RDS

A GAP4_Package
for Relative Difference Sets

Version 1.8

Marc Roder

Department of Mathematics, NUI Galway, Ireland

February 2022

1.1
1.2
1.3
1.4

3.1

32
3.3

4.1
4.2
43
4.4

5.1
5.2
53

7.1
7.2
7.3
7.4

About this package
Acknowledgements
Installation

Verbosity

Definitions and Objects
AllDiffsets and OneDiffset
A basic example

First Step: Integers instead of group
elements

Signatures: An important tool

Change of coset vs. brute force

General concepts

Introduction

How partial difference sets are represented
Basic functions for startset generation
Brute force methods

Invariants for Difference Sets

The Coset Signature

An invariant for large lambda

Blackbox functions

An Example Program

Ordered Signatures

Ordered signatures by quotient images
Ordered signatures using representations
Definition

Methods for calculating ordered signatures

X & B~ B~ W W W

oo

10
12
12
13
13
17
19
19
24
25
27
30
30
31
32
32

8.1
8.2
8.3
8.4

9.1
9.2
9.3
9.4
9.5

Contents

Block Designs and Projective Planes
Isomorphisms and Collineations .
Central Collineations
Collineations on Baer Subplanes
Invariants for Projective Planes
Some functions for everyday use
Groups and actions

Iterators

Lists and Matrices

Cyclotomic numbers

Filters and Categories
Bibliography

Index

34
36
37
38
39
41
41
41
42
43
43
45
46

About this package

The RDS package is meant to help with complete searches for relative difference sets in non-abelian groups. Of
course, it also works for abelian groups, but no special features are implemented for this case. In particular, there is
no support for multipliers.

RDS has no undocumented functions. While this is generally regarded as a feature, it leads to a quite long manual
and a lot of documentation not needed for everyday work. To make reading easier, all but the basic chapters contain
a small introductory paragraph pointing out which functions may be interesting for the user and which are merely
helper functions called by other functions.

The structure of this manual is a follows: First, there is a chapter about brute force methods which are easy to use but
are not suitable for very difficult calculations.

Then, chapter 3 shows the use of the more advanced methods in RDS and explains the basic idea of a complete
search for difference sets with this package. After reading this chapter, you should be able to use RDS even for large
examples.

The following chapters 4 and 5 contain the documentation of the functions used in a search for difference sets. They
explain the concepts and low level functions which provide a lot of control over the searching process. If you are
searching for difference sets in several groups of the same order, you may find this helpful.

The next chapter shows an example of calculating a relative difference set using low level functions.

Chapter 7 introduces another invariant for difference sets. The functions for calculating this invariant do only work
effectively in a few cases, so this part of RDS is a little bit experimental. However, the invariant is very powerful, so
this chapter is kept.

In 8, the methods for generating a BlockDesign in the sense of DESIGN [S0i06a] from a difference set are described.
A few functions for analyzing projective planes are given as well.

The final chapter describes a few functions which are not related to difference sets and may be useful in other situa-
tions.

1.1 Acknowledgements

I would like to thank U. Dempwolff for supervising the thesis out of which RDS grew, and L. Soicher for many
suggestions which greatly improved the usability of this package.

1.2 Installation

RDS depends on Leonard Soicher’s DESIGN [Soi06a] package which, in turn, depends on GRAPE [S0i06b]. You
need to install these packages before you can run RDS.

1. Download the package archive rdsver .ext where ver is some version number and ext is an extension like tar.bz2,
tar.gz, -win.zip or zoo.

2. Copy the archive to the directory where the other packages live. This is either the directory pkg in the GAP root
path or a local directory in your home directory (on most unix-like systems, this will probably be ~/gap/pkg/).

4 Chapter 1. About this package

3. change directory to your package directory and unpack the archive by using the right one of the following
commands:

tar -xjf rdsver.tar.bz2
tar -xzf rdsver.tar.gz
700 -extract rdsver.zoo
unzip rdsver-win.zip
(replace ver with the version number)

4. start GAP. If you have unpacked the archive to ’gap/pkg’ in your home directory, you might have to use “gap -1
*homedir/gap;’ ~” where homedir is the path of your home directory (use "pwd’ to find out what it is, if you don’t
know it)

5. Type LoadPackage ("rds") ; to load RDS

For a test, see the examples in chapters 2 and 3.

1.3 Verbosity

There are two info classes that control the about of additional information RDS prints:

1» InfoRDS v

Some methods of the RDS package print additional information if InfoRDS is set to a level of 1 or higher. At level 0,
no information is output. The default value is 1.

2» DebugRDS v

Some methods of the RDS package print additional information if DebugRDS is set to a level of 1 or higher. At level
0, no information is output. The default level is 0. Expect a lot of output at level 2.

1.4 Definitions and Objects

This section lists the definition of ordinary and relative difference sets as well as the concept of partial difference sets
and their development. This will be repeated in 4.1 where a notion of equivalence is introduced and the implementation
in RDS is discussed.

Let G be a finite group and N C G. The set R C G with |R| = k is called a “relative difference set of order k — 4
relative to the forbidden set N if the following properties hold:

(a) The multiset {a - b~':a, b € R} contains every nontrivial (# 1) element of G — N exactly A times.

(b) {a-b':a,b € R} does not contain any non-trivial element of N.

Let D C G be a difference set, then the incidence structure with points G and blocks {Dg | g € G} is called the
development of D. In short: devD. Obviously, G acts on devD by multiplication from the right.

Relative difference sets with N = 1 are called (ordinary) difference sets. The development of a difference set with
N = 1and A = 1 is projective plane of order k — 1.

In group ring notation a relative difference set satisfies
RR'=k+A(G—N)
The set D C G is called partial relative difference set with forbidden set N, if

DD =k + Z Ve&
geG—N

Section 4. Definitions and Objects 5

holds for some 1 < k¥ < kand 0 < v, < A forall g € G — N. If D is a relative difference set then ,obviously, D is
also a partial relative difference set.

IMPORTANT NOTE

RDS implicitly assumes that the every partial difference set contains the identity element (see the notion of equiva-
lence in 4.1 for the mathematical reason). However, the identity must not be contained in the lists representing partial
relative difference sets.

Soin RDS, the differenceset [(), (1,2,3,4,5,6,7), (1,4,7,3,6,2,5)]isrepresentedbythelist [(1,2,3,4,5,6,7),]
(1,4,7,3,6,2,5) 1. And no set of three non-trivial permutations will be accepted as an ordinary difference set of
Group((1,2,3,4,5,6,7)).

For this reason the lists returned by functions like 4.4.1 do only contain non-trivial elements and look too short.

AllDiffsets and
OneDiffset

This chapter contains a number of examples as a very quick introduction to a few brute-force methods which can be
used to find all (or just one) relative difference sets in a small group. Full documentation of these functions including
all parameters can be found in section 4.4.

Do not expect too much from these methods alone! If you want to find examples of relative difference sets in larger
groups, you should familiarize with the notion of coset signatures by also reading the next chapter.

The functions 4.4.1 and 4.4.3 present the easiest way to calculate relative difference sets.

For a quick start, try this:

gap> LoadPackage("rds");;

gap> G:=CyclicGroup(7);

<pc group of size 7 with 1 generators>

gap> AllDiffsets(G);

[[£f1, £1°3 1, [£f1, f1°5 1, [f172, £1°3 1, [f172, f1"6 1, [f1°4, f1°5 1],
[£174, f176 1]

gap> OneDiffset(G);

[£f1, £1°3]

The first is the set of all ordinary difference sets of order 2 in the cyclic group of order 7. Ok, they look too small
(recall that the order of a difference set is the number k of elements it contains minus the multiplicity A). Here is the
reason:

Without loss of generality, every difference set contains the identity element of the group it lives in. RDS knows this
and assumes it implicitly. So difference sets of length n are represented by lists of length n — 1.

We can calculate all ordinary difference sets in G which contain the last element using 4.4.2. Observe, that 4.4.1
calculates partial difference sets by adding elements to the given list which are lexicographically larger than the last
one of this list:

gap> AllDiffsetsNoSort([Set(G)[71]1,G);
[[f17e, f172 1, [f176, f174 1]
gap> Al1lDiffsets([Set(G)[71]1,G);

1]

You can also generate relative difference sets. Here we must give a partial difference set to start with (the empty list is
ok) and a forbidden set. Notice that a forbidden subgroup cannot be input as a group. It has to be converted to a set.

gap> G:=ElementaryAbelianGroup(81);

<pc group of size 81 with 4 generators>

gap> N:=Subgroup(G,Generators0fGroup(G){[1,2]1});

Group([f1, £f2 1)

gap> OneDiffset([],Set(N),G);

[£3, f4, f1x£372, f2xf3*f4, f172xf472, f2+f372*xf472, f1*f272+f3"2*f4,
£172+£272%x£3%£472]

7

If the parameter A is not given, it is set to 1. Of course, we can also find difference sets with A > 1. Here is a
(12,2,12,6) difference set in SL(2, 3):

gap> G:=SmallGroup(24,3);

<pc group of size 24 with 4 generators>

gap> N:=First(NormalSubgroups(G),i->Size(i)=2);

Group([f4 1)

gap> OneDiffset([],Set(N),G,6);

[£f1, £2, £3, £172, f1x£f2, f1x£3, f2xf3, f1xf2*f3, f1°2xf2*f4, f1°2*f3xf4,
£17°2x£2%£3%xf4]

To test if a set is a relative difference set, 4.3.2 can be used:

gap> a:=(1,2,3,4,5,6,7);

1,2,3,4,5,6,7)

gap> IsDiffset([a,a"3],Group(a)); #an ordinary difference set
true

gap> IsDiffset([a,a”2,a"4],Group(a)); #no ordinary difference set
false

gap> IsDiffset([a,a"2,a"4],Group(a),2); #diffset with <lambda>=2
true

In some cases, 4.4.1 and 4.4.3 will refuse to work. A solution for this is to calculate IsomorphismPermGroup for
your group and then work with the image under this isomorphism.

See 4.4 for details.

A basic example

This chapter shows a basic example of how to use RDS. Some of the functions used here make choices which might
not be optimal but should suffice for most “everyday” situations. If you plan to do more involved computations, you
should also see the other chapters to learn about the concepts behind these high-level functions.

Here we will construct relative difference sets of Dembowski-Piper type “b” and order 9 as an example. We will take
the elementary abelian group as an example. The general idea is as follows: Find a “nice” normal subgroup U and
generate relative difference sets coset by coset. The normal subgroup has to be chosen such that we know how many
elements to choose from each coset modulo U.

The calculations here are very easy, a more demanding example can be found in chapter 6.

3.1 First Step: Integers instead of group elements

Difference sets are represented by lists of integers. Every difference set is assumed to contain 1. This is assumed
implicitly. So the lists representing difference sets must not contain 1 (a partial difference set of length n is hence
represented by a list of length n — 1). If a partial difference set contains 1, many functions will produce errors.

To find Difference sets in a group, say G, begin with generating the group (and forbidden subgroup) and defining the
parameters. Like this:

gap> LoadPackage("rds");

Loading RDS 1.2

by Marc Roeder (marc_roederQweb.de)

true

gap> k:=9;;lambda:=1;;groupOrder:=81;;

gap> forbiddenGroupOrder:=9;;

gap> G:=ElementaryAbelianGroup(groupOrder) ;

<pc group of size 81 with 4 generators>

gap> Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> N:=Subgroup(G,Generators0fGroup(G){[1,2]1});
Group([f1, £2 1)

gap> Size(N)=forbiddenGroupOrder; #just a test...
true

Once we have calculated Gdata, this will be used very often to represent the group G as it contains much more
information.

Section 2. Signatures: An important tool 9

3.2 Signatures: An important tool

The “signature” of a subset S C G of a group relative to a normal subgroup U is the multiset of numbers of elements S
contains from each coset modulo U. Possible values of these numbers can be calculated a priori for relative difference
sets.

gap> sigdat:=SignatureData(Gdata,N,k,lambda,1075);;

The argument 10° depends on your degree of impatience. Larger numbers take more time in this step, but give better
results for later reduction steps.

Now we will look for a “nice” normal subgroup. A normal subgroup is “nice”, if it has only few signatures and the
number of different entries in each signature is low. If you have different choices here do some experiments, to see
what works. Let’s see what we have:

gap> NormalSgsHavingAtMostNSigs(sigdat,1,[1..7]);
[rec(sigs := [[3, 3, 31], subgroup := Group([f1, £2, £3 1)),

rec(sigs := [[3, 3, 3] 1, subgroup := Group([f1, f2, f4 1)),
rec(sigs := [[3, 3, 3] 1, subgroup := Group([f1, f2, £3%xf4 1)),
rec(sigs := [[3, 3, 3] 1, subgroup := Group([f1, f2, £3*f4°2 1))]

The second parameter of 5.3.2 is the maximal number of signatures the subgroup may have. The third parameter gives
the desired lengths of the signatures (the index of the normal subgroup).

