gap> lis:=ReadMTXE(tmp_file_name); ; # Filename(filedir,"n5_q3_complex.mtx")
gap> lis[1]; # the field
GF (3)
gap> lis[2]; # converted to 'pair=1'
1
gap> Display(lis[3]);
    1 . . 1 . 2 2 . . .
    . . 1 . . 1 . 2 2 .
    2 . . . 1 . . 1 . 2
    . 2 2 . . . 1 . . 1
```

The function WriteMTXE () takes several arguments which specify the details of the output file format and the optional comments, see Section 4.2 for the details. These ensure that all information about the code is written into the file, so that for reading with the function ReadMTXE () only the file name is needed. Output is a list: [field, pair, matrix, (list of comments)], where the pair parameter describes the ordering of columns in the matrix, see 5 . Notice that a pair=2 or pair=3 matrix is always converted to pair=1, i.e., with $2 n$ intercalated columns ($a_{1}, b_{1}, a_{2}, b_{2}, \ldots$). The remaining portion is the list of comments. Notice that the 1 st and the last comment lines have been added automatically.

```
gap> lis[4];
[ "% Field: GF(3)", "% The 5-qubit code [[5,1,3]]_3",
    "% Generated from h(x)=1+x^3-x^5-x^6",
    "% Example from the QDistRnd GAP package", "% Values Z(3) are given" ]
```

Here is the contents of the created file which illustrates the coordinate complex data format. Here a pair $\left(a_{i, j}, b_{i, j}\right)$ in row i and column j is written as a row of 4 integers, " $i j a_{i, j} b_{i, j}$ ", e.g., " 1201 "for the second entry in the 1 st row, so that the matrix in the file has n columns, each containing a pair of integers.

Example

```
%%MatrixMarket matrix coordinate complex general
% Field: GF(3)
% The 5-qubit code [[5,1,3]]_3
% Generated from h(x)=1+x^3-x^5-x^6
% Example from the QDistRnd GAP package
% Values Z(3) are given
4 }2
1 1 0
1 2 0 1
1302
1420
2 2 10
2 3 0 1
240 2
2 }2
3 120
3 3 1 0
3 4 0 1
3 5 0 2
4 0 2
4 2 0
4 1 0
4 5 0 1
```


2.2 Hyperbolic codes from a file

Here we read two CSS matrices from two different files which correspond to a hyperbolic code [$[80,18,5]]$ with row weight $w=5$ and the asymptotic rate $1 / 5$. Notice that pair=0 is used for both files (regular matrices).

Example

```
gap> filedir:=DirectoriesPackageLibrary("QDistRnd","matrices"); ;
gap> lisX:=ReadMTXE(Filename(filedir,"QX80.mtx"),0); ;
gap> GX:=lisX[3];;
gap> lisZ:=ReadMTXE(Filename(filedir,"QZ80.mtx"),0); ;
gap> GZ:=lisZ[3]; ;
gap> DistRandCSS(GX,GZ,100,1,2:field:=GF(2));
5
```

Here are the matrices for a much bigger hyperbolic code [[900, 182, 8]] from the same family. Note that the distance here scales only logarithmically with the code length (this code takes about 15 seconds on a typical notebook and will not actually be executed).