So in this example we have no real choice. Let’s take the first group for U. The signature means that we have to get
3 elements from each coset modulo U. So we generate startsets of length 2 in the trivial coset U (representing partial
relative difference sets of length 3). This could be done using 4.4.1, of course. But here we will use another method.
The function 5.3.4 generates startsets in U by generating an initial set of startsets and then raising the length of each
startset by 1. Then a reduction using signatures and automorphism is performed. This is done until all startsets have
the desired length or no startset remains (in which case there is no relative difference set). For the reduction, a suitable
set of automorphisms must be chosen. This is done by the function 5.3.3:

gap> U:=last[1].subgroup;

Group([f1, £2, £3 1)

gap> auts:=SuitableAutomorphismsForReduction(Gdata,U);

[<permutation group of size 303264 with 8 generators>]

gap> startsets:=StartsetsInCoset([],U,N,2,auts,sigdat,Gdata,lambda);
#I Size 18

#I 1/ 0 @ 0:00:00.071

#I Size 8

#I 1/ 0 @ 0:00:00.038
#I -->1 @ 0:00:00.042
[[4, 2211

For larger examples, this takes a wile. Taking 10° (or even more) for the generation of sigdat can save some time
here. A few remarks about the parameters of 5.3.4. The first parameter [] is the set of startsets which we start with
(as we just started, this is empty). The second parameter is the coset we use to generate startsets and third parameter
is the forbidden subgroup. The fourth parameter is the length of the startsets we want to generate (remember that 1
is assumed to be in every startset without being listed. So we want startsets of size 3 represented by lists of length 2.
Hence the 2 in this place). Instead of auts a suitable list of groups of automorphisms of G in permutation representation
may be inserted. These are used for the reduction of startsets. For large groups auts[1] it is a good idea to add some
subgroups of auts[1] to the list (ascending in order) auts, as the reduction is done using the first group in the list and
then reducing the already reduced list again using the next group.

10 Chapter 3. A basic example

3.3 Change of coset vs. brute force

Now we have startsets of length 2 in U and there are two possibilities:
(1) Find 3 more elements from another coset like this:

gap> cosets:=RightCosets(G,U);
[RightCoset(Group([f1, f2, £3]),<identity> of ...),
RightCoset (Group([f1, f2, £3]),f4),
RightCoset (Group([f1, f2, £3]),f4"2)]
gap> startsets:=StartsetsInCoset(startsets,cosets[2],N,5,auts,sigdat,Gdata,lambda);
#I Size 27
#I 1/ 0 @ 0:00:00.127

#I Size 11
#I 1/ 0 @ 0:00:00.058
#I -->1 @ 0:00:03.311
#I Size 2
#I 2/ 2 @ 0:00:00.015
#I -->2 @ 0:00:00.015

[[4, 22, 5, 28, 731, [4, 22, 5, 28, 77 1 1]
And 3 more from the last one (of course, we could also change to force, but it seems to work this way. . .).

gap> startsets:=StartsetsInCoset(startsets,cosets[3],N,8,auts,sigdat,Gdata,lambda) ;
#I Size 9

#I 1/ 0 @ 0:00:00.056

#I Size 1

#I 1/ 1 @ 0:00:00.006

#I -->1 @ 0:00:00.009

#I Size 1

#I 1/ 1 @ 0:00:00.006

#I -->1 @ 0:00:00.006

[[4, 22, 5, 28, 73, 37, 66, 78 1 1

So we found one difference set of order 9 in the elementary abelian group of order 81. To get the difference set
containing 1 explicitly and as a subset of G, say

gap> PermList2GroupList(Concatenation(startsets[1],[1]),Gdata);
[£3, f1%£3°2, f4, f2xf3%fd, f1*f2 2%f3°2%f4, F1 2%f4°2, f2*£3°2%f4 2,
£17°2%£272+%£3%f472, <identity> of ...]

(2) Do a brute force search. Here we have to convert the forbidden group N into a list of integers Np. And we have
to raise the length of the startsets by one before we can start. This is due to the ordering we chose (which is not
necessarily compatible with the cosets modulo U).

gap> Np:=GroupList2PermList (Set(N),Gdata);

[1, 2, 3, 6, 7, 10, 16, 19, 32]

gap> startsets:=ExtendedStartsetsNoSort(startsets, [1..groupOrder],Np,8,Gdata,lambda);;
gap> Size(startsets);

54

gap> foundsets:=[];;

gap> for set in startsets

> do

> Append(foundsets,AllDiffsets(set, [1..groupOrder] ,k-1,Np,Gdata,lambda)) ;
> od;

gap> Size(foundsets);

162

Section 3. Change of coset vs. brute force 11

Now foundsets contains 162 relative (9,9, 9, 1)-difference sets (represented by lists of length 8). These are all equiv-
alent (as seen above). Equivalence can be tested like this:

gap> ReducedStartsets(foundsets, [Gdata.Aac],i->true,Gdata);
#I Size 162

#I 1/ 0 @ 0:00:00.001
[[4, 22, 36, 39, 49, 50, 60, 61]]

General concepts

In this chapter, we first give a definition of relative difference sets and outline a part of the theory. Then we have a
quick look at the way difference sets are represented in RDS.

After that, some basic methods for the generation of difference sets are explained.

If you already read chapter 3 and want to know what 5.3.4 really does, you may want to read this chapter. The most
important method here is 4.3.1 as this is the function all searches start with. The main high-level function for difference
set generation in this chapter is 4.3.9.

4.1 Introduction

Let G be a finite group and N C G. The set R C G with |R| = k is called a “relative difference set of order k — A4
relative to the forbidden set N if the following properties hold:

(a) The multiset {a - b~':a, b € R} contains every nontrivial (1) element of G — N exactly A times.

(b) {a-b~':a,b € R} does not contain any non-trivial element of N.

Relative difference sets with N = 1 are called (ordinary) difference sets. As a special case, difference sets with N = 1
and A = 1 correspond to projective planes of order k — 1. Here the blocks are the translates of R and the points are
the elements of G.

In group ring notation a relative difference set satisfies

RR™' =k + A(G—N)

The set D C G is called partial relative difference set with forbidden set N, if

DD '=xk+ Y v
geG—-N

holds for some 1 < k¥ < kand 0 < v, < A forall g € G — N. If D is a relative difference set then ,obviously, D is
also a partial relative difference set.

Two relative difference sets D, D’ C G are called strongly equivalent if they have the same forbidden set N C G and
if there is g¢ € G and an automorphism « of G such that D'g~! = D®. The same term is applied to partial relative
difference sets.

Let D C G be a difference set, then the incidence structure with points G and blocks {Dg | g € G} is called the
development of D. In short: devD. Obviously, G acts on devD by multiplication from the right.

If D is a difference set, then D! is also a difference set. And devD~! is the dual of devD. So a group admitting
an operation some structure defined by a difference set does also admit an operation on the dual structure. We may
therefore change the notion of equivalence and take ¢ to be an automorphism or an anti-automorphism. Forbidden
sets are closed under inversion, so this gives a “weak’ sort of strong equivalence.

Section 3. Basic functions for startset generation 13

4.2 How partial difference sets are represented

Let G be a group. We define an enumeration {g,...,g,} = G and represent D C G as a list of integers (where, of
course, i represents g; for all 1 < i < n). So the automorphism group of G is represented as a permutation group of
degree n. One of the operations performed most often by methods in RDS is the calculation of quotients in G. So we
calculate a look-up table for this.

This pre-calculation is done by the operation 4.3.1. So before you start generating difference set, call this function and
work with the data structure returned by it.

For an exhaustive search, the ordering of G is very important. To avoid generating duplicate partial difference sets,
we would like to represent partial difference sets by sets, i.e. ordered lists. But in fact, RDS does not assume that
partial difference sets are sets. The operations 4.3.9 and 4.4.1 assume that the last element of partial difference set is
its maximum. But they don’t test it. So if you start from scratch, these methods generate difference sets which are
really sets. Whereas the NoSort versions disregard the ordering of G and will produce duplicates.

The reason for this seemingly strange behaviour is the following: Assume that we have a normal subgroup U < G
and know that every difference set D C G contains exactly n; elements from the i coset modulo U. Then it is natural
to generate difference sets by first searching all partial difference sets of length n; containing entirely of elements of
the first coset modulo U and then proceed with the other cosets.

This method of difference set generation is normally not compatible with the ordering of G. This is why partial
difference sets are not required to be sets. See chapter 6 for an example.

4.3 Basic functions for startset generation

Defining an enumeration of the a group G, every relative difference set may be represented by a list of integers.
Indexing G in this way has the advantage of the automorphism group of G being a permutation group acting on the
index set for G. As relative difference sets are normally calculated in small groups, it is possible to store a complete
multiplication table of the group in terms of the enumeration.

If not stated otherwise, partial difference sets are always considered to be lists of integers. Note that it is not required
for a partial difference set to be a set.

PermutationRepForDiffsetCalculations(group) O
PermutationRepForDiffsetCalculations(group, autgrp) (0]

For a group group, PermutationRepForDiffsetCalculations (group) returns a record containing:
the group .G=group.

the sorted list .Glist=Set (group),

the automorphism group .A of group,

the group .Aac, which is the permutation action of A on the indices of . Glist,
.Ahom=ActionHomomorphism(.A,.Glist),

the group .Ai of anti-automorphisms of .group acting on the indices of Glist,

NN s LD =

the multiplication table .diffTable of .group in a special form.

.diffTable is a matrix of integers defined such that .difftable [1] [j] is the position of Glist [1] (Glist[j]1) ~-1) in Glist
with Glist [1]=0ne (group).

PermutationRepForDiffsetCalculations runs into an error if Set (group) [1] is not equal to One (group).

If autgrp is given, PermutationRepForDiffsetCalculations will not calculate the automorphism group of group
but will take autgrp instead without any test.

If Set (group) [1] is not equal to One (group), then 4.3.1 returns an error message. In this case, calculating a permu-
tation representation helps:

14 Chapter 4. General concepts

gap> G:=SL(2,3);

SL(2,3)

gap> Gdata:=PermutationRepForDiffsetCalculations(G);
Error, smallest element of group is not the identity. Try ‘IsomorphismPermGrou\
p’ called from

<function>(<arguments>) called from read-eval-loop
Entering break read-eval-print loop ...

you can ’quit;’ to quit to outer loop, or

you can ’return;’ to continue

brk> quit;

gap> G:=Image(IsomorphismPermGroup(G));

Group([(2,3,5)(6,7,8), (1,2,4,7)(3,6,8,5) 1)

gap> Gdata:=PermutationRepForDiffsetCalculations(G);

2» IsDiffset(diffset, [forbidden]l, Gdata, [lambdal) (0]
» IsDiffset(diffset, [forbidden], group, [lambdal) (0]

This function tests if diffset is a relative difference set with forbidden set forbidden and parameter lambda in the group
group. If Gdata is the record calculated by 4.3.1, diffset and forbidden have to be lists of integers. If a group group is
given, diffset and forbidden must consist of elements of this group.

If forbidden is not given, it is assumed to be trivial. If lambda is not given, it is set to 1. Note that 1 (One (group),
repectively) must not be element of diffset.

gap> a:=(1,2,3,4,5,6,7);

(1,2,3,4,5,6,7)

gap> IsDiffset([a,a"3],Group(a));

true

gap> IsDiffset([a,a"3],Group(a),2);

false

gap> IsDiffset([a,a"2,a"4],Group(a),2);

true

gap> Gdata:=PermutationRepForDiffsetCalculations(Group(a));;
gap> IsDiffset([2,4],Gdata);

true
3» IsPartialDiffset(diffset, [forbidden], Gdata, [lambdal) O
» IsPartialDiffset(diffset, [forbidden], group, [lambdal) (0]

This function tests if diffset is a partial relative difference set with forbidden set forbidden and parameter lambda in
the group group. If Gdata is the record calculated by 4.3.1, diffset and forbidden have to be lists of integers. If a group
group is given, diffset and forbidden must consist of elements of this group.

If forbidden is not given, it is assumed to be trivial. If lambda is not given, it is set to 1. Note that 1 (One (group),
repectively) must not be element of diffset.

gap> a:=(1,2,3,4,5,6,7);

(1,2,3,4,5,6,7)

gap> IsPartialDiffset([a],Group(a));

true

gap> IsPartialDiffset([a,a"4],Group(a));
false

gap> IsPartialDiffset([a,a"4],Group(a),2);
true

A partial difference set may be converted from a list of group elements to a list of integers using

4»

5p

Section 3. Basic functions for startset generation 15

GroupList2PermList(list, Gdata) O

converts a list of group elements to integers according to the enumeration given in Gdata.Glist. Here Gdata is a record
containing .diffTable as returned by 4.3.1.

The inverse operation is performed by

PermList2GroupList (list, Gdata) O

converts a list of integers into group elements according to the enumeration given in Gdata.Glist. Here Gdata is a
record containing .diffTable as returned by 4.3.1.

gap> G:=DihedralGroup(6);
<pc group of size 6 with 2 generators>
gap> N:=NormalSubgroups(G) [2];
Group([£2 1)
gap> dat:=PermutationRepForDiffsetCalculations(G);
rec(G := <pc group of size 6 with 2 generators>,
Glist := [<identity> of ..., f1, f2, f1xf2, £272, f1xf272],
A := <group of size 6 with 2 generators>,
Aac := Group([(3,5)(4,6), (2,4,6) 1),
Ahom := <action homomorphism>,
Ai := Group([(3,5), (3,5)(4,6), (2,4,6
diffTable := [[1, 2, 5, 4, 3, 61, [
[3,6,1,2,5,41, [4,5,2,1
[5,4,3,6,1,21, [6, 3, 4, 5,
gap> Nperm:=GroupList2PermList (Set(N),dat);
(1, 3, 5]

>

In the following functions the record Gdata has to contain a matrix .diffTable as returned by 4.3.1.

NewPresentables(list, newel, table)

NewPresentables(list, newel, Gdata)
NewPresentables(list, newlist, Gdata)
NewPresentables(list, newlist, table)

ool eoNe)

NewPresentables (list,newel,Gdata) takes a record Gdata as returned by PermutationRepForDiffsetCal-
culations (group). For NewPresentables (list,newel,table), table has to be the multiplication table in the form
of NewPresentables(list,newel , Gdata.diffTable)

The method returns the unordered list of quotients dynewel " with d; € list U {1} (in permutation representation).