```
gap> lisX:=ReadMTXE(Filename(filedir,"QX900.mtx"),0); ;
gap> GX:=lisX[3]; ;
gap> lisZ:=ReadMTXE(Filename(filedir,"QZ900.mtx"),0);;
gap> GZ:=lisZ[3];;
gap> DistRandCSS(GX,GZ,1000,1,0:field:=GF(2));
8
```


2.3 Randomly generated cyclic codes

As a final and hopefully somewhat useful example, the file "examples/cyclic.g" contains a piece of code searching for random one-generator cyclic codes of length $n:=15$ over the field GF(8), and generator weight wei: $=6$. Note how the mindist parameter and the option maxav are used to speed up the calculation.

Chapter 3

Description of the algorithm

3.1 Elementary version

3.1.1 What it does?

In the simplest possible terms, we are given a pair of matrices P and Q with orthogonal rows, $P Q^{T}=0$. The matrices have entries in a finite field $F=\operatorname{GF}(q)$, where q is a power of a prime. The goal is to find the smallest weight of a non-zero vector c over the same field F, such that c be orthogonal with the rows of $P, P C^{T}=0$, and linearly independent from the rows of Q.

3.1.2 The algorithm

We first construct a generator matrix G whose rows form a basis of the F-linear space of all vectors orthogonal to the rows of P. At each step, a random permutation S is generated and applied to the columns of G. Then, Gauss' elimination with back substitution renders the resulting matrix to the reduced row echelon form, after which the inverse permutation S^{-1} is applied to the columns. Rows of the resulting matrix G_{S} that are linearly independent from the rows of Q are considered as candidates for the minimum weight vectors. Thus, after N steps, we are getting an upper bound on the distance which is improving with increasing N.

3.1.3 Intuition

The intuition is that each row of G_{S} is guaranteed to contain at least $\operatorname{rank}\left(G_{S}\right)-1$ zeros. Thus, we are sampling mostly lower-weight vectors from the linear space orthogonal to the rows of P. Further, it is easy to see that any vector obtained this way is irreducible [DKP15], i.e., it cannot be decomposed into a pair of zero-syndrome vectors with non-overlapping supports.

Furthermore, the eventual convergence is guaranteed. Indeed, if c is a minimum-weight codeword of weight d, consider a permutation S which places one position from its support into the 1st column, and the remaining positions into the last $d-1$ columns. Vector c being the lowest-weight non-trivial vector, no pivot column may be in the block of last $d-1$ columns. This guarantees that vector c is obtained as the first row of G_{s}. (This argument is adapted to degenerate quantum codes from [CGTLN21]).

3.1.4 CSS version of the algorithm

The described version of the algorithm is implemented in the function DistRandCSS (4.1). It applies to the case of Calderbank-Shor-Steane (CSS) codes, where the matrices $P=H_{X}$ and $Q=H_{Z}$ are called the CSS generator matrices, and the computed minimum weight is the distance d_{Z} of the code. The number of columns n is the block length of the code, and it encodes k qudits, where $k=n-\operatorname{rank}\left(H_{X}\right)-\operatorname{rank}\left(H_{Z}\right)$. To completely characterize the code, we also need the distance d_{X} which can be obtained by calling the same function with the two matrices interchanged. The conventional code distance d is the minimum of d_{X} and d_{Z}. Parameters of such a q-ary CSS code are commonly denoted as $\left[\left[n, k,\left(d_{X}, d_{Z}\right)\right]\right]_{q}$, or simply $[[n, k, d]]_{q}$ as for a general q-ary stabilizer code.

3.1.5 Generic version of the algorithm

CSS codes are a subclass of general F-linear stabilizer codes which are specified by a single stabilizer generator matrix $H=(A \mid B)$ written in terms of two blocks of n columns each. The orthogonality condition is given in a symplectic form,

$$
A B^{T}-B A^{T}=0
$$

or, equivalently, as orthogonality between the rows of H and the symplectic-dual matrix $\tilde{H}=(B \mid-A)$. Non-trivial vectors in the code must be orthogonal to the rows of $P=\tilde{H}$ and linearly independent from the rows of $Q=H$. The difference with the CSS version of the algorithm is that we must minimize the symplectic weight of $c=(a \mid b)$, given by the number of positions $i, 1 \leq i \leq n$, such that either a_{i} or b_{i} (or both) be non-zero.

The parameters of such a code are denoted as $[[n, k, d]]_{q}$, where $k=n-r a n k H$ is the number of encoded qudits, and d is the minimal symplectic weight of a non-trivial vector in the code. It is easy to check that a CSS code can also be represented in terms of a single stabilizer generator matrix. Namely, for a CSS code with generators H_{X} and H_{Z}, the stabilizer generator matrix has a block-diagonal form, $H=\operatorname{diag}\left(H_{X}, H_{Z}\right)$.

A version of the algorithm for general F-linear stabilizer codes is implemented in the function DistRandStab (4.1).

Important Notice: In general, here one could use most general permutations of $2 n$ columns, or restricted permutations of n two-column blocks preserving the pair structure of the matrix. While the latter method would be much faster, there is no guarantee that every vector would be found. As a result, we decided to use general permutations of $2 n$ columns.

3.2 Some more details

3.2.1 Quantum stabilizer codes

Representation of quantum codes in terms of linear spaces is just a convenient map. In the case $q=2$ (qubits), the details can be found, e.g., in the book of Nielsen and Chuang, [NC00]. Further details on the theory of stabilizer quantum error correcting codes based on qubits can be found in the Caltech Ph.D. thesis of Daniel Gottesman [Got97] and in the definitive 1997 paper by Calderbank, Rains, Shor, and Sloane [CRSS98]. Theory of stabilizer quantum codes based on qudits (q-state quantum systems) was developed by Ashikhmin and Knill [AK01] (prime fields with q prime) and by Ketkar, Klappenecker, Kumar, \& Sarvepalli [KKKS06] (extension fields with q a non-trivial power of a prime).

In the binary case (more generally, when q is a prime), F-linear codes coincide with additive codes. The linear codes [e.g., over GF(4) in the binary case [CRSS98]] is a different construction which assumes an additional symmetry. A brief summary of F-linear quantum codes [where $F=$ $\operatorname{GF}(q)$ with $q=p^{m}, m>1$ a non-trivial power of a prime] can be found in the introduction of Ref. [ZP20]. The construction is equivalent to a more physical approach in terms of a lifted Pauli group suggested by Gottesman [Got14].

3.2.2 The algorithm

Case of classical linear codes

The algorithm 3.1.2 is closely related to the algorithm for finding minimum-weight codewords in a classical linear code as presented by Leon [Leo88], and a related family of information set (IS) decoding algorithms [Kru89] [CG90].

Consider a classical linear q-ary code $[n, k, d]_{q}$ encoding k symbols into n, specified by a generator matrix G of rank k. Using Gauss' algorithm and column permutations, the generator matrix can be rendered into a systematic form, $G=(I \mid A)$, where the two blocks are I, the size- k identity matrix, and a k by $n-k$ matrix A. In such a representation, the first k positions are called the information set of the code (since the corresponding symbols are transmitted directly) and the remaining $n-k$ symbols provide the redundancy. Any k linearly-independent columns of G can be chosen as the information set, which defines the systematic form of G up to a permutation of the rows of A.