When used with a list newlist, a list of quotients d;d; "'with d; € list U {1} and d, € newlist is returned.

AllPresentables(list, table) O
AllPresentables(list, Gdata) O

Let list be a list of integers representing elements of a group defined by Gdata (or table). Al1Presentables (
list ,table) returns an unordered list of quotients ab~! for all group elements a, b represented by integers in list. If
1 € list, an error is issued. The multiplication table fable has to be of the form as returned by 4.3.1. And Gdata is a
record as calculated by 4.3.1.

gap> G:=CyclicGroup(7);;dat:=PermutationRepForDiffsetCalculations(G);;
gap> AllPresentables([2,3],dat);

[2,3,7,2,7, 61

gap> NewPresentables([2,3],4,dat);

[4, 5,6, 3,7, 21

gap> AllPresentables([1,2,3],dat);

Error...

8 »

16 Chapter 4. General concepts

RemainingCompletions (diffset, completions[, forbidden] , Gdatal, lambdal) O
RemainingCompletionsNoSort (diffset, completions[, forbidden], tablel, lambdal) O

For a partial difference set diffset, RemainingCompletions (diffset,completions ,Gdata) returns a subset of the set
completions, such that each of its elements may be added to diffset without it loosing the property to be a partial
difference set. Only elements greater than the last element of diffset are returned.

For partial relative difference sets, forbidden is the forbidden set.

RemainingCompletionsNoSort does also return elements from completions which are smaller than diffset [Size (diffset)] .

gap> G:=CyclicGroup(7);

<pc group of size 7 with 1 generators>

gap> dat:=PermutationRepForDiffsetCalculations(G);;
gap> RemainingCompletionsNoSort([4],[1..7],dat);

[2, 3]

gap> RemainingCompletionsNoSort([4],[1..7],dat,2);
[2,3,6, 7]

gap> RemainingCompletions([4],[1..7],dat);

[]

gap> RemainingCompletions([4],[1..7],dat,2);

[6, 7]
ExtendedStartsets(startsets, completions, [forbiddenset] [, aim], Gdatal, lambda]) O
ExtendedStartsetsNoSort (startsets, completions, [forbiddenset] [, aim], Gdatal, lambda]) (0]

For a set of partial (relative) difference sets startsets, the set of all extensions by one element from completions is
returned. Here an “extension” of a partial diffence set S is a list which has one element more than S and contains S.

Here completions is a set of elements wich may be appended to the lists in startsets to generate new partial difference
sets. For relative difference sets, the forbidden set forbiddenset must be given. And the integer aim gives the desired
total length, i.e. the number of elements of completions that have to be added to each startset plus its length. Note that
the elements of startset are always extended by one element (if they can be extended). aim does only tell how many
elements from completions you want to add. A partial difference set is only be extended, if there are enough admissible
elements in completions, so if for some S € startsets, we have less than aim — Size(S) elements in completions which
can be added to S, no extension of S is returned.

If lambda is not passed as a parameter, it is assumed to be 1.

Note that ExtendedStartsets does use 4.3.8 while ExtendedStartsetsNoSort uses 4.3.8. Note that the partial
difference sets generated with ExtendedStartsetsNoSort are not sets (i.e. not sorted). This may result in doing
work twice. But it can also be useful, especially when generating difference sets “coset by coset”.

gap> G:=CyclicGroup(7);;dat:=PermutationRepForDiffsetCalculations(G);;
gap> startsets:=[[2],[4],[6]];;

gap> ExtendedStartsets(startsets,[1..7],dat);

[[2,41, 02,611

gap> ExtendedStartsets(startsets,[1..7],3,dat);

[[2, 411

gap> ExtendedStartsets(startsets,[1..7],dat,2);

[[2,31,[2,41, (2,51, [2,61, (4,61, [4, 71, [6,71]1
gap> ExtendedStartsetsNoSort(startsets, [1..7],dat);

[l2,41, 02,61, [4,21]1,104,31,06,21, [6,51]]1

vvyyVvyy

Section 4. Brute force methods 17

4.4 Brute force methods

The following methods can be used to find (partial) difference sets by brute force. More examples are contained in
chapter 2

A11Diffsets([partiall, group, [lambdal)

A11Diffsets(partial, [aim], forbidden, group, [lambdal)
A11Diffsets([partiall , Gdata, [lambdal)

A11Diffsets(partial, [aim], forbidden, Gdata, [lambdal)
A11Diffsets(partial, completions, aim, forbidden, Gdata, lambda)

[cloNoNeoRe)

Let partial be a list of elements of the group group which form a partial relative difference set with parameter lambda
and forbidden set forbidden (which is also a set of group elements). That means that the every non-trivial element in
the list of quotients in elements of partial occurs at most lambda times and no element of forbidden is in this set. Then
A11Diffsets returns the list of all partial relative difference sets of length aim with parameter lambda and forbidden
set forbidden which contain partial. Only those partial relative difference sets will be constructed, which start with
partial and continue with elements larger than the last element in partial.

To calculate all difference sets which contain partial as a subset, you can use 4.4.2.

Note that a difference set is also assumed to contain the identity element, but this does not occur in the returned lists.
So a returned difference set contains aim elements but actually represents a set of length aim+1, as it still is a partial
relative difference set when the identity element is added. If partial is not given or the empty set, all difference set
in the group group are calculated. If lambda is not given, it is set to 1. Without forbidden, ordinary difference sets
are calculated. If aim is not given, it is set to the size of a full relative difference set with forbidden set forbidden and
parameter lambda.

Instead of using a group group, you can also use the data record Gdata returned by 4.3.1. In this case, partial and
forbidden must be lists of integers. In the last form, completions must be a list of integers and A11Diffsets does
only extend partial by elements from completions.

Al1DiffsetsNoSort(partial, group)
A11DiffsetsNoSort(partial, Gdata)
Al1DiffsetsNoSort(partial, [completions], aim, [forbidden], group, [lambdal)
A11DiffsetsNoSort(partial, [completions], aim, [forbidden], Gdata, [lambdal)

oloNeoNe

This calculates all partial relative difference sets which contain the partial relative difference set partial. The returned
value is a set of lists. Each of the returned lists starts with the list partial. If partial is not a partial relative difference
set, the empty list is returned.

Note that despite the name, A11DiffsetsNoSort does not calculate all difference sets as unordered lists. It just
calculates all difference sets which contain partial as a subset.

As it does not only append larger elements to partial, A11DiffsetsNoSort works for all groups.

If called with group rather than Gdata, 4.4.1 and 4.4.2 call 4.3.1. They then work with sets of integers as difference
sets and convert the result back into group notation.

As 4.3.1 refuses to work if the smallest element of the group is not 1, this does not always work. So a permutation
representation for group is calculated in this case. However, this is only done for the NoSort version and if partial is
empty. Here is an example:

gap> m:=[

> [0,1,0,0,0,0,0],
> [0,0,1,0,0,0,0],
> [0,0,0,1,0,0,0],
> [0,0,0,0,1,0,0],
> [0,0,0,0,0,1,0],
> [0,0,0,0,0,0,1],

vyvyVvyVvYyy

a»

v

18 Chapter 4. General concepts

> [1,0,0,0,0,0,01];;

gap> G:=Group(m) ;

<matrix group with 1 generators>
gap> Order(G);

7

gap> Size(AllDiffsets(G));

6

gap> Al1lDiffsets([m],G);

Error, smallest element of group is not the identity.
[...]

gap> Size(AllDiffsetsNoSort([m],G));
2

The reason for this is the fact that 4.4.1 generates difference sets from partial by appending only elements which are
larger than the last element of partial. In a permutation representation, the ordering will be different from the original
one, so GAP refuses to calculate the permutation representation and issues an error.

4.4.2 first appends one element regardless of ordering and then only larger ones.

OneDiffset([partiall , group, [lambda])

OneDiffset(partial, [aim], forbidden, group, [lambdal)
OneDiffset([partiall , Gdata, [lambdal)

OneDiffset(partial, [aim]l, forbidden, Gdata, [lambdal)
OneDiffset (partial, completions, aim, forbidden, Gdata, lambda)

cloNoNeoNe

This function works exactly like 4.4.1, but stops once a (partial) relative difference set is found. This (partial) relative
difference set is then returned. If no set with the requested property exists, the empty list is returned.

If OneDiffset is called using Gdata and lists of integers as partial and forbidden, then the returned difference
set is the lexicographically smallest one starting with partial. If the group-form is used and partial is not empty,
OneDiffset does only work, if the smallest element of group is the identity. This is not the case for matrix groups in
general.

OneDiffsetNoSort(partial, group)
OneDiffsetNoSort(partial, Gdata)
OneDiffsetNoSort(partial, [completions], aim, [forbidden], group, [lambdal)
OneDiffsetNoSort(partial, [completions], aim, [forbidden], Gdata, [lambdal)

cNoNeoNe)

This works exactly as 4.4.2 does, but stops once a set with the desired properties is found and returns it. If no difference
set exists, the empty list is returned.

1»

Invariants for
Difference Sets

This chapter contains an important tool for the generation of difference sets. It is called the “coset signature” and is an
invariant for equivalence of partial relative difference sets. For large A, there is an invariant calculated by 5.2.1. This
invariant can be used complementary to the coset signature and is explained in section 5.2.

Most of the methods explained here are not commonly used. If you do not want to know how coset signatures work
in detail, you can safely skip a large part of this and go straight to the explanation of 5.1.8 and 5.1.12.

The functions 5.1.9, 5.1.11 will be interesting for you, if you look for difference sets with the same parameters in
different gorups. 5.1.8 and 5.1.7

The last section (5.3) of this chapter has some functions which allow the user to use coset signatures with even less
effort. But be aware that these functions make choices for you that you probably do not want if you do very involved
calculations. In particular, the coset signatures are not stored globally and hence cannot be reused. For a demonstration
of these easy-to-use functions, see chapter 3

5.1 The Coset Signature
Let R C G be a (partial) relative difference set (for definition see 4.1) with forbidden set N C G. Let U < G be a
normal subgroup and C = {gi, ..., g|c.v|} be a system of representatives of G/U.

The intersection number of R with Ug; is defined as v; = |R N Ug;|. For every normal subgroup U < G the multiset
{|RN Ug;|: g € C} is called “coset signature of R (relative to U)”.

Let D C G be a relative difference set and {vy, ..., v|G1U‘} its coset signature. Then the following equations hold (see
[Bru55],[R6d06]):

Yvi=k
Yv}=A(|U| - |[UNN|) +k
Yivivij = A(|U| - |ggUNN]) forg; ¢ U

where v;; = |D N g;g;U|. If the forbidden set N is a subgroup of G we have |g;U N N| is either O or equal to |U N N|.
Given a group G, the forbidden set N C G and some normal subgroup U < G, the right sides of this equations are

known. So we may ask for tuples (vi, ..., V|g.q|) solving this system of equations. Of course, we index the v; with the
elements of G/U, so the last equation poses conditions to the ordering of the tuple (vy,. .., V‘G:U‘).

So we call any multiset {vy, ..., V‘G;U‘} solving the above equations an “admissible signature” for U.
CosetSignatureOfSet(set, cosets) F

CosetSignature0fSet (set,cosets) returns the ordered list of intersection numbers of sez. That is, the size of the
intersection of set with each Element of cosets.

Note that it is not tested, if cosets is really a list of cosets. CosetSignature0fSet (set,cosets) works for any List
set and any list of lists cosets. So be careful!

20 Chapter 5. Invariants for Difference Sets

gap> G:=SymmetricGroup(5);;

gap> A:=AlternatingGroup(5);;

gap> CosetSignature0fSet([(1,2),(1,5),(1,2,3)],RightCosets(G,A));

[1, 2]

gap> CosetSignature0fSet([(1,2),(1,5),(1,2,3)]1,[A]);

[1]

gap> CosetSignatureOfset([(132) > (1’5) > (1,2,3)] > [[(1’2) B (1:233)] s [(3;2, 1)]]) H
[0, 2]

2» CosetSignatures(Gsize, Usize, diffsetorder) O
» CosetSignatures(Gsize, Nsize, Usize, Intersectsizes, k, lambda) O

3»

4»

5»

CosetSignatures(Gsize, Usize,diffsetorder) returns all Gsize/Usize tuples such that the sum of the squares of
each tuple equals Usize+diffsetorder. And the sum of each tuple equals diffsetorder+1.

These are necessary conditions for signatures of difference sets and normal subgroups of order Usize in groups of
order Gsize (see 5.1).

CosetSignatures(Gsize,Nsize, Usize, Intersectsizes ,k ,lambda) Calculates all multiset meeting some conditions
for signatures of relative difference sets and normal subgroups of order Usize in groups of order Gsize (see 5.1). Here
Nsize is the size of the forbidden group, Infersectsizes is a list of integers determining the size of the intersection of the
forbidden set and the normal Subgroup of order Usize. The pararmeters k and lambda are the usual ones for designs.
CosetSignatures returns a list containing one pair for each entry i of Intersectsizes. The first entry of this pair is
[Gsize, Nsize, Usize, i, k,lambda) and the second one is a list of admissible signatures with these parameters.

gap> CosetSignatures(256,16,64,[1,4,8,16],17,1);
[C[256, 16,64, 1, 17, 11, [11,

[[256, 16, 64, 4, 17, 11, [[3, 4, 4,6111,
[[256, 16, 64, 8, 17, 11, [[4, 4, 4, 5111,
[[256, 16, 64, 16, 17, 11, [111

#And for an ordinary difference set of order 16.
gap> CosetSignatures(273,1,39,[1],17,1);
[CC2r3, 1,39, 1, 17, 11,
(fo, 1, 2,3, 3, 4, 4
[1, 1,1, 2, 4, 4, 4
[1,1, 2,2, 2, 4,5

-

>

-

TestSignaturelargeIndex(sig, group, Normalsg[, factorgrp]) (0]

this does only work for ordinary difference sets, not for relative difference sets in general

TestSignaturelLargeIndex (sig, group ,Normalsg[,factorgrp]) tests if sig meets some necessary conditions of
5.1 to be a signature for a difference set in group for the normal subgroup Normalsg. factorgrp is the factorgroup
group/Normalsg. The returned value is true or false resp.

TestSignatureCyclicFactorGroup(sig, Nsize) o

This does only work for ordinary difference sets, not for relative difference sets in general

TestSignatureCyclicFactorGroup (sig,Nsize) test if sig meets meets some necessary conditions of 5.1 to be a
signature for a difference set in some group, which has a normal subgroup of size Nsize such that the factor group is
cyclic. The returned value is true or false resp.

TestedSignatures(sigs, group, Normalsgl[, maxtest] [, moretest]) O

this does only work for ordinary difference sets, not for relative difference sets in general

Let sigs be a list of possible signatures as returned by 5.1.2. Let Normalsg be a subgroup of group. For each signature
in sigs, the necessary conditions described in 5.1 are tested to decide if the signature can be a signature of a difference
set in group for for the normal subgroup Normalsg.

6>

7»

Section 1. The Coset Signature 21

As this involves computation for all permutations of the signature, this can be very costly. The argument maxtest
determines how many permutations are admissible. If maxtest=0, all signatures are tested, regardless of how much
work is necessary for this. If a signature has too many permutations, it is returned without test. Even though it is not
wise, maxtest=0 is the default option. If InfoLevel (InfoRDS) is at least 2, information about skipped signatures is
echoed.

If the boolean value moretest is false and all signatures in sigs but the last one are found to be not admissible, the last
one is returned without test. This saves the time to test the last signature, but if chances are that there is no difference
set in group, this may also give away a chance to find out early (every difference set has signatures, so no admissible
signature means that no difference set can exist). Default is true.

TestedSignatures calls 5.1.4 or 5.1.3 and returns a sublist of sigs.

gap> G:=SmallGroup(273,2);;

gap> N:=First (NormalSubgroups(G),g->0rder(g)=39);

Group([f1, £3 1)

gap> sigs:=CosetSignatures(273,1,39,[1],17,1);

[CC273, 1, 39, 1, 17, 11,

rfo,1,2,3,3,4,41,([00,2,2,2,3, 3,51,

(1, 1,1,2,4,4,471,01,1,1,3,3,3,51,
[1,1,2,2,2,4,51711]1

gap> TestedSignatures(sigs([1][2],G,N);

(f1,1,1,2,4,4,4171, [1,1,1,3,3,3,51]1

TestedSignaturesRelative(sigs, fgdata, [, maxtest] [, moretest]) O

TestedSignaturesRelative takes a list sigs of lists of integers and returns a those which may be signatures of
relative difference sets with forbidden set.

fedata is a record as returned by RDSFactorGroupData(U,N ,lambda,Gdata) If maxtest is set, a signature s is
only tested if NrPermutationsList (s) is less than maxtest if maxtest is set to 0, all signatures are tested this is the
default. If moretest is tue, a signature is tested even if it is the only one left. This means we do not assume that there
must be an admissable signature at all. The default for moretest is true.

SigInvariant (diffset , data) O

Given a partial relative difference set diffset and a list of records with entries cosets and sigs. Here cosets is a full list
of cosets and sigs is a list of signatures that may occur for relative difference sets.

For each record rec in data, the intersection numbers of diffset with the cosets of rec.cosets are computed stored in a
set sig. If none of the signatures in rec.sigs is pointwise greater or equal sig, SigInvariant (diffset,data) returns
‘fail. Otherwise sig is added to a list of signatures that is returned.

Note the returned invariant is that of diffser U {1}. The output from SignatureDataForNormalSubgroups can be
used as data.

gap> G:=SmallGroup(273,2);

<pc group of size 273 with 3 generators>

gap> Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> N:=First (NormalSubgroups(G),g->0rder(g)=39);
Group([f1, £3 1)

gap> sigs:=CosetSignatures(273,1,39,[1],17,1);

[[273, 1, 39,1, 17, 11,

rro,1,2,3,3,4,41, [0, 2,2,2,3,3,51,
[1,1,1,2,4,4,4171,[1,1,1,3,3,3,51,
[1,1,2,2,2,4,5111]1
gap> TestedSignatures(sigs([1][2],G,N);

—/ =

L
tf1,1,1,2,4,4,41,[1,1,1,3,3,3,5]]1]

g8 »

22 Chapter 5. Invariants for Difference Sets

gap> sigs:=TestedSignatures(sigs[1][2],G,N);
(r1t1,1,1,2,4,4,4171,01,1,1,3,3,3,5]]

gap> ## calculate cosets in permutation notation:

gap> rc:=List(RightCosets(G,N),i->GroupList2PermList (Set(i),Gdata));;
gap> data:=[rec(cosets:=rc,sigs:=sigs)];;

gap> SiglInvariant([3,4,5],data);

(rro,o0,0,0,0,1,3171, 111

For an example using 5.1.8 see the example after 5.1.12 below.
SignatureDataForNormalSubgroups(Normals, globalSigData, forbiddenSet, Gdata, parameters) O

Let Gdata be a record as returned by 4.3.1. Let Normals be a list of normal subgroups of Gdata.G, and forbiddenSet
the forbidden set (as set of group elements or group).

parameters must be a list of length 4 of the form [k, lambda,maxtest,moretest] with k the length of the relative differ-
ence set to be constructed and lambda the parameter as always. maxtest and moretest are passed to TestedSigna-
turesRelative and must be set.

SignatureDataForNormalSubgroups returns a list containing one record for each group U in Normals. This record
contains:

1. the subgroup U named .subgroup
2. the signatures .sigs for U

3. the cosets .cosets modulo U as lists of integers

Moreover, the list globalSigData is used to store global information which can be reused with other groups. The i
entry of globalSigData is a list of records that contains all known information about subgroups of order i. Each of
these records has the following components:

1. .cspara the parameters for 5.1.2
2. .sigs the output of 5.1.2 when the input is .cspara

3. .fgsigs a list of records containing data about factor groups with parameters .cspara:

3.1. .fg the factor group

3.2. .fgaut the automorphism group of .fg

3.3. .Nfg the image of the forbidden set N under the natural epimorphism to .fg
3.4. (fgintersect the pairs [g, |g N N|| for all g in .fg. Here N is the forbidden set.

3.5. .sigs the known admissible signatures (this is a subset of the set in number 2. of course)

The list globalSigData can be used if different groups are studied. If a group has a normal subgroup with parameters
(in the sense of .cspara) listed in globalSigData, the signatures from a previous calculation may be used. Of course,
the factor groups have to be checked first. This check is done with 5.1.11 or 5.1.10.

So the second run of SignatureDataForNormalSubgroups with the same parameters and different Gdata and
Normals will normally be much faster, as the signatures are already stored in globalSigData. Note that maxtest and
moretest are not stored. So a second run with larger maxtest will not result in a recalculation of signatures.

Section 1. The Coset Signature 23

gap> G:=CyclicGroup(57);
<pc group of size 57 with 2 generators>
gap> Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> SignatureDataForNormalSubgroups (NormalSubgroups(Gdata.G) ,sigdata,
> [One(Gdata.G)],Gdata,[8,1,10°6,truel); # for ordinary diffset of order 7.
[rec(subgroup := Group([f1*£f276]),
sigs := ([O, O, O, O, O, O, O, 0O, 0, 0, 0,0, 1,1,1,1,1,1, 211,
cosets := [[1, 20, 401, [3, 23, 431, [6, 26, 461, [9, 29, 491,
(12, 32, 521, [15, 35, 651, [18, 388, 57 1,
[4, 21, 411, [7, 24, 441, [10, 27, 47 1,
[13, 30, 50 1, [16, 33, 53 1, [19, 36, 56 1,
[2,22,31], [5,25,42], [8, 28, 451], [11, 31, 481,
[14, 34, 511, [17, 37, 541 1),
rec(subgroup := Group([f2 1), sigs := [[1, 3, 4] 1,
cosets := [[1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,
45, 48, 51, 54 1,
[2, 5, 8 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50,
53, 56 1,
[4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49,
52, 65, 571 1)]
gap> Filtered([1l..Size(sigdata)],i->IsBound(sigdatali]));
[3, 191
gap> Size(sigdatal[3]);
2
gap> sigdatal3] [1].cspara;sigdatal3] [2].cspara;
[57,1,3,1,7,1]1
[567, 1,3, 1,8, 1]

The following three functions are used by 5.1.8. If you do not want to write your own function for signature manage-
ment, you might not need them.

9» RDSFactorGroupData(U, N, lambda, Gdata) O

takes the subgroup U of G, the forbidden set N as a subgroup or subset of G and the record of data Gdata as returned
by PermutationRepForDiffsetCalculations(G) and returns a record containing

fg

the factor group modulo U

fglist the factor group as a strictly ordered list

.cosets

the cosets modulo U as lists of integers

Jambda the parameter lambda as passed to the function

.Usize
fgaut
Nfg

fgintersect

Antersectshort

10» Mat

the size of U

the automorphism group of .fg

the image of N in .fg

a list of pairs such that the i” entry is the pair consisting of .fg/i] and the size of the intersection of .fg with .Nfg
as cosets modulo U.

ist just the second component of .fgintersect.

chingFGDataNonGrp(fgdatalist, fgmatchdata) o

Let fgdatalist be a list of records and fgmatchdata a record with components .fg, .Nfg and .fgintersect as returned by
5.1.9. Then MatchingFGDataNonGrp returns the entry of fgdatalist that defines the same admissible signatures as
fgmatchdata. If no such entry exists, fail is returned.

24 Chapter 5. Invariants for Difference Sets

The forbidden set N is not assumed to be a group.
11 » MatchingFGData(fgdatalist, fgmatchdata) o

Let fgdatalist be a list of records and fgmatchdata a record with components .fg, .Nfg, .fgintersect and .fgaut as
returned by 5.1.9. Then MatchingFGDataNonGrp returns the entry of fgdatalist that defines the same admissible
signatures as fgmatchdata. If no such entry exists, fail is returned.

Here the forbidden set N has to be a group.

12» ReducedStartsets(startsets, autlist, csdata, Gdata) O
» ReducedStartsets(startsets, autlist, func, Gdata) O

Let startsets be a set of partial relative difference sets, autlist a list of permutation groups and Gdata record returned
by PermutationRepForDiffsetCalculations. Then ReducedStartsets partitions the list startsets according to
the values of the function func and performs a test for equivalence on the elements of the partition. The list returned is
a sublist of startsets of pairwise non-equivalent partial relative difference sets if func is an invariant for partial relative
difference sets. All elements for which func returns fail are discarded.

If a list csdata of records as used for 5.1.7 (i.e. containing .cosets and .signatures) is pased, then ReducedStartsets
uses 5.1.7 for func.

gap> G:=CyclicGroup(57);

<pc group of size 57 with 2 generators>

gap> Gdata:=PermutationRepForDiffsetCalculations(G);;

gap> cosetsigs:=SignatureDataForNormalSubgroups (NormalSubgroups(Gdata.G),
> sigdata, [One(Gdata.G)],Gdata,[8,1,1076,truel);;

gap> SiglInvariant([3,4,5,9],cosetsigs);

rctco, 0, 0, 0,0,0,0,0,0,0,0,0,0,0,1,1,12,1,21,121,C[1,1,371,11]1
gap> ssets:=A11Diffsets([],2,[],Gdata);;

gap> Size(ssets);

1458

gap> Size(ReducedStartsets(ssets, [Group(())],cosetsigs,Gdata));

#I Size 1458

#I 5/ 0 @ 0:00:00.126

486

gap> Size(ReducedStartsets(ssets, [Gdata.Ai],cosetsigs,Gdata));

#I Size 1458

#I 5/ 0 @ 0:00:00.123

17

13» MaxAutsizeForOrbitCalculation A%

In 5.1.12, a bound is needed to decide if Orbit or RepresentativeAction should be used. If the group is larger
than MaxAutsizeForOrbitCalculation@RDS, RepresentativeAction is used. The default value for maxAutsize-
ForOrbitCalculation is 5 * 10°. If you want to change it, you will have to edit the file sigs . gd.

5.2 An invariant for large lambda
1» MultiplicityInvariantLargeLambda(set, Gdata) O

Let set be a partial relative difference set with A > 1. Set P:=A11Presentables (set, Gdata) then the set of multi-
plicities of P is an invariant for partial relative difference sets.

MultiplicityInvariantLargeLambda returns a list in a form as Collected does.

Section 3. Blackbox functions 25

gap> G:=CyclicGroup(7);;Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> AllPresentables([2,3],Gdata);

[2,3,7,2,7, 6]

gap> MultiplicityInvariantLargelLambda([2,3],Gdata);

(1,21, 02,21]1

(Read this output as: two elements occur once and two occur twice).
This invariant can be used for 5.1.12 complementary to the signature invariant by defining

gap> partfunc:=function(list)
> local sig;

> if sig=fail

> then return fail;

> fi;

> return [MultiplicityInvariantLargelLambda(list,Gdata),SigInvariant(list,sigdata)];
> end;

function(1list) ... end

partfunc can then be passed to 5.1.12. Of course, sigdata has to be the list of records defining the coset signatures.

5.3 Blackbox functions

Here are a few functions used in chapter 3. These are meant as black boxes for quick tests. Some of them make
choices for you which might not be suitable to the chase you consider, so for serious studies, consider using the more
complicated-looking functions above (an example for this comprises chapter 6).