The IS algorithm and the original performance bounds [Leo88] [Kru89] [CG90] are based on the observation that for a long random code a set of $k+\Delta$ randomly selected columns, with Δ of order one, are likely to contain an information set. ISs are (approximately) in one-to-one correspondence with the column permutations, and a random IS can thus be generated as a set of pivot columns in the Gauss' algorithm after a random column permutation. Thus, if there is a codeword c of weight d, the probability to find it among the rows of reduced-row-echelon form G_{S} after a column permutation S can be estimated as that for a randomly selected set of k columns to hit exactly one non-zero position in c.

The statistics of ISs is more complicated in other ensembles of random codes, e.g., in linear low-density parity-check (LDPC) codes where the check matrix H (of rank $n-k$ and with rows orthogonal to those of G) is additionally required to be sparse. Nevertheless, a provable bound can be obtained for a related covering set (CS) algorithm where a randomly selected set of $s \geq k-1$ positions of a putative codeword are set to be zero, and the remaining positions are constructed with the help of linear algebra. In this case, the optimal choice [DKP17] is to take $s \approx n(1-\theta)$, where θ is the erasure threshold of the family of the codes under consideration. Since $\theta \geq R$ (here $R=k / n$ is the code rate), here more zeros must be selected, and the complexity would grow (assuming the distance d remains the same, which is usually not the case for LDPC codes).

Note however that rows of G_{S} other than the last are not expected to contain as many zeros (e.g., the first row is only guaranteed to have $k-1$ zeros), so it is possible that the performance of the IS algorithm on classical LDPC codes is actually closer to that on random codes as estimated by Leon [Leo88].

Case of quantum CSS codes

In the case of a random CSS code (with matrices P and Q selected randomly, with the only requirement being the orthogonality between the rows of P and Q), the performance of the algorithm 3.1.2 can be estimated as that of the CS algorithm, in terms of the erasure threshold of a linear code with the parity matrix P, see [DKP17].

Unfortunately, such an estimate fails dramatically in the case of quantum LDPC codes, where rows of P and Q have weights bounded by some constant w. This is a reasonable requirement since the corresponding quantum operators (supported on w qudits) have to actually be measured frequently as a part of the operation of the code, and it is reasonable to expect that the measurement accuracy goes down (exponentially) quickly as w is increased. Then, the linear code orthogonal to the rows of P has the distance $\leq w$ (the minimal weight of the rows of Q), and the corresponding erasure threshold is exactly zero. In other words, there is a finite probability that a randomly selected w symbols contain a vector orthogonal to the rows of P (and such a vector would likely have nothing to do with non-trivial quantum codewords which must be linearly independent from the rows of Q).

On the other hand, for every permutation S in the algorithm 3.1.2, the matrix G_{S} contains exactly $k=n-\operatorname{rank}(P)-\operatorname{rank}(Q)$ rows orthogonal to rows of P and linearly independent from rows of Q (with columns properly permuted). These vectors contain at least s zeros, where $\left[1-\theta_{*}(P, Q)\right] n \leq s \leq$ $n-\operatorname{rank}(Q)$, where $\theta_{*}(P, Q)$ is the erasure threshold for Z-like codewords in the quantum CSS code with $H_{X}=P$ and $H_{Z}=Q$.

What is it that we do not understand?

What missing is an understanding of the statistics of the ISs of interest, namely, the ISs that overlap with a minimum-weight codeword in one (or a few) positions.

Second, we know that a given column permutation S leads to the unique information set, and that every information set can be obtained by a suitably chosen column permutation. However, there is no guarantee that the resulting information sets have equal probabilities. In fact, it is easy to construct small matrices where different information sets are obtained from different numbers of column permutations (and thus have different probabilities). It is not clear whether some of the ISs may have vanishingly small probabilities in the limit of large codes; in such a case the algorithm may take an excessively long time to converge.

3.3 Empirical estimate of the success probability

The probability to find a codeword after N rounds of the algorithm can be estimated empirically, by counting the number of times each codeword of the minimum weight was discovered. We expect the probability $P(c)$ to discover a given codeword c to depend only on its (symplectic) weight wgt (c), with the probability a monotonously decreasing function of the weight. If, after N steps, codewords $c_{1}, c_{2}, \ldots, c_{m}$ of the same (minimal) weight w are discovered $n_{1}, n_{2}, \ldots, n_{m}$ times, respectively, we can estimate the corresponding Poisson parameter as

$$
\lambda_{w}=\frac{1}{N m} \sum_{i=1}^{m} n_{i}
$$

Then, the probability that a codeword c_{0} of the true minimal weight $d<w$ be not discovered after N steps can be upper bounded as (the inequalities tend to saturate and become equalities in the limit of small λ_{w})

$$
P_{\text {fail }}<\left(1-\lambda_{w}\right)^{N}<e^{-N \lambda_{w}}=\exp \left(-m^{-1} \sum_{i=1}^{m} n_{i}\right) \equiv \exp (-\langle n\rangle)
$$

Thus, the probability to fail is decreasing as an exponent of the parameter $\langle n\rangle$, the average number of times a minimum-weight codeword has been found.

The hypothesis about all $P\left(c_{i}\right)$ being equal to λ_{w} is testable, e.g., if one considers the distribution of the ratios $x_{i}=n_{i} / N$, where $N=\sum_{i=1}^{m} n_{i}$ is the total number of codewords found. These quantities
sum up to one and are distributed according to multinomial distribution[Ste53]. Further, under our assumption of all $P\left(c_{i}\right)$ being equal, we also expect the outcome probabilities in the multinomial distribution to be all equal, $\pi_{i}=1 / m, 1 \leq i \leq m$.

This hypothesis can be tested using Pearson's χ^{2} test. Namely, in the limit where the total number of observations N diverges, the quantity

$$
X^{2}=\sum_{i=1}^{m} \frac{\left(n_{i}-N \pi_{i}\right)^{2}}{N \pi_{i}}=N^{-1} \sum_{i=1}^{m} \frac{n_{i}^{2}}{\pi_{i}}-N \xrightarrow{\pi_{i}=1 / m} \frac{m}{N} \sum_{i=1}^{m} n_{i}^{2}-N,
$$

is expected to be distributed according to the χ_{m-1}^{2} distribution with $m-1$ parameters, see [CL54] [Cra99].

In practice, we can approximate with the χ_{m-1}^{2} distribution as long as the total N be large compared to the number m of the codewords found (i.e., the average $\langle n\rangle$ must be large, which is the same condition as needed for confidence in the result.)

With debug [4] set (binary value 8) in DistRandCSS and DistRandStab (4.1), whenever more than one minimum-weight vector is found, the quantity X^{2} is computed and output along with the average number of times $\langle n\rangle$ a minimum-weight codeword has been found. However, no attempt is made to analyze the corresponding value or calculate the likelihood of the null hypothesis that the codewords be equiprobable.

Chapter 4

All Functions

4.1 Functions for computing the distance

4.1.1 DistRandCSS