SignatureData(Gdata, forbiddenSet, k, lambda, maxtest) F

Let Gdata be a record as returned by 4.3.1. Let forbiddenSet the forbidden set (as set or group).

k is the length of the relative difference set to be constructed and lambda the usual parameter. maxtest is the Then
SignatureData calls 5.1.8 for normal subgroups of order at least RootInt (Gdata.G). Here maxtest is an integer
which determines how many permutations of a possible signature are checked to be a sorted signature. Choose a value
of at least 103. Larger numbers here normaly result in better results when generating difference sets (making reduction
more effective).

SigntureData chooses normal subgroups of Gdata.G and uses 5.1.8 to calculate signature data. The global data
generated by 5.1.8 is just discarded.

gap> G:=CyclicGroup(57);;Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> sigdat:=SignatureData(Gdata, [One(Gdata.G)],8,1,1075);
[rec(subgroup := Group([f2 1), sigs := [[1, 3, 41 1],
cosets := [[1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54],
[2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56 1,
[4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 57 1 11
)]

NormalSgsHavingAtMostNSigs(sigdata, n, lengthlist) F

Let sigdata be a list as returned by 5.1.8, an integer n and a list of integers lengthlist. NormalSgsHavingAtMostNSigs
filters sigdata and returns a list of records with components .subgroup and .sigs is returned, such that for every entry
.subgroup is a normal subgroup of index in lengthlist having at most n signatures.

SuitableAutomorphismsForReduction(Gdata, normalsg) F

Given a normal subgroup normalsg of Gdata.G, the function returns a list containing the group of automorphisms
of Gdata.G which stabilizes all cosets modulo normalsg. This group is returned as a group of permutations on
Gdata.Glist (which is actually the right regular representation). The returned list can be used with 5.3.4.

4»

26 Chapter 5. Invariants for Difference Sets

StartsetsInCoset(ssets, coset, forbiddenSet, aim, autlist, sigdat, Gdata, lambda) F

Assume, we want to generate difference sets “coset by coset” modulo some normal subgroup. Let ssets be a (possibly
empty) set of startsets, coset the coset from which to take the elements to append to the startsets from ssets. Further-
more, let aim be the size of the generated partial difference sets (that is, the size of the elements from ssets plus the
number of elements to be added from coser). Let autlist be a list of groups of automorphisms (in permutation repre-
sentation) to use with the reduction algorithm. Here the output from SuitableAutomorphismsForReduction can
be used. And Gdata and sigdat are the records as returned by 4.3.1 and 5.1.8 (or 5.3.1, alternatively). The parameter
lambda is the usual one for difference sets (the number of ways of expressing elements outside the forbidden set as
quotients).

Then StartsetsInCoset returns a list of partial difference sets (a list of lists of integers) of length aim.

The list of permutation groups autlist is used for equivalence testing. Each equivalence test is performed calculating
equivalence with respect to the first group, one element per equivalence class is retained and the equivalence test is
repeated using the second group from autlist... Using an ascending list of automorphism groups can speed up the
process of equivalence testing.

gap> G:=CyclicGroup(57);;Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> sigdat:=SignatureData(Gdata, [One(Gdata.G)],8,1,1075);;

gap> N:=First(NormalSubgroups(G) ,n->Size(n)=19);

gap> auts:=SuitableAutomorphismsForReduction(Gdata,N);

[<permutation group of size 18 with 3 generators>]

gap> g:=0ne(G);;while g in N do

> g:=Random(G) ;

> od;

gap> coset:=GroupList2PermList (Set (RightCoset(N,g)) ,Gdata);

[2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56]
gap> Size(StartsetsInCoset([],coset, [],4,auts,sigdat,Gdata,1));

#I Size 19
#I 1/ 0 @ 0:00:00.003
#I Size 26

#I 1/ 0 @ 0:00:00.001
#I -->10 @ 0:00:00.004
#I Size 88

#I 1/ 0 @ 0:00:00.003
#I -->45 @ 0:00:00.018
#I Size 125

#I 1/ 0 @ 0:00:00.006
#I -->64 @ 0:00:00.031
64

gap> Size(StartsetsInCoset([],coset, [],4, [Group(())],sigdat,Gdata,1));
#I Size 19

#I 1/ 0 @ 0:00:00.000
#I Size 136

#I 1/ 0 @ 0:00:00.004
#I -->136 @ 0:00:00.024
#I Size 648

#I 1/ 0 @ 0:00:00.021
#I -->648 @ 0:00:00.310
#I Size 1140

#I 1/ 0 @ 0:00:00.036
#I -->1140 @ 0:00:00.980
1140

6 An Example Program

Here is a similar example to that in chapter 3. But now we do a little more handwork to see how things work. Now we
will calculate the relative difference sets of “Dembowski-Piper type d” and order 16. These difference sets represent
projective planes which admit a quasiregular collineation group such that the fixed structure is an anti-flag. See [DP67],
[Dem68] or [R6d06] for details.

To have a little more output, you may want to increase 1.3.1:

gap> SetInfoLevel (InfoRDS,3);

First, define some parameters and calculate the data needed:

gap> k:=16; ;lambda:=1; ;groupOrder:=255;; #Diffset parameters
gap> forbiddenGroupOrder:=15;;

gap> maxtest:=1076;; #Bound for sig testing
gap> G:=CyclicGroup(groupOrder) ;

<pc group of size 255 with 3 generators>

gap> Gdata:=PermutationRepForDiffsetCalculations(G);;

gap> MakeImmutable(Gdata);;

Now the forbidden group is calculated in a very ineffective way. Then we calculate admissible signatures. As there
are only few normal subgroups in G, we calculate them all. For other groups, one should choose more wisely.

gap> N:=First(NormalSubgroups(Gdata.G),i->Size(i)=forbiddenGroupOrder) ;

Group([f1x£f3"9, f2*£f3°10 1)

gap> globalSigData:=[];;

gap> normals:=Filtered(NormalSubgroups(Gdata.G) ,n->Size(n) in [2..groupOrder-1]);;
gap> sigdat:=SignatureDataForNormalSubgroups(normals,globalSigData,

> N,Gdata, [k,lambda,maxtest,truel);;

The last step gives better results, if a larger maxtest is chosen. But it also takes more time. To find a suitable maxtest,
the output of 5.1.8 can be used, if InfoLevel (InfoRDS) is at least 2. Note that for recalculating signatures, you will
have to reset globalSigData to []. Try experimenting with maxtest to see the effect of signatures for the generation of
startsets.

Now examine the signatures found. Look if there is a normal subgroup which has only one admissible signature (of
course, you can also use 5.3.2 here):

gap> Set(Filtered(sigdat,s->Size(s.sigs)=1 and Size(s.sigs[1])<=5),i->i.sigs);
LLCO, 4,4,4,411,[[4,4,811]1

Great! we’ll take the subgroup of index 3. The cosets modulo this group will be used to generate startsets and we
assume that the trivial coset contains 8 elements of the difference set. So we generate startsets in U and make a
first reduction. For this, we need U and N as lists of integers (recall that difference sets are asumed to be lists of
integers). We will call these lists Up and Np. Furthermore, we will have to choose a suitable group of automorphisms
for reduction. As G is cyclic, we may take Gdata - Aac here. A good choice is the stabilizer of all cosets modulo U.

28 Chapter 6. An Example Program

Yet sometimes larger groups may be possible. For example if we want to generate start sets in U and then do a brute
force search. In this case, we may take the stabilizer of U for reduction.

gap> U:=First(sigdat,s->s.sigs=[[4, 4, 8] 1) .subgroup;

Group([£2, £3 1)

gap> cosets:=RightCosets(G,U);

gap> Ul:=cosets[2];;U2:=cosets[3];;

gap> Up:=GroupList2PermList (Set (U),Gdata);;

gap> Np:=GroupList2PermList (Set(N),Gdata);

[1, 12, 25, 43, 78, 97, 115, 116, 134, 151, 169, 188, 207, 238, 249]
gap> comps:=Difference(Up,Np);;

gap> ssets:=List(comps,i->[i]);;

gap> ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);
#I Size 80

#I 2/ 0 @ 0:00:00.061

(031, 0411

Observe that 1 is assumed to be element of every difference set and is not recorded explicitly. So the partial difference
sets represented by ssets at this pointare [[1, 3 1, [1, 4 1]. Now the startsets are extended to size 7 using
elements of Up. The runtime varies depending on the output of 5.1.8 and hence on maxtest.

gap> repeat

> ssets:=ExtendedStartsets(ssets,comps,Np,7,Gdata);

> ssets:=ReducedStartsets(ssets, [Gdata.Aac],sigdat,Gdata.diffTable);;
> until ssets=[] or Size(ssets[1])=7;

#I Size 133

#I 3/ 0 @ 0:00:00.133

#I Size 847

#I 4/ 0 @ 0:00:00.949
#I Size 6309

#I 4/ 0 @ 0:00:07.692
#I Size 21527

#I 5/ 0 @ 0:00:28.337
#I Size 15884

#I 4/ 0 @ 0:00:21.837
#I Size 1216

#I 4/ 0 @ 0:00:01.758
gap> Size(ssets);

192

At a higher level of 1.3.1, the number of start sets which are discarded because of wrong signatures are also shown.
Now the cosets are changed. Here we use the NoSort version of 4.3.9. This leads to a lot of start sets in the first
step. If the number of start sets in U is very large, this could be too much for a reduction. Then the only option is
using the brute force method. But also for the brute force search, 4.3.9 must be called first (remember that we chos
an enumeration of G and assume the last element from each startset to be the largeset “interesting” one for further
completions).

gap> comps:=Difference(GroupList2PermList (Set (U1),Gdata),Np);;

gap> ssets:=ExtendedStartsetsNoSort(ssets,comps,Np,11,Gdata);;

gap> ssets:=ReducedStartsets(ssets, [Gdata.Aac],sigdat,Gdata.diffTable);;
#I Size 8640

#I 9/ 0 @ 0:00:14.159

gap> Size(ssets);

63899

And as above, we continue:

repeat
ssets:=ExtendedStartsets(ssets, comps,Np,11,Gdata) ;
ssets:=ReducedStartsets(ssets, [Gdata.Aac],sigdat,Gdata.diffTable);;
until ssets=[] or Size(ssets[1])=11;
comps:=Difference(GroupList2PermList (Set(U2),Gdata) ,Np);
RaiseStartSetLevelNoSort (ssets,comps,Np,15,Gdata) ;
repeat
ssets:=ExtendedStartsets(ssets, comps,Np,15,Gdata) ;
ssets:=ReducedStartsets(ssets, [Gdata.Aac],sigdat,Gdata.diffTable);;
until ssets=[] or Size(ssets[1])=15;

29

1»

2»

Ordered Signatures

In this chapter, we will discuss two methods to calculate ordered signatures. The first one can be used for relative
difference sets with forbidden set, while the second one does only work for ordinary difference sets.

The methods introduced here can only be used in some special cases.

7.1 Ordered signatures by quotient images

Let D C G be arelative difference set with parameters (v/n, n, k,) and forbidden set N C G. Let U < G be a normal
subgroup such that U C N.

Then the coset signature (vi,...,V|g.y) of D has only the entries 1 (k- times) and O (|G : U| — k- times). And as in
chapter 5 we have

ZVJVUZA(‘U|—|g,’UﬂND fOI‘giQ/U
J

where v; = |[DNg;g;U|. If the forbidden set N is a subgroup of G we have |g; UNN] is either 0 or equal to |[UNN| = |U]|.

Let ¢: G — G/U be the canonical epimorphism. Then D? is a relative difference set in G/U with forbidden set N?
and parameters (v/n,n/|U|, k, |U|1).

So the ordered signatures with respect to U are equivalent to the relative difference sets in G/U. Observe that we may
not apply reduction in G/U using the full automorphismgroup of G/U but only the group induced by the stabiliser
of U in the automorphism group of G. This is due to the fact that we use an “induced” notion of equivalence in G/U
because we are interested in signatures and not primarily in difference sets in G/U.

NormalSgsForQuotientImages(forbidden, Gdata) O

calculates all normal subgroups of Gdara.G which lie in forbidden. The returned value is a list of normal subgroups
which define pairwise non-isomorphic factor groups.

DataForQuotientImage(normal, forbidden, k, lambda, Gdata) O

Let Gdata be the usual record for a group G. And let k and lambda be the parameters of the relative difference set we
want to find. Let then forbidden be the forbidden set (as a group or a list of group elements or integers) and normal a
normal subgroup of G which is contained in forbidden.

Then DataForQuotientImage returns a record containing the record .Gdata of the factor group G/U where the
automorphism group is the one induced by the stabiliser of normal in the automorphism group of G. Furthermore the
returned record contains the forbidden set .forbidden in G/U and the new parameter .lambda for the difference set in
G/U.

The data returned by 7.1.2 can be used to calculate difference sets in G/U in the way outlined in chapter 3. A quotient
image of a relative difference set has a larger A than the initial difference set. So 5.2.1 can be used as in invariant here
(see 5.2)

After all difference sets are known, they must be converted into ordered signatures. This is done by the following
function:

3»

4w

5»

Section 2. Ordered signatures using representations 31

OrderedSigsFromQuotientImages(fGroupData, qimages, forbidden, normal, Gdata) O

Let Gdata be the usual record for a group G and normal a normal subgroup of G which lies in the forbidden set
Sorbidden. Let then fGroupData be the record .Gdata describing G/normal as returned by 7.1.2 and gimages a set of
difference sets in G/normal.

Then OrderedSigsFromQuotientImages returns a record containing a list of ordered signatures .orderedSigs and a
list of cosets .cosets as well as the factor group .fg defined by fGroupData and its full automorphism group fgaut and
the image of forbidden in .fg is returned as .Nfg.