```
D DistRandCSS(HX, HZ, num, mindist[, debug]: field := GF(2), maxav := fail)
```

Returns: An upper bound on the CSS distance d_{Z}
Computes an upper bound on the distance d_{Z} of the q-ary code with stabilizer generator matrices H_{X}, H_{Z} whose rows are assumed to be orthogonal (orthogonality is not verified). Details of the input parameters

- HX, HZ: the input matrices with elements in the Galois field F
- num: number of information sets to construct (should be large)
- mindist - the algorithm stops when distance equal or below mindist is found and returns the result with negative sign. Set mindist to 0 if you want the actual distance.
- debug: optional integer argument containing debug bitmap (default: 0)
- 1 (0 s bit set) : print 1 st of the vectors found
- 2 (1st bit set) : check orthogonality of matrices and of the final vector
- 4 (2nd bit set) : show occasional progress update
- 8 (3rd bit set) : maintain cw count and estimate the success probability
- field (Options stack): Galois field, default: GF(2).
- maxav (Options stack): if set, terminate when $\langle n\rangle>\operatorname{maxav}$, see Section 3.3. Not set by default. See Section 3.1 for the description of the algorithm.

4.1.2 DistRandStab

```
\triangleright DistRandStab(G, num, mindist[, debug]: field := GF(2), maxav := fail)
(func-
tion)
```

Returns: An upper bound on the code distance d

Computes an upper bound on the distance d of the F-linear stabilizer code with generator matrix G whose rows are assumed to be symplectic-orthogonal, see Section 3.1.5 (orthogonality is not verified).

Details of the input parameters:

- G: the input matrix with elements in the Galois field F with $2 n$ columns $\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}\right)$. The remaining options are identical to those in the function DistRandCSS 4.1.
- num: number of information sets to construct (should be large)
- mindist - the algorithm stops when distance equal or smaller than mindist is found - set it to 0 if you want the actual distance
- debug: optional integer argument containing debug bitmap (default: 0)
- 1 (0 s bit set) : print 1 st of the vectors found
- 2 (1st bit set) : check orthogonality of matrices and of the final vector
- 4 (2nd bit set) : show occasional progress update
- 8 (3rd bit set) : maintain cw count and estimate the success probability
- field (Options stack): Galois field, default: GF(2).
- maxav (Options stack): if set, terminate when $\langle n\rangle>\operatorname{maxav}$, see Section 3.3. Not set by default.

4.1.3 Examples

Here are a few simple examples illustrating the use of distance functions. In all examples, we use functions DistRandCSS and DistRandStab with debug=2 to ensure that row orthogonality in the input matrices is verified.

```
gap> F:=GF(5); ;
gap> Hx:=One(F)*[[1,-1,0,0 ],[0,0,1,-1]];;
gap> Hz:=One(F)*[[1, 1,1,1]];;
gap> DistRandCSS(Hz,Hx,100,0,2 : field:=F);
2
```

Now, if we set the minimum distance mindist parameter too large, the function terminates immediately after a codeword with such a weight is found; in such a case the result is returned with the negative sign.

```
gap> DistRandCSS(Hz,Hx,100,2,2 : field:=F);
-2
```

The function DistRandStab takes only one matrix. This example uses the same CSS code but written into a single matrix. Notice how the values from the previous example are intercalated with zeros.

```
gap> F:=GF(5); ;
gap> H:=One(F)*[[1,0, -1,0, 0,0, 0,0 ], # original Hx in odd positions
> [0,0, 0,0, 1,0, -1,0],
> [0,1, 0,1, 0,1, 0,1]];; # original Hz in even positions
gap> DistRandStab(H,100,0,2 : field:=F);
2
```


4.2 Input/Output Functions

4.2.1 ReadMTXE

\triangleright ReadMTXE (FilePath[, pair]: field := GF(2))
Returns: a list [field, pair, Matrix, array_of_comment_strings]
Read matrix from an MTX file, an extended version of Matrix Market eXchange coordinate format supporting finite Galois fields and two-block matrices $(A \mid B)$ with columns $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $B=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, see Chapter 5.

- FilePath name of existing file storing the matrix
- pair (optional argument): specifies column ordering; must correlate with the variable type in the file
- pair=0 for regular single-block matrices (e.g., CSS) type=integer (if pair not specified, pair=0 is set by default for integer)
- pair=1 intercalated columns with type=integer $\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right)$
- pair=2 grouped columns with type=integer $\left(a_{1}, a_{2}, \ldots, a_{n} b_{1}, b_{2}, \ldots, b_{n}\right)$
- pair=3 this is the only option for type=complex with elements specified as "complex" pairs
- field (Options stack): Galois field, default: GF(2).

Must match that given in the file (if any). Notice: with pair=1 and pair=2, the number of matrix columns specified in the file must be even, twice the block length of the code. This version of the format is deprecated and should be avoided.

1st line of file must read:
\%\%MatrixMarket matrix coordinate 'type' general
with type being either integer or complex
2nd line (optional) may contain:

```
% Field: 'valid_field_name_in_Gap'
```

or
\% Field: ‘valid_field_name_in_Gap' PrimitiveP(x): 'polynomial'
Any additional entries in the second line are silently ignored. By default, $\mathrm{GF}(2)$ is assumed; the default can be overriden by the optional field argument. If the field is specified both in the file and by the optional argument, the corresponding values must match. Primitive polynomial (if any) is only checked in the case of an extension field; it is silently ignored for a prime field.

See Chapter 5 for the details of how the elements of the group are represented depending on whether the field is a prime field (q a prime) or an extension field with $q=p^{m}, p$ prime, and $m>1$.

4.2.2 WriteMTXE

\triangleright WriteMTXE(StrPath, pair, matrix[, comment[, comment]]: field := GF(2)) (function)

Returns: no output

Export a matrix in Extended MatrixMarket format, with options specified by the pair argument.

- StrPath - name of the file to be created;
- pair: parameter to control the file format details, must match the storage type of the matrix.
- pair=0 for regular matrices (e.g., CSS) with type=integer
- pair=1 for intercalated columns ($a_{1}, b_{1}, a_{2}, b_{2}, \ldots$) with type=integer (deprecated)
- pair=2 for grouped columns with type=integer (this is not supported!)
- pair=3 for columns specified in pairs with type=complex.
- Columns of the input matrix must be intercalated unless pair=0
- optional comment: one or more strings (or a single list of strings) to be output after the MTX header line.

The second line specifying the field will be generated automatically only if the GAP Option field is present. As an option, the line can also be entered explicitly as the first line of the comments, e.g., "\% Field: GF(256)"

See Chapter 5 for the details of how the elements of the group are represented depending on whether the field is a prime field (q a prime) or an extension field with $q=p^{m}, m>1$.

4.3 Helper Functions

4.3.1 QDR_AverageCalc

\triangleright QDR_AverageCalc(vector)
Calculate the average of the components of a numerical vector

4.3.2 QDR_SymplVecWeight

- QDR_SymplVecWeight(vector, field)

Returns: symplectic weight of a vector
Calculate the symplectic weight of a vector with an even number of entries from the field f ield. The elements of the pairs are intercalated: $\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right)$.

Note: the parity of vector length and the format are not verified!!!!

4.3.3 QDR_WeightMat

QDR_WeightMat (matrix)
Returns: number of non-zero elements
count the total number of non-zero entries in a matrix.

4.3.4 QDR_DoProbOut

```
\triangleright QDR_DoProbOut(vector, n, num)
```

Returns: nothing
Aux function to print out the relevant probabilities given the list vector of multiplicities of the codewords found. Additional parameters are n, the code length, and num, the number of repetitions; these are ignored in the present version of the program. See 3.3 for related discussion.

4.3.5 QDR_ParseFieldStr

```
\triangleright QDR_ParseFieldStr(str)
```

(function)
Returns: the corresponding Galois field
Parse a string describing a Galois field Supported formats: Z(p), GF (q), and GF ($q^{\wedge} m$), where p must be a prime, q a prime or a power of a prime, and m a natural integer. No spaces are allowed.

4.3.6 QDR_ParsePolyStr

```
\ QDR_ParsePolyStr(F, str)
```

(function)
Returns: the corresponding polynomial
Parse string str as a polynomial over the field F. Only characters in " $0123456789^{*}+{ }^{\wedge}$ x" are allowed in the string. In particular, no spaces are allowed.

4.3.7 QDR_FieldHeaderStr

```
\triangleright QDR_FieldHeaderStr(F)
```

(function)
Returns: the created header string
Create a header string describing the field F for use in the function WriteMTXE. If F is a prime Galois field, just specify it: For an extension field $\operatorname{GF}\left(p^{m}\right)$ with p prime and $m>1$, also give the primitive polynomial which should not contain any spaces. For example, See Chapter 5 for details.

4.3.8 QDR_ProcessFieldHeader

```
\triangleright QDR_ProcessFieldHeader(recs, optF)
```

Returns: the list [Field, ConversionDegree, FormatIndex] (plus anything else we may need in the future); the list is to be used as the second parameter in QDR_ProcEntry ()

Process the field header (second line in the MTXE file format), including the field, PrimitiveP record, and anything else. Supported format options:

Code

Field: ‘field' PrimitiveP(x): 'polynomial' Format: 'format'

Here the records should be separated by one or more spaces; while field, polynomial, and format should not contain any spaces. Any additional records in this line will be silently ignored.

The field option should specify a valid field, $\operatorname{GF}(q)$ or $\operatorname{GF}\left(p^{m}\right)$, where $q>1$ should be a power of the prime p.

The polynomial should be a valid expanded monic polynomial with integer coefficients, with a single independent variable x; it should contain no spaces. An error will be signaled if polynomial is not a valid primitive polynomial of the field. This argument is optional; by default, Conway polynomial will be used.

The optional format string (not implemented) should be "AdditiveInt" (the default for prime fields), "PowerInt" (the default for extension fields with $m>1$) or "VectorInt".

AdditiveInt indicates that values listed are expected to be in the corresponding prime field and should be interpreted as integers mod p. PowerInt indicates that field elements are represented as integers powers of the primitive element, root of the primitive polynomial, or -1 for the zero field element. VectorInt corresponds to encoding coefficients of a degree- $(m-1) p$-ary polynomial representing field elements into a p-ary integer. In this notation, any negative value will be taken mod p, thus -1 will be interpreted as $p-1$, the additive inverse of the field 1 .

On input, recs should contain a list of tokens obtained by splitting the field record line; optF should be assigned to ValueOption("field") or fail.

4.3.9 QDR_ProcEntry

\triangleright QDR_ProcEntry (str, fmt, FileName, LineNo)
(function)
Returns: the converted field element
Convert a string entry which should represent an integer to the Galois Field element as specified in the fmt.

- str is the string representing an integer.
- fmt is a list [Field, ConversionDegree, FormatIndex]
- Field is the Galois field $\operatorname{GF}\left(p^{m}\right)$ of the code
- ConversionDegree c : every element x read is replaces with x^{c}. This may be needed if a non-standard primitive polynomial is used to define the field.
- FormatIndex in $\{0,1,2\}$. 0 indicates no conversion (just a modular integer). 1 indicates that the integer represents a power of the primitive element, or -1 for 0.2 indicates that the integer encodes coordinates of a length m vector as the digits of a p-ary integer (not yet implemented).
- FileName, LineNo are the line number and the name of the input file; these are used to signal an error.

4.3.10 Examples

Example

```
gap> QDR_AverageCalc([2,3,4,5]);
```

3.5

Example

```
gap> F:=GF(3); ;
gap> x:=Indeterminate(F,"x"); ; poly:=One(F)*(1-x); ;
gap> n:=5;;
gap> mat:=QDR_DoCirc(poly,n,2*n,F);; # make a circulant matrix with 5 rows
gap> Display(mat);
    1 2 . . . . . . . .
    . . }12\mathrm{ . . . . . .
    . . . . }12\mathrm{ . . . .
    . . . . . . }12\mathrm{ . .
    . . . . . . . . }1
```

These examples illustrate the allowed format of field definitions in the header of an MTXE file:

```
gap> QDR_ParseFieldStr("Z(5)");
Z(5)
gap> QDR_ParseFieldStr("Z(17)");
Z(17)
gap> QDR_ParseFieldStr("GF(5^2)");
GF(5^2)
gap> QDR_ParseFieldStr("GF(25)");
GF(5^2)
gap> QDR_ParseFieldStr("GF(125^2)");
GF(5^6)
```

```
gap> QDR_ParsePolyStr(GF(25),"x^2+1");
x^2+Z(5)^0
```


4.3.11 QDR_MakeH

\triangleright QDR_MakeH(matrix, field)
(function)
Returns: H (the check matrix constructed)
Given a two-block matrix with intercalated columns ($a_{1}, b_{1}, a_{2}, b_{2}, \ldots$), calculate the corresponding check matrix H with columns $\left(-b_{1}, a_{1},-b_{2}, a_{2}, \ldots\right)$.

The parity of the number of columns is verified.

4.3.12 QDR_DoCirc

- QDR_DoCirc(poly, m, n, field)
(function)
Returns: m by $2 * \mathrm{n}$ circulant matrix constructed from the polynomial coefficients
Given the polynomial poly $a_{0}+b_{0} x+a_{1} x^{2}+b_{1} x^{3}+\ldots$ with coefficients from the field F , constructs the corresponding m by $2 n$ double circulant matrix obtained by m repeated cyclic shifts of the coefficients' vector by $s=2$ positions at a time.

Chapter 5

Extended MTX (MTXE) File Format

5.1 General information

The code supports reading matrices from an MTX file using ReadMTXE and writing new MTX file using WriteMTXE functions. Below a description of the format is given.

5.1.1 Representation of field elements via integers

Every finite field is isomorphic to a Galois field $F=\mathrm{GF}(q)$, where q is a power of a prime, $q=p^{m}$.

- For a prime field, with $q=p$ a prime, F is a prime field, isomorphic to the ring $\mathrm{Z}(q)$ of integers modulo q. In such a case, elements of the field are stored directly as integers. After reading, these are taken modulo p, thus, e.g., with $p=7$, values $-1,6$, or 13 are all equivalent.
- When $q=p^{m}$ with $m>1, F$ is an extension field. Non-zero elements of such a field can be represented as integer powers of a primitive element α, a primitive root of unity in the field. Primitive element is a root of a primitive polynomial $f(x)$, that is, an irreducible polynomial with coefficients in the corresponding prime field $\operatorname{GF}(p)$, with the property that the smallest integer n such that $f(x)$ divides $x^{n}-1$ is $n=p^{m}-1$. Alternatively, field elements can be represented as p-ary polynomials modulo the chosen primitive polynomial $f(x)$.

Either definition requires that the primitive polynomial be specified. By default, GAP uses Conway polynomials to represent field elements. For details, as well as a large collection of Conway polynomials, please see the web page maintained by Frank Luebeck [Lüb21].

In the actual file format, three different and mutually exclusive storage options for elements of an extension field can in be used.

- First, assuming all elements needed are actually in the corresponding prime field $\mathrm{GF}(p)$, the integer values $(\bmod p)$ directly correspond to the values of field elements. This is the case, e.g., with $0, \pm 1$ matrices which obey the orthogonality condition already over integers, and retain orthogonality over $\mathrm{Z}(q)$ with any q (what is more relevant here, the same matrix would work with any prime field). (this is currently not implemented)
- Second option, and the only option currently implemented for extension fields, is to store the powers of the primitive element for each non-zero element in the field, and -1 for zero.
- Third option, is to take the coefficients of p-ary polynomial $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{m-1} x^{m-1}$ as digits of a p-ary integer $\left(a_{m-1} a_{m-2} \ldots a_{2} a_{1}\right)_{p}$. (this is currently not implemented)

5.1.2 Matrix storage format

There are two recommended storage formats.

1. For CSS matrices stored in separate files, the MTX header should use the integer type, with matrix elements stored in the usual order.
2. For general stabilizer codes, or to store both CSS matrices in a single file, the MTX header should use the complex type. In this case the block matrix (A, B) is stored as a complex matrix $A+i B$.

In both format versions, the number of columns specified in the file coincides with the code length.
Two additional matrix format versions supported by ReadMTXE and WriteMTXE are provided for compatibility. Here, the columns a_{i} and b_{i} in the blocks A and B are listed individually, and are either intercalated [the ordering $\left(a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{n}, b_{n}\right)$] or are separated into column blocks $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$. In both cases the number of columns in the matrix stored is twice the code length.

The ordering of the columns is governed by a parameter pair, optional in the function ReadMTXE and required in WriteMTXE.

- With pair=0 the matrix elements are stored in the usual order. In this case the MTX header should use the integer type. This is the defailt storage format for stabilizer generator matrices of CSS codes, and also the internal matrix format for single-block matrices accepted by the function DistRandCSS, see Section 4.1.
- With pair=1 the block matrix (A, B) is stored with intercalated columns $\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)$; the MTX header should use the integer type. This is the internal matrix format for two-block matrices accepted by the functions DistRandStab (4.1) and WriteMTXE (4.2), and returned by ReadMTXE (4.2).
- With pair=2 the block matrix (A, B) is stored with separated columns $\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}\right)$; the MTX header should also use the integer type.
- With pair=3 the block matrix (A, B) is stored as a complex matrix $A+i B$, with columns $\left(a_{1}+\right.$ $\left.i b_{1}, \ldots, a_{n}+i b_{n}\right)$. In this case type=complex, since matrix elements are represented as complex integers.

By default, pair=0 corresponds to type=integer and pair=3 corresponds to type=complex. It is strongly recommended that matrices intended for use by others should only use these two variants of the MTXE format.

For efficiency reasons, the function DistRandStab (4.1) assumes the generator matrix with intercalated columns.

5.1.3 Explicit format of each line

The first line must have the following form:
Code
\%\%MatrixMarket matrix coordinate 'type' general
with type either integer or complex.
The second line is optional and specifies the field, the primitive polynomial used (in the case of an extension field), and the storage format of field elements.

Field: 'field' PrimitiveP(x): 'polynomial' Format: 'format'

Here the records should be separated by one or more spaces; while field, polynomial, and format should not contain any spaces. Any additional records in this line will be silently ignored.

The field option should specify a valid field, GF (q) or $\mathrm{GF}\left(\mathrm{p}^{\wedge} \mathrm{m}\right)$, where $q>1$ should be a power of the prime p.

The polynomial should be a valid expanded monic polynomial with integer coefficients, with a single independent variable x ; it should contain no spaces. An error will be signaled if polynomial is not a valid primitive polynomial of the field. This argument is optional; if not specified, one may assume that the Conway polynomial should be used.

The optional format string should be "AdditiveInt" (the default for prime fields), "PowerInt" (currently the default for extension fields with $m>1$) or "VectorInt".

- AdditiveInt indicates that values listed are expected to be in the corresponding prime field and should be interpreted as integers $\bmod p$.
- PowerInt indicates that field elements are represented as integers powers of the primitive element, root of the primitive polynomial, or -1 for the zero field element.
- VectorInt corresponds to encoding coefficients of a degree- $(m-1) p$-ary polynomial representing field elements into a p-ary integer. In this notation, any negative value will be taken $\bmod p$, thus -1 will be interpreted as $p-1$, the additive inverse of the field 1 .

The primitive polynomial must be written explicitly as $x^{m}+a_{m-1} * x^{m-1}+\ldots+a_{1} * x+a_{0}$, where the integer coefficients a_{i} will be interpreted modulo p . The primitive polynomial should not contain any spaces.

```
% Field: GF(`q`) PrimitiveP(x): 'polynomial`
```

For example, with $q=5^{2}$, the Conway polynomial $f_{5,2}(x)=x^{2}-x+2$, and the second line can read

Code
\% Field: GF(25) PrimitiveP(x): x^2-x+2 Format: PowerInt

The following is an equivalent form of the same polynomial and can also be used Code

```
% Field: GF(25) PrimitiveP(x): x^2+4*x+2
```

The field may be left undefined; by default, it is $\mathrm{GF}(2)$, or it can be specified by hand when reading the matrices. If the primitive polynomial is undefined, it will be assumed that the Conway polynomial used internally by GAP should be used.

Next follows the comment section, with each line either empty or starting with the \% symbol:

```
% Example of the comment line
```

After the comment section, in agreement with MTX format, goes the line giving the dimensions of the matrix and the number of non-zero elements:
rows columns ${ }^{\text {' (number of non-zero elements)' }}$

Then all non-zero elements are listed as three or four integers according to the type:

- type=integer:
\square
i $\quad j \quad$ element $[i, j]$
- type=complex:

i	j	$a[i, j]$	$b[i, j]$	Code

Notice that column and row numbers must start with 1, as prescribed in the original MTX format.

5.1.4 Matrix Storage Implementation Details

Neither the WriteMTXE nor ReadMTXE currently support the Format: parameter. Prime field elements are only stored "as is", i.e., as integers to be taken modulo p , while extension field elements are only stored in the Power Int format, i.e., with the power of the primitive element specified, or " -1 " for zero.

The function WriteMTXE can only save field elements with the primitive polynomial used internally by GAP, i.e., the Conway polynomial.

The function ReadMTXE can read matrix elements specified (in the case of an extension field) with any primitive polynomial as specified in the file.

Given the field $\operatorname{GF}\left(p^{m}\right)$ and the primitive polynomial $p(x)$ specified in the file, the function ReadMTXE first checks that the degree of $p(x)$ is indeed m and that it is a primitive polynomial in the corresponding prime field $\operatorname{GF}(p)$. If either of these tests fail, ReadMTXE produces an error. Otherwise, it will attempt to find the conversion coefficient c such that α^{c} is a root of $p(x)$, starting with $c=1$. When found, the multiplicative inverse s such that $s c \equiv 1 \bmod (q-1)$ will be used to convert the elements being read, i.e., for any matrix element y read, y^{s} will be used instead.

Notice that, unless the Conway polynomial was used (in which case $c=s=1$, and the conversion is trivial), this search can be slow for large fields, as all integer values in $[1,2, \ldots, q-2]$ will be tested sequentially. To help ensure that the correct polynomial is used, it is recommended that orthogonality of matrices be checked.

5.2 Example MTXE files

In this section we give two sample MTXE files storing the stabilizer generator matrix of 5-qubit codes.
First, matrix (with one redundant linearly-dependent row) stored with type=integer and pair=1 (intercalated columns $\left[a_{1}, b_{1}, a_{2}, b_{2}, \ldots\right]$) is presented. Notice that the number of columns is twice the actual length of the code. Even though the field is specified explicitly, this matrix would work with any prime field.