MatchingFGDataForOrderedSigs(forbidden, Gdata, Normalsgs, fedata) 6]

Let fgdata be a list of records of the form returned by 7.1.3 and Normalsgs a list of normal subgroups of the group
Gdata.G. Furthermore let forbidden be the forbidden set as a list of group elements or integers or a subgroup of
Gdata.G.

Then MatchingFGDataForOrderedSigs retruns all elements of fgdata which match a normal subgroup of Nor-
malsgs. The returned value is a record containing the normal subgroup .normal from Normalsgs, the record .sigdata
from fgdata and a homomorphism .hom which maps Gdata.G onto .sigdata.Gdata.G and takes forbidden to .sig-
data.Nfg.

OrderedSigInvariant(set, data) O

does the same as 5.1.7, but for ordered signatures. Here data has to be a list of records containing ordered signatures
called .orderedSigs and cosets .cosets just as returned by 7.1.3.

Assume we have calculated ordered signatures and have stored them in a record .osigs and a list normalSubgroupsData
as returned by 5.3.1 containing the admissible signatures. A function for partitioning partial relative difference sets as
required by 5.1.12 can be defined as follows:

partitionfunc:=function(list)
local si, osi;
si:=SigInvariant(Union(list, [1]),normalSubgroupsData);
osi:=0rderedSigInvariant (Union(list, [1]), [osigs]);
if osi=fail or si=fail
then
return fail;
else
return si;
fi;
end;

7.2 Ordered signatures using representations

This section contains some methods for ordered signatures in ordinary difference sets. Unfortunately, these methods
are not as comfortable as those for unordered signatures. The reason for this is simply that I didn’t have any time to
tie them together to high-level functions. If you need help here, don’t hesitate to contact me.

32 Chapter 7. Ordered Signatures

7.3 Definition

Let R C G be a (partial) ordinary difference set (for definition see 4.1). Let U < G be a normal subgroup and

C ={g1,...,8cu\} be asystem of representatives of G/U.
As in 5.1 we may define the coset signature of R relative to U.
Let U = gi, ..., & .| be an enumeration of G/U. An “admissible ordered signature” for U is a tuple (vi, ..., v|c.u|)
such that
Z Vi = k

Lvi =AUl -1)+k
Ly =AU 1) forgi ¢ U

holds where we index the v; by elements of G/U, so v; = v, and write v;; = v,,.. Observe that the third equation is a
restriction on the ordering of the tuple (vy, ..., v|g.y|). If v is an admissible ordered signature, then the multiset of v is
an unordered signature.

Getting ordered admissible signatures from unordered ones can be done by taking all permutations of the unordered
signature and verifying the above equations. Obviously, this method isn’t very satisfying (nevertheless, the methods
for testing unordered signatures from section 5.1 do this to find out if there is an ordered signature at all. Except that
they stop when they find an ordered signature).

For ordinary difference sets in extensions of semidirect products of cyclic groups, ordered signatures may be calculated
a lot easier (see [Rod06] for details).

7.4 Methods for calculating ordered signatures
1 » NormalSubgroupsForRep(groupdata, divisor) o

Let groupdata be the output of 4.3.1 and divisor an integer. Then NormalSubgroupsForRep calculates all normal
subgroups of groupdata.G such that the size of the factor group is divisible by divisor and the factor group is a
semidirect product of cyclic groups.

The output is a record consisting of

1. anormal subgroup .Nsg of G
2. the factor group .fgrp:=G/Nsg
3. the epimorphism .epi from G to .fgrp
4. aroot of unity .root
5. a galois automorphism .alpha
6.+7. generators of the factor group G/.Nsg named .a and .b such that .a is normalized by .b.
8 alist.int2pairtable such that the i entry is the pair [m,n] with that Glist[i] epi=a”(m-1)*b"(n-1)

.alpha and .root may be used as input for 7.4.2
2» OrderedSigs(coeffSums, absSum, alpha, root) (0]

Let G be group which contains a normal subgroup of index s such that the coset signature for a difference set for this
normal subgroup is coeffSums. Let N be a normal subgroup of G such that G/N is a semidirect product of cyclic group
of orders s, ¢ and i divides the order of G/N.

Then OrderedSigs (coeffSums ,absSum ,alpha ,root) calculates all ordered signatures for N. Here root is a primitive
g-th root of unity and alpha is a Galois- automorphism of CS(g) with order dividing s. absSum is the order of the
difference set. (i.e. order = k — A).

3

Section 4. Methods for calculating ordered signatures 33

OrderedSigs is based on calculations using an s-dimensional unitary representation of G/N. In this representation a
subset of G induces a semi-circular matrix. The returned value is a list of lists s-tuples The entries of the s-tuples are
coefficients of numbers in Z[root] such that the semi-circular matrix defined by these numbers together with alpha
meets necessary conditions for matrices induced by difference sets. To gain the algebraic numbers from the s-tuple
tup, use List (fup ,i->CoeffList2CyclotomicList (i,root))

Each |coeffSums|-tuple returned defines an ordered signature. The ordering of G/N is chosen to fit to the data returned
by 7.4.1:

@, a', ... a0 [a®b,a'b,. .. a7 'b],. .. [a®b* ", ... 4t)

So for the calculation of ordered signatures, smaller ordered signatures coeffSums have to be known. But this is not so
bad, as small signatures are easy to calculate. The following example shows an application.

gap> G:=SmallGroup(273,3);

<pc group of size 273 with 3 generators>

gap> Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> CosetSignatures(273,273/3,16);

([3,7,71]1

gap> nsgs:=NormalSubgroupsForRep(Gdata,3);

[rec(Nsg := Group([f2]), alpha := ANFAutomorphism(CF(13), 3),
root := E(13), fgrp := Group([f1, <identity> of ..., £2 1),
epi := [f1, £f2, £3] -> [f1, <identity> of ..., f2 1, a := f2,
b := f1,

int2pairtable := [[1, 11, [1,21, [1, 11, 2,11, [1, 31,

(8,31, (11,31, [5,21, [11,311),
rec(Nsg := Group([£3 1), alpha := ANFAutomorphism(CF(7), 2),

root := E(7), fgrp := Group([f1, f2, <identity> of ... 1),
epi := [f1, £2, £3] -> [f1, £f2, <identity> of ...], a := £2,
b := f1,

int2pairtable := [[1, 11, [1,271, [2,11, 1,11, [1, 3],

(6,31, [04,3]1,[04,21,06,311)]1
gap> osigs:=0rderedSigs([3,7,7],16,nsgs[2] .alpha,nsgs[2].root);
tftro,o0,0,1,0,1, , Lo0,0,1,2,2,0,21, [2,2,0, 2
1

1])o, s
tcto,o0,0,1,0,1,1],[0,1,2,2,0,2,01], [2,0,0, 2

0 111
’2, ,0]],
rfi1,0,1,0,0,01,02,2,1,0,0,2,01,[2,1,0,0,2,0,2]111
gap> Size(osigs);
98

gap> Set(osigs,g->SortedList(Concatenation(g)));
[[O’ 0, O’ O’ O’ O’ 0, O’ O’ 0, 1’ 1, 1’ 1’ 1, 2’ 2’ 2, 2’ 2, 2]]

Note that the signature [3, 7, 7] can be assumed to be ordered (by passing to a suitable translate). So even if we
are not interested in ordered signatures, we have found out that there is only one admissible unordered signature for
this normal subgroup. To get this result using 5.1.5 would have taken a very long time.

Of course, ordered signatures can also be used directly.
OrderedSignature0fSet(set, normal _data) o

takes a set set of integers (meant to be a partial difference set) and a list of records as returned by 7.4.1. The returned

value is a list of lists which is the ordered signature of the partial difference set set and can be compared to the output
of 7.4.2

gap> OrderedSignatureOfSet([2,3,4,5] ,nsgs[2]);
[[1’ 1, 1’ O’ O’ O’ 0]’ [1’ O, O’ O’ 0, O) O]) [O’ O’ 0, O’ O, 0) O]]

3»

Block Designs and
Projective Planes

This section contains functions to help studying projective planes. There is also a function converting relative differ-
ence sets to block designs. Those desings can be studied with the DESIGN [So0i06a] package by L. Soicher.

Projective planes are always assumed to consist of positive integers (as points) and sets of integers (as blocks). The
incidence relation is assumed to be the element relation. The blocks of a projective plane must be sets.

ProjectivePlane(blocks) ¢

Given a list of lists blocks which represents the blocks of a projective plane, a block design is generated. If the blocks
is not a set of sets of the integers [1..v] for some v, the points are sorted and enumerated and the blocks are changed
accordingly. But the original names are known to the returned BlockDesign.

The block design generated this way will contain two extra entries, jblock and isProjectivePlane. The matrix .jblock
contains the number of the block containing the points i and j at the (i, j)th position. And isProjectivePlane will be
true. If blocks do not form the lines of a projective plane, an error is issued.

PointJoininglLinesProjectivePlane(plane) o

Returns a matrix which has as ijth entry the point wich is contained in the blocks with numbers i and j. This matrix
is also stored in plane. Some operations are faster if plane contains this matrix. If plane is not a projective plane, an
error is issued.

gap> b:=[[1, 3], [1,61, [2,41, [2, 7],
11

> (3,51, (4,61, [5,7 5
gap> plane:=ProjectivePlane(b);
rec(isBlockDesign := true, v := 7,
blocks := [[1, 31, [1,61, [2,41, [2, 7],
(3,51, [4,61, [5, 711,
jblock := [[0, 0, 1, 0,0,2,0]1, [0, 0,0,3,0,0,4],
[+« o, 0,0,5,0,01, [0, 3,0,0,0,6,01,
(o, o0,5,0,0,0,71,[2,0,0,6,0,0,01,
(o0, 4,0,0,7,0,011,
isProjectivePlane := true)

gap> PointJoiningLinesProjectivePlane(plane);

tro,190,0,3,001,([1,0,0,0,0,6,01, [
(o,0,2,0,0,0,71,[3,0,0,0,0,0,51, [
[0, 0,0,7,5,0,01]1]

gap> RecNames(plane) ;

["isBlockDesign", "v", "blocks", "jblock", "isProjectivePlane", "jpoint"]

DevelopmentOfRDS(diffset, Gdata) O

This calculates the development of a (partial relative) difference set diffset in the group given by Gdata. That is, the
associated block design.

diffset can be given as a list of group elements or a list of integers (positions in the set of group elements). Gdata can
either be the record returned by 4.3.1 or a group or a set of group elements.

4»

35

In either case, the returned object is a BlockDesign in the sense of L. Soichers DESIGN package.

gap> G:=CyclicGroup(21);; Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> AllDiffsets([2],[1..21],4,[],Gdata,1);
[[2 5,16, 171, [2,6, 10, 181 1]
gap> dl:=DevelopmentOfRDS(Set(G){[2,5,16,171},Set(G));
rec(isBlockDesign := true, v := 21,
blocks := [[1, 2, 5, 16, 171, [1, 3, 14, 15, 211, [1, 4, 8, 10, 13 1],

[1,6,7,9,20171, [1, 11, 12, 18, 191, [2, 3, 9, 10, 12 1],
[2, 4, 7,15, 191, [2, 6, 8, 11, 21 1, [2, 13, 14, 18, 20 1,
[3, 4, 6, 17, 181, [3, 5, 8, 19, 201, [3, 7, 11, 13, 16 1,
[4, 5, 9, 11, 141, [4, 12, 16, 20, 211, [5, 6, 12, 13, 15 1,
[5, 7, 10, 18, 21 1, [6, 10, 14, 16, 191, [7, 8, 12, 14, 17 1,

[8,9, 15, 16, 181, [9, 13, 17, 19, 211, [10, 11, 15, 17, 20] 1],

autSubgroup := <permutation group with 21 generators>,

pointNames := [<identity> of ..., f1, £f2, f172, fixf2, £272, f172%f2,
f1x£272, £273, f172%xf272, f1*x£273, £274, f172%f273, f1*xf274, £275,
f1°2x£274, f1x£f2°5, £276, £1°2x£f2°5, f1xf2°6, f1°2*xf27°6],

blockSizes := [5], blockNumbers := [21], isSimple := true,

isBinary := true)
gap> d2:=Development0fRDS([2,5,16,17],Gdata);;
gap> dl=d2
true
gap> dl=DevelopmentOfRDS(Set(G){[2,5,16,171},G);
true
gap> di=Development0fRDS([2,5,16,17],G);
true

Note that equality for block designs means equality of records. So DevelopmentOfRDS generates exactly the same
record in each of the above examples. The output is in fact independent of the chosen data type of the input (as long
as it is valid). In particular, the design always knows its pointNames.

ProjectiveClosureOfPointSet (points[, maxsizel, plane) O

Let plane be a projective plane. Let points be a set of non-collinear points (integers) of this plane. Then Projective-
ClosureOfPointSet returns a record with the entries .closure and .embedding.

Here .closure is the projective closure of points (the smallest projectively closed subset of plane containing the points
points). It is not checked, whether this is a projective plane. As the BlockDesign .closure has points [1..w] and plane
has poins [1..v] with w < v, we need an embedding of .closure into plane. This embedding is the permutation
.embedding. It is a permutation on [1..v] which takes the points of .closure to a set of points in plane containing
points and preserving incidence. Note that nothing is known about the behaviour of .embedding on any point outside
[1..w] and [1..w] ".embedding.

If maxsize is given and maxsize # 0, calculations are stopped if the closure is known to have at least maxsize points
and the plane plane is returned as .closure with the trivial permutation as embedding.

Let’s find a Baer subplane in the desarguesian plane of order 4:

gap> G:=CyclicGroup(21);; Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> AllDiffsets([2],[1..21],4,[],Gdata,1);
[[2 5,16, 171, [2,6, 10, 181 1]
gap> plane:=DevelopmentO0fRDS([2,5,16,17],Gdata);;
gap> ProjectiveClosureOfPointSet([1,3,4],plane);
rec(closure := rec(isBlockDesign := true, v := 3,
blocks := [[1, 21, [1, 31, [2, 311

1»

2>

36 Chapter 8. Block Designs and Projective Planes

pointNames := [<identity> of ..., f2, f1°2 1),
embedding := (2,3,4))
gap> IsProjectivePlane(last.closure) ;
false
gap> baer:=ProjectiveClosureOfPointSet([1,3,4,5],plane);;
gap> baer.closure.blocks;
tft1,2,61,01,3,51,[01,4,71,102,3,71,
[2,4,5]1, (3,461, [5,6, 711
gap> IsProjectivePlane(baer.closure) ;
true
gap> Set(baer.closure.blocks,b->0nSets(b,baer.embedding));
tc1,3,141, [1, 4,81, [1,5,171, [3, 4, 17 1,
(3,5,81, [4,5,141, [8, 14, 1711

8.1 Isomorphisms and Collineations

Isomorphisms of projective planes are mappings which take points to points and blocks to blocks and respect inci-
dence. A collineation of a projective plane P is an isomorphism from P to P.

As projective planes are assumed to live on the integers, isomorphisms of projective planes are represented by permu-
tations. To test if a permutation on points is actually an isomorphism of projective planes, the following methods can
be used.

IsIsomorphismOfProjectivePlanes(perm, planel, plane2) o

Let planel, plane2 be two projective planes. IsIsomorphismOfProjectivePlanes test if the permutation perm on
points defines an isomorphism of the projective planes planel and plane2.

IsCollineationOfProjectivePlane(perm, plane) o

Let plane be a projective plane and perm a permutation on the points of this plane. IsCollineation0fProjective-
Plane (perm,plane) returns true, if perm induces a collineation of plane.

This is just another form to call IsIsomorphism0fProjectivePlanes (perm,plane,plane)

IsomorphismProjPlanesByGenerators(gensl, planel, gens2, plane2) o
IsomorphismProjPlanesByGeneratorsNC(gensl, planel, gens2, plane2) O

Let gensI be a list of points generating the projective plane planel and gens2 a list of generating points for plane2.
Then a permutation is returned representing a mapping from the points of planel to those of plane2 and taking the
list gensl to the list gens2. If there is no such mapping which defines an isomorphism of projective planes, fail is
returned.

IsomorphismProjPlanesByGeneratorsNC does not check whether gens/ and gens2 really generate the planes
planel and plane?2.

Look at the above example again:

gap> P:=ProjectivePlane([[1, 2, 61, [1, 3,51, [1, 4, 71,
> (2,3, 71, [02,4,51, [3,4,61, [5,6,71]11);;
gap> pi:=IsomorphismProjPlanesByGenerators([1,2,3,4],P,[2,4,6,7],P);
1,2,4,7,3,6,5)

gap> IsIsomorphismOfProjectivePlanes(pi,P,P);

true

gap> IsCollineationOfProjectivePlane(pi,P);

true

gap> IsomorphismProjPlanesByGenerators([1,2,3,4],P,[1,2,3,5],P);
fail

gap> ProjectiveClosureOfPointSet([1,2,3,5],P).closure.v;

4

1»

2>

3»

a»

Section 2. Central Collineations 37

8.2 Central Collineations

Let ¢ be a collineation of a projective plane which fixes one point block-wise (the so-called centre) and one block
point-wise (the so-called axis). If the centre is contained in the axis, ¢ is called elation. Otherwise, ¢ is called
homology. The group of elations with given axis is called translation group of the plane (relative to the chosen
axis). A projective plane with transitive translation group is called translation plane. Here transitivity is on the points
outside the axis.

ElationByPair(centre, axis, pair, plane) O

Let centre be a point and axis a block of a projective plane plane . pair must be a pair of points outside axis and lie on
a block containing center. Then there is a unique collineation fixing axis pointwise and centre blockwise (an elation)
and taking point[1] to point[2].

If one of the conditions is not met, an error is issued. This method is faster, if plane.jpoint is known (see 8)

Al1ElationsCentAx(centre, axis, planel, "generators"]) O

Let centre be a point and axis a block of the projective plane plane. A11ElationsCentAx returns the group of all
elations with centre centre and axis axis as a group of permutations on the points of plane.

If “generators” is set, only a list of generators of the translation group is returned. This method is faster, if plane.jpoint
is known (see 8)

AllElationsAx(axis, plane[, "generators"]) O

Let axis be a block of a projective plane plane. A11ElationsAx returns the group of all elations with axis axis.

If “generators” is set, only a set of generators for the group of elations is returned. This method is faster, if plane.jpoint
is known (see 8)

gap> P:=ProjectivePlane([[1, 2, 61, [1, 3,51, [1, 4, 71,
> (2,3, 71,[2,4,51,03,4,61,[5,6,711);;
gap> pi:=ElationByPair(1,[1,2,6],[3,5],P);

(3,5)(4,7)

gap> AllElationsCentAx(1,[1,2,6],P);

Group([(3,5)(4,7) 1)

gap> AllElationsAx([1,2,6],P);

Group([(3,5)(4,7), (3,7)(4,5) 1)

gap> AllElationsAx([1,2,6],P);

Group([(3,5)(4,7), (3,7)(4,5) 1)

gap> Size(last);

4

IsTranslationPlane([infline, 1plane) 0o

Returns true if the plane plane has a block b such that the group of elations with axis b is transitive outside b.

If infline is given, only the group of elations with axis infline is considered. This is faster than calculating the full trans-
lation group if the projective plane plane is not a translation plane. If plane is a translation plane, the full translation
group is calculated.

This method is faster, if plane.jpoint is known (see 8)

gap> AllElationsAx(P.blocks[1],P);
Group([(3,5)(4,7), (3,7)(4,5) 1D
gap> Size(last);

4

gap> IsTranslationPlane(P);

true

5»

1»

38 Chapter 8. Block Designs and Projective Planes

HomologyByPair (centre, axis, pair, plane) O

HomologyByPair returns the homology defined by the pair pair fixing centre blockwise and axis pointwise. The
returned permutation fixes axis pointwise and centre linewise and takes pair[1] to pair[2].

GroupOfHomologies(centre, axis, plane) O
returns the group of homologies with centre centre and axis axis of the plane plane.

gap> HomologyByPair(3,[1,2,6],[4,5],P);

Error, The centre must be fixed blockwise called from
...

gap> GroupOfHomologies(3,[1,2,6]1,P);

Group(())

8.3 Collineations on Baer Subplanes

Let P be a projective plane of order n>. A subplane B of order n of P is called Baer subplane. Baer suplanes are
exactly the maximal subplanes of P.

InducedCollineation(baerplane, baercoll, point, image, planedata, embedding) o

If a projective plane contains a Baer subplane, collineations of the subplane may be lifted to the full plane. If such an
extension to the full plane exists, it is uniquely determined by the image of one point outside the Baer plane.

Here baercoll is a collineation (a permutation of the points) of the projective plane baerplane. The permutation em-
bedding is a permutation on the points of the full pane which converts the enumeration of baerplane to that of the
full plane. This means that the image of the points of baerplane under embedding is a subset of the points of plane.
Namely the one representing the Baer plane in the enumeration used for the whole plane. point and image are points
outside the Baer plane.

The data for baerplane and embedding can be calculated using 8.

InducedCollineation returns a collineation of the full plane (as a permutation on the points of plane) which takes
point to image and acts on the Baer plane as baercoll does. If no such collineation exists, fail is returned.

This method needs plane.jpoint. If it is unknown, it is calculated (see 8)

Let’s go back to an earlier example and find a planar collineation:

gap> G:=CyclicGroup(21);; Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> AllDiffsets([2],[1..21],4,[],Gdata,1);

(2,5, 16, 171, [2, 6, 10, 18 1 1]

gap> plane:=Development0fRDS([2,5,16,17],Gdata);;

gap> baer:=ProjectiveClosureOfPointSet([1,3,4,5],plane);;

gap> pi:=InducedCollineation(baer.closure, (),21,15,plane,baer.embedding);
(2,16)(6,18)(7,12)(9,11) (10,13) (15,21) (19,20)

gap> 217pi;

15

gap> ForAll(OnSets([1..7],baer.embedding) ,i->i"pi=i);

true

2»

3»

4»

Section 4. Invariants for Projective Planes 39

8.4 Invariants for Projective Planes

The functions NrFanoPlanesAtPoints, PRank@RDS, FingerprintAntiFlag and FingerprintProjPlane cal-
culate invariants for finite projective planes. For more details see [R6d06] and [Mo0095]. The values of some of these
invariants are available from the homepages of [Moo] and [Roy] for many planes.

NrFanoPlanesAtPoints(points, plane) (0]

For a projective plane plane, NrFanoPlanesAtPoints (points, plane) calculates the so-called Fano invariant. That is,
for each point in points, the number of subplanes of order 2 (so-called Fano planes) containing this point is calculated.
The method returns a list of pairs of the form [point, number] where number is the number of Fano sub-planes in
point.

This method is faster, if plane.jpoint is known (see 8). Indeed, if plane.jpoint is not known, this method is very slow.

gap> G:=CyclicGroup(4~2+5);

<pc group of size 21 with 2 generators>
gap> diffset:=0neDiffset(G);

[£1, f1xf2, £172%f274, f1%£275]

gap> P:=Development0fRDS(diffset,G);;
gap> NrFanoPlanesAtPoints([3],P);
[[3,2401]1

IncidenceMatrix(plane) o

returns a matrix /, where the columns are numbered by the blocks and the rows are numbered by points. And I[i][j]=1
if and only if points[i] is incident (contained in) blocks[j] (an O else).

PRank(plane, p) (0]

Let I be the incidence matrix of the projective plane plane and p a prime power. The rank of I - I' as a matrix over
GF(p) is called p-rank of the projective plane. Here I' denotes the transposed matrix. Note that this is a method within
the RDS workspace, so it has to be called as PRank @RDS

gap> G:=CyclicGroup(2°2+3);

<pc group of size 7 with 1 generators>

gap> P:=Development0fRDS(OneDiffset(G),G);;

gap> IncidenceMatrix(P);

(c1,1,1,0,0,0,01],
[1, 0, 0,0,0,1, 1],
[o,1,0,0,1,0, 1]

gap> PRank@RDS(P,3);

6

gap> PRank@RDS(P,2);

4

-
-

(1, 0,0,1,1,0, 01,
(o,0,1,1,0,0, 1]

= O
-
M

= O
.
-
M

mM m
M
o =
-
M
[N
M
o O
—_
.

B

]

FingerprintProjPlane(plane) 0O

For each anti-flag (p,) of a projective plane plane of order n, define an arbitrary but fixed enumeration of the lines

through p and the points on [. Say [, ...,[,1; and py,...,p,+1 The incidence relation defines a canonical bijection
between the /; and the p; and hence a permutation on the indices 1,...,n + 1. Let 0(,) be this permutation.
Denote the points and lines of the plane by gi,...qg,24,41 and ey, ..., e,24,,. Define the sign matrix as A; =

58n(0g,¢,)) if (gi,€) is an anti-flag and = 0 if it is a flag. Then the fingerprint is defnied as the multiset of the
entries of |AA'|.

5»

40 Chapter 8. Block Designs and Projective Planes

FingerprintAntiFlag(point, linenr, plane) o

Let my,...,m, be the lines containing point and Ej, ..., E,; the points on the line given by linenr such that
E; is incident with m;. Now label the points of m; as point = P;;,...,Pi,+1 = E; and the lines of E; as line =
Lis. . lint1 = m;. For i # j, each Pj; lies on exactly one line /x5, containing E; for some permutation o;

Define a matrix A, where A;; is the sign of o;; if i # j and A;; = 0 for all i. The partial fingerprint is the multiset of
entries of |JAA’| where A’ denotes the transposed matrix of A.

Look at the above example again:

gap> NrFanoPlanesAtPoints([1,2,3],plane);
[[1, 240171, [2, 24071, [3, 24071
gap> Set (NrFanoPlanesAtPoints([1..plane.v],plane),i->i[2])=[240];
true

gap> PRank@RDS(plane,2);

10

gap> PRank@RDS (plane,3);

21

gap> PRank@RDS(plane,5);

20

gap> FingerprintProjPlane(plane);

[[12,420171, [16, 211]

gap> FingerprintAntiFlag(1,6,plane);
(03,201, [4,51]1

2»

2»

Some functions
for everyday use

This chapter contains a number of functions that did not fit in anywhere else. Some of them might be useful for other
people, too, so they were included here.