```
%%MatrixMarket matrix coordinate integer general
% Field: GF(7)
% 5-qubit code generator matrix / normal storage with intercalated cols
51020
```

```
111
141
1 6-1
1 7-1
2 3 1
2 61
2 8-1
2 9-1
3 1 -1
3 5 1
3 8 1
3 10-1
4 2-1
4 3-1
4 1
4101
5 2 1
5 4-1
5 5-1
5 9 1
```

This same matrix is stored in the file matrices $/ \mathrm{n} 5 \mathrm{k} 1 \mathrm{~A} . \mathrm{mtx}$. This is how the matrix can be read and distance calculated:

Example

```
gap> filedir:=DirectoriesPackageLibrary("QDistRnd","matrices");;
gap> lis:=ReadMTXE(Filename(filedir,"n5k1A.mtx" ));;
gap> Print("field ",lis[1],"\n");
field GF(7)
gap> dist:=DistRandStab(lis[3],100,0 : field:=lis[1]);
3
```

The same matrix can also be stored with type=complex and pair=3 (complex pairs $\left[a_{1}+i b_{1}, a_{2}+\right.$ $\left.i b_{2}, \ldots\right]$). In this format, the number of columns equals the code length.

Code

```
%%MatrixMarket matrix coordinate complex general
% works with any prime field
% 5-qubit code generator matrix / normal storage with intercalated cols
% [[5,1,3]]_p
4 5 16
1 1 1 0
1201
1 3 0 -1
14-10
2 2 1 0
2 301
2 4 0 -1
2 5 -1 0
3 1 -1 0
3 3 1 0
3401
3 5 0 -1
4 1 0-1
```

$42-10$
4410
4501

The matrix above is written in the file matrices/n5k1.mtx. To calculate the distance, we need to specify the field [unless we want to use the default binary field].

```
gap> lis:=ReadMTXE(Filename(filedir,"n5k1.mtx" ));;
gap> Print("field ",lis[1],"\n");
field GF(2)
gap> dist:=DistRandStab(lis[3],100,0,2 : field:=lis[1]);
3
gap> q:=17;;
gap> lis:=ReadMTXE(Filename(filedir,"n5k1.mtx") : field:= GF(q));;
gap> Print("field ",lis[1],"\n");
field GF(17)
gap> dist:=DistRandStab(lis[3],100,0,2 : field:=lis[1]);
3
```

Finally, the following is an example of a five-qudit code over $\operatorname{GF}\left(2^{3}\right)$ constructed by the script examples/cyclic.g.

```
%%MatrixMarket matrix coordinate complex general
% Field: GF(2^3) PrimitiveP(x): x^3+x+1
% code [[5,1,3]]_8
% cyclic w=4 x^6+Z(2^3)^4*x^5+Z(2^3)^ 4*x^3+Z(2)^0
% Powers of GF(8) primitive element and -1 for Zero are given
5 20
1 1 0 -1
1 2-14
1 3-1 4
14 0-1
2 2 0-1
2 3-14
2 4-14
2 5 0 - 1
3 1 1 0 -1
3 3 0 -1
3 4 -1 4
3 5 -1 4
4 1 -1 4
4 2 0-1
4 4 0-1
4 5 -1 4
5 1 -1 4
5 2 -1 4
5 3 0 -1
5 5 0 -1
```


References

[AK01] A. Ashikhmin and E. Knill. Nonbinary quantum stabilizer codes. IEEE Trans. Info. Th., 47(7):3065-3072, Nov 2001. 9
[CG90] J. T. Coffey and R. M. Goodman. The complexity of information set decoding. IEEE Trans. Info. Theory, 36(5):1031-1037, Sep 1990. 4, 10
[CGTLN21] M. P. Cuéllar, J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. Genetic algorithms with permutation-based representation for computing the distance of linear codes. Swarm and Evolutionary Computation, 60:100797, 2021. 8
[CL54] H. Chernoff and E. L. Lehmann. The use of maximum likelihood estimates in χ^{2} tests for goodness of fit. The Annals of Mathematical Statistics, 25(3):579 - 586, 1954. 12
[Cra99] Harald Cramér. Mathematical Methods of Statistics (PMS-9). Princeton University Press, 1999. 12
[CRSS98] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. A. Sloane. Quantum error correction via codes over GF(4). IEEE Trans. Info. Theory, 44:1369-1387, 1998. 9, 10
[DKP15] I. Dumer, A. A. Kovalev, and L. P. Pryadko. Thresholds for correcting errors, erasures, and faulty syndrome measurements in degenerate quantum codes. Phys. Rev. Lett., 115:050502, 2015. 8
[DKP17] I. Dumer, A. A. Kovalev, and L. P. Pryadko. Distance verification for classical and quantum LDPC codes. IEEE Trans. Inf. Th., 63(7):4675-4686, July 2017. 4, 10
[Got97] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis, Caltech, 1997. 9
[Got14] Daniel Gottesman. Stabilizer codes with prime power qudits. Invited talk at QEC 2014 (ETH Zurich), 2014. 10
[KKKS06] A. Ketkar, A. Klappenecker, S. Kumar, and P. K. Sarvepalli. Nonbinary stabilizer codes over finite fields. IEEE Trans. Info. Th., 52(11):4892-4914, Nov 2006. 9
[Kru89] E. A. Kruk. Decoding complexity bound for linear block codes. Probl. Peredachi Inf., 25(3):103-107, 1989. (In Russian). 4, 10
[Leo88] J. S. Leon. A probabilistic algorithm for computing minimum weights of large errorcorrecting codes. IEEE Trans. Info. Theory, 34(5):1354-1359, Sep 1988. 4, 10
[Lüb21] Frank Lübeck. Conway polynomials for finite fields, 2021. [Downloaded on 2022-0219]. 20
[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infomation. Cambridge Unive. Press, Cambridge, MA, 2000. 9
[Ste53] R. G. D. Steel. Relation between Poisson and multinomial distributions. Biometrics Unit Technical Reports BU-39-M, Cornell University, 1953. 12
[ZP20] Weilei Zeng and Leonid P. Pryadko. Minimal distances for certain quantum product codes and tensor products of chain complexes. Phys. Rev. A, 102:062402, 2020. 10

Index

DistRandCSS, 13
DistRandStab, 13
License, 2
QDR_AverageCalc, 16
QDR_DoCirc, 19
QDR_DoProbOut, 17
QDR_FieldHeaderStr, 17
QDR_MakeH, 19
QDR_ParseFieldStr, 17
QDR_ParsePolyStr, 17
QDR_ProcEntry, 18
QDR_ProcessFieldHeader, 17
QDR_SymplVecWeight, 16
QDR_WeightMat, 16
ReadMTXE, 15
WriteMTXE, 16