9.1 Groups and actions
OnSubgroups (subgroup, aut) F
For a group G and an automorphism aut of G, OnSubgroups (subgroup ,aut) is the image of subgroup under aut
gap> G:=Group((1,2,3),(2,3));
Group([(1,2,3), (2,3) 1)
gap> alpha:=InnerAutomorphism(G,(1,2,3));
~(1,2,3)

gap> OnSubgroups (Subgroup(G, [(2,3)]) ,alpha);
Group([(1,3) 1)

RepsCClassesGivenOrder (group, order) o

RepsCClassesGivenOrder (group, order) returns all elements of order order up to conjugacy. Note that the
representatives are not always the smallest elements of each conjugacy class.

gap> RepsCClassesGivenOrder (SymmetricGroup(5),2);
[(4,8), (2,3)(4,5)]

9.2 Iterators
CartesianIterator (tuplelist) (0]
Returns an iterator for Cartesian (tuplelist)

ConcatenationOfIterators(iterlist) F

ConcatenationOfIterators (iterlist) returns an iterator which runs through all iterators in iferlist. Note that the
returned iterator loops over the iterators in iterlist sequentially beginning with the first one.

gap> it:=Iterator([1,2,3]);;

gap> it2:=Cartesianlterator([[9,10],[11]1]1);;
gap> cit:=ConcatenationOfIterators([it,it2]);;
gap> repeat

> Print (NextIterator(cit),",\c");

> until IsDonelterator(cit);

1,2,3,[9, 11 1,[10, 11 17,

1»

2»

3

5»

42 Chapter 9. Some functions for everyday use

9.3 Lists and Matrices

IsListOfIntegers(list) P
IsListOfIntegers(list) returns IsSubset (Integers, list) if list is a dense list and false otherwise.
List2Tuples(list, int) O

If Size (list) is divisible by int, List2Tuples(list,int) returns a list /isz2 of size int such that Concatenation(
list2)= list and every element of /isz2 has the same size.

gap> List2Tuples([1..6],2);
(C01,2,31,[4,5,61]1

MatTimesTransMat (mat) ¢

does the same as mat*TransposedMat (mat) but uses slightly less space and time for large matrices.

PartitionByFunctionNF([list, f) O

PartitionByFunctionNF (list, f) partitions the list /ist according to the values of the function f defined on /ist.
If f returns fail for some element of /ist, PartitionByFunctionNF(lisz, f) enters a break loop. Leaving the
break loop with ’return;’ is safe because PartitionByFunctionNF treats fail as all other results of f.

PartitionByFunction(list, f) O

PartitionByFunction(list, f) partitions the list list according to the values of the function f defined on list. All
elements, for which f returns fail are omitted, so PartitionByFunction does not necessarily return a partition. If
InfoLevel (InfoRDS) is at least 2, the number of elements for which f returns fail is shown (if fail is returned at
all).

gap> PartitionByFunctionNF([-1..5],x->x"2);
ttol, 0-1,11, 021,031, [41,[51]1
gap> test:=function(x)

> if x>0 then return Sqrt(x);

> else return fail;

> fi;

> end;

function(x) ... end

gap> PartitionByFunction([-1..5],test);
(11,041,051, 021, [31]1

gap> SetInfolevel (InfoRDS,2);

gap> PartitionByFunction([-1..5],test);

#I -2-

(11,041, 051,021, [31]1

gap> PartitionByFunctionNF([-1..5],test);
Error, function returned <fail> called from

brk> return;

tf11,041, (51,021,031, [-1,01]1

1»

2»

3

4»

Section 5. Filters and Categories 43

9.4 Cyclotomic numbers
IsRoot0fUnity(cyc) P
IsRoot0fUnity tests if a given cyclotomic is actually a root of unity.

CoeffList2CyclotomicList(list, root) (0]

CoeffList2CyclogomicList (list, root) takes a list of integers /ist and a root of unity root and returns a list
list2, where list2[i]=list[i]* root(i-1).

AbssquareInCyclotomics(list, root) o

For a list of integers and a root of unity, AbssquareInCyclotomics(list, root) returns the modulus of Sum(CoeffList2Cyclot

list, root)).
CycsGivenCoeffSum(sum, root) O

CycsGivenCoeffSum(sum, root) returns all elements of Z[roor] such that the coefficient sum is sum and all
coefficients are non-negative. The returned list has the following form: The cyclotomic numbers are represented by
coefficients. 9.4.2 can be used to get the algebraic number represented by list. The list is partitioned into equivalence
classes of elements having the same modulus. For each class the modulus is returned. This means that CycsGiven-
CoeffSum returns a list of pairs where the first entry of each pair is the square of the modulus of an element of the
second entry. And the second entry is a list of coefficient lists of cyclotomics in Z[root] having the coefficient sum
sum.

gap> CycsGivenCoeffSum(3,E(3));
tro, rC1,1,1111,
(s, rrco,1,21,00,2,11,01,0,21,[1,2,01, [2,0,11,
(2,10111, 109, ([0,0,31,[0,3,01,[3,00111]1
2))

gap> CycsGivenCoeffSum(Q,]::());
tfo, 0C1,2111, 04 [C0,2],02,0]111]1

9.5 Filters and Categories

The following was originally posted at the GAP forum by Thomas Breuer [Bre05].

Each filter in GAP is either a simple filter or a meet of filters. For example, IsInt and IsPosRat are simple filters,
and IsPosInt is defined as their meet IsInt and IsPosRat.

Each simple filter is of one of the following kinds.

1. property: Such a filter is an operation, the filter value can be computed. The (unary) methods of this operation must
return true or false, and the return value is stored in the argument, except if the argument is of a basic data type
such as cyclotomic (including rationals and integers), finite field element, permutation, or internally represented list
—the latter with a few exceptions. Examples of properties are IsFinite, IsAbelian, IsSSortedList.

2. attribute tester: Such a filter is associated to an operation that has been created via DeclareAttribute, in the sense
that the value is true if and only if a return value for (a unary method of) this operation is stored in the argument.
Currently, attribute values are stored in objects in the filter IsAttributeStoringRep. Examples of attribute testers
are HasSize, HasCentre, HasDerivedSubgroup.

2. property tester: Such a filter is similar to an attribute tester, but the associated operation is a property. So property
testers can return true also if the argument is not in the filter IsAttributeStoringRep. Examples of property
testers are HasIsFinite, HasIsAbelian, HasIsSSortedList.

3. category or representation: These filters are not associated to operations, their values cannot be computed but are
set upon creation of an object and should not be changed later, such that for a filter of this kind, one can rely on the
fact that if the value is true then it was true already when the object in question was created.

1»

44 Chapter 9. Some functions for everyday use

The distinction between representation and category is intended to express dependency on or independence of the
way how the object is stored internally. For example, IsPositionalObjectRep, IsComponentObjectRep, and
IsInternalRep are filters of the representation kind; the idea is that such filters are used in low level methods, and
that higher level methods can be implemented without referring to these filters.

Examples of categories are IsInt, IsRat, IsPerm, ISFFE, and filters expressing algebraic structures, such as Is-
Magma, IsMagmaWithOne, IsAdditiveMagma. When one calls such a filter, one can be sure that no computation is
triggered. For example, whenever a quotient of two integers is formed, the result is clearly in the filter IsRat, but the
system also stores the value of IsInt, i.e., GAP does not support “unevaluated rationals” for which the IsInt value
is computed on demand and then stored.

4. other filters: Some filters do not belong to the above kinds, they are not associated to operations but they are intended
to be set (or even reset) by the user or by functions also after the creation of objects. Examples are IsQuickPosi-
tionList, CanEasilyTestMembership, IsHandledByNiceBasis.

Each meet of filters can involve computable simple filters (properties, attribute and property testers) and not com-
putable simple filters (categories, representations, other filters). When one calls a meet of two filters then the two
filters from which the meet was formed are evaluated (if necessary). So a meet of filters is computable only if at least
one computable simple filter is involved.

IsComputableFilter(filter) F

’IsComputableFilter(filter)’ returns true if a the filter filter is computable. Filters for which *IsComputableFilter’
returns false may be used in *DeclareOperation’.

gap> IsComputableFilter(IsFinite);

true

gap> IsComputableFilter(HasSize);

true

gap> IsComputableFilter(HasIsFinite);

true

gap> IsComputableFilter(IsPositionalObjectRep);
false

gap> IsComputableFilter(IsInt);

false

gap> IsComputableFilter(IsQuickPositionList);
false

gap> IsComputableFilter(IsInt and IsPosRat);
false

gap> IsComputableFilter(IsMagma) ;

false

Bibliography

[Bre05] Thomas Breuer. Re: Filter trouble. Posting at the GAP forum, Jun 2005.

[Bru55] Richard H. Bruck. Difference sets in a finite group. Transactions of the American Mathematical Society,
78(78):464-481, 1955.

[Dem68] Peter Dembowski. Finite Geometries. Number 44 in Ergebnisse der Mathematik und ihrer Genzgebiete.
Springer-Verlag, Berlin Heidelberg, 1968.

[DP67] Peter Dembowski and Fred Piper. Quasiregular collineation groups of finite projective planes. Mathematische
Zeitschrift, 99:53-75, 1967.

[Moo] G. Eric Moorhouse. Data for projective planes.
http://www.uwyo.edu/moorhouse/.

[Mo095] G. Eric Moorhouse. Two-graphs and skew two-graphs in finite geometries. Linear Algebra and its
Applications, 226-228:529-551, 1995.

[R6d06] Marc Roder. Quasiregular Projective Planes of Order 16 — A Computational Approach. PhD thesis,
Technische Universitit Kaiserslautern, 2006.

[Roy] Gordon Royle. Combinatorial catalogues.
http://www.csse.uwa.edu.au/"gordon/data.html.
[Soi06a] Leonard H. Soicher. The design package for GAP.
http://designtheory.org/software/gap_design, 2006. Version 1.3.
[Soi06b] Leonard H. Soicher. The grape package for GAP.
http://www.maths.gmul.ac.uk/~leonard/grape/, 2006. Version 4.3.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted to the
indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before

“permutation group”.

A

AbssquareInCyclotomics, 44
Acknowledgements, 3
Al1Diffsets, 17
Al1DiffsetsNoSort, 17
AllElationsAx, 38
AllElationsCentAx, 38
AllPresentables, 15

An invariant for large lambda, 24

Basic functions for startset generation, /3

Blackbox functions, 25
Brute force methods, /7

Cc

CartesianIterator, 42

Central Collineations, 38

Change of coset vs. brute force, 10
CoeffList2CyclotomicList, 44
Collineations on Baer Subplanes, 39
ConcatenationOfIterators, 42
CosetSignatureOfSet, 19
CosetSignatures, 20

Cyclotomic numbers, 44
CycsGivenCoeffSum, 44

D
DataForQuotientImage, 31
DebugRDS, 4

Definition, 33

Definitions and Objects, 4
Development0fRDS, 35

E

ElationByPair, 38
ExtendedStartsets, 16
ExtendedStartsetsNoSort, 16

F

Filters and Categories, 44

FingerprintAntiFlag, 41
FingerprintProjPlane, 40
First Step: Integers instead of group elements, 8

G
GroupList2PermList, 15
GroupOfHomologies, 39
Groups and actions, 42

H

HomologyByPair, 39
How partial difference sets are represented, /3

IncidenceMatrix, 40
InducedCollineation, 39

InfoRDS, 4

InfoRDS, 21, 43

Installation, 3

Introduction, /2

Invariants for Projective Planes, 40
IsCollineationOfProjectivePlane, 37
IsComputableFilter, 45

IsDiffset, 14
IsIsomorphismOfProjectivePlanes, 37
IsListOfIntegers, 43
IsomorphismProjPlanesByGenerators, 37
IsomorphismProjPlanesByGeneratorsNC, 37
Isomorphisms and Collineations, 37
IsPartialDiffset, 14

IsRoot0fUnity, 44

IsTranslationPlane, 38

Iterators, 42

L
List2Tuples, 43
Lists and Matrices, 43

M
MatchingFGData, 24
MatchingFGDataForOrderedSigs, 32

Index

MatchingFGDataNonGrp, 23
MatTimesTransMat, 43
MaxAutsizeForOrbitCalculation, 24
Methods for calculating ordered signatures, 33
MultiplicityInvariantLargeLambda, 24

N

NewPresentables, 15
NormalSgsForQuotientImages, 31
NormalSgsHavingAtMostNSigs, 25
NormalSubgroupsForRep, 33
NrFanoPlanesAtPoints, 40

(0

OneDiffset, 18

OneDiffsetNoSort, 18

OnSubgroups, 42
OrderedSiglInvariant, 32
OrderedSignature0fSet, 34

Ordered signatures by quotient images, 37
Ordered signatures using representations, 32
OrderedSigs, 33
OrderedSigsFromQuotientImages, 32

P

PartitionByFunction, 43
PartitionByFunctionNF, 43
PermList2GroupList, 15
PermutationRepForDiffsetCalculations, 13

47

PointJoininglinesProjectivePlane, 35
PRank, 40
ProjectiveClosureOfPointSet, 36
ProjectivePlane, 35

R

RDSFactorGroupData, 23
ReducedStartsets, 24
RemainingCompletions, 16
RemainingCompletionsNoSort, 16
RepsCClassesGivenOrder, 42

S

SigInvariant, 21

SignatureData, 25
SignatureDataForNormalSubgroups, 22
Signatures: An important tool, 9
StartsetsInCoset, 26
SuitableAutomorphismsForReduction, 26

T

TestedSignatures, 20
TestedSignaturesRelative, 21
TestSignatureCyclicFactorGroup, 20
TestSignaturelLargeIndex, 20

The Coset Signature, 79

Vv
Verbosity, 4

	Contents
	About this package
	Acknowledgements
	Installation
	Verbosity
	Definitions and Objects

	AllDiffsets and OneDiffset
	A basic example
	First Step: Integers instead of group elements
	Signatures: An important tool
	Change of coset vs. brute force

	General concepts
	Introduction
	How partial difference sets are represented
	Basic functions for startset generation
	Brute force methods

	Invariants for Difference Sets
	The Coset Signature
	An invariant for large lambda
	Blackbox functions

	An Example Program
	Ordered Signatures
	Ordered signatures by quotient images
	Ordered signatures using representations
	Definition
	Methods for calculating ordered signatures

	Block Designs and Projective Planes
	Isomorphisms and Collineations
	Central Collineations
	Collineations on Baer Subplanes
	Invariants for Projective Planes

	Some functions for everyday use
	Groups and actions
	Iterators
	Lists and Matrices
	Cyclotomic numbers
	Filters and Categories

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V

