RDS
A GAP4 Package for Relative Difference Sets

Version 1.8

by

Marc Röder
Department of Mathematics, NUI Galway, Ireland
marc_roeder@web.de

February 2022
Contents

1 About this package 3
 1.1 Acknowledgements 3
 1.2 Installation 3
 1.3 Verbosity 4
 1.4 Definitions and Objects 4
2 AllDiffsets and OneDiffset 6
3 A basic example 8
 3.1 First Step: Integers instead of group elements 8
 3.2 Signatures: An important tool 9
 3.3 Change of coset vs. brute force 10
4 General concepts 12
 4.1 Introduction 12
 4.2 How partial difference sets are represented 13
 4.3 Basic functions for startset generation . 13
 4.4 Brute force methods 17
5 Invariants for Difference Sets 19
 5.1 The Coset Signature 19
 5.2 An invariant for large lambda 24
 5.3 Blackbox functions 25
6 An Example Program 27
7 Ordered Signatures 30
 7.1 Ordered signatures by quotient images 30
 7.2 Ordered signatures using representations 31
 7.3 Definition 32
 7.4 Methods for calculating ordered signatures 32
8 Block Designs and Projective Planes 34
 8.1 Isomorphisms and Collineations 36
 8.2 Central Collineations 37
 8.3 Collineations on Baer Subplanes 38
 8.4 Invariants for Projective Planes 39
9 Some functions for everyday use 41
 9.1 Groups and actions 41
 9.2 Iterators 41
 9.3 Lists and Matrices 42
 9.4 Cyclotomic numbers 43
 9.5 Filters and Categories 43
Bibliography 45
Index 46
1 About this package

The RDS package is meant to help with complete searches for relative difference sets in non-abelian groups. Of course, it also works for abelian groups, but no special features are implemented for this case. In particular, there is no support for multipliers.

RDS has no undocumented functions. While this is generally regarded as a feature, it leads to a quite long manual and a lot of documentation not needed for everyday work. To make reading easier, all but the basic chapters contain a small introductory paragraph pointing out which functions may be interesting for the user and which are merely helper functions called by other functions.

The structure of this manual is as follows: First, there is a chapter about brute force methods which are easy to use but are not suitable for very difficult calculations.

Then, chapter 3 shows the use of the more advanced methods in RDS and explains the basic idea of a complete search for difference sets with this package. After reading this chapter, you should be able to use RDS even for large examples.

The following chapters 4 and 5 contain the documentation of the functions used in a search for difference sets. They explain the concepts and low level functions which provide a lot of control over the searching process. If you are searching for difference sets in several groups of the same order, you may find this helpful.

The next chapter shows an example of calculating a relative difference set using low level functions.

Chapter 7 introduces another invariant for difference sets. The functions for calculating this invariant do only work effectively in a few cases, so this part of RDS is a little bit experimental. However, the invariant is very powerful, so this chapter is kept.

In 8, the methods for generating a BlockDesign in the sense of DESIGN [Soi06a] from a difference set are described. A few functions for analyzing projective planes are given as well.

The final chapter describes a few functions which are not related to difference sets and may be useful in other situations.

1.1 Acknowledgements

I would like to thank U. Dempwolff for supervising the thesis out of which RDS grew, and L. Soicher for many suggestions which greatly improved the usability of this package.

1.2 Installation

RDS depends on Leonard Soicher’s DESIGN [Soi06a] package which, in turn, depends on GRAPE [Soi06b]. You need to install these packages before you can run RDS.

1. Download the package archive rdsver.ext where ver is some version number and ext is an extension like tar.bz2, tar.gz, -win.zip or zoo.

2. Copy the archive to the directory where the other packages live. This is either the directory pkg in the GAP root path or a local directory in your home directory (on most unix-like systems, this will probably be ~/gap/pkg/).
3. change directory to your package directory and unpack the archive by using the right one of the following commands:

 `tar -xjf rdsver.tar.bz2`
 `tar -xzr rdsver.tar.gz`
 `zoo -extract rdsver.zoo`
 `unzip rdsver-win.zip`

 (replace ver with the version number)

4. start GAP. If you have unpacked the archive to `gap/pkg` in your home directory, you might have to use `”gap -l ’homedir/gap’ ”` where `homedir` is the path of your home directory (use `’pwd’` to find out what it is, if you don’t know it)

5. Type `LoadPackage("rds");` to load RDS

For a test, see the examples in chapters 2 and 3.

1.3 Verbosity

There are two info classes that control the about of additional information RDS prints:

1. ▶ InfoRDS

 Some methods of the RDS package print additional information if InfoRDS is set to a level of 1 or higher. At level 0, no information is output. The default value is 1.

2. ▶ DebugRDS

 Some methods of the RDS package print additional information if DebugRDS is set to a level of 1 or higher. At level 0, no information is output. The default level is 0. Expect a lot of output at level 2.

1.4 Definitions and Objects

This section lists the definition of ordinary and relative difference sets as well as the concept of partial difference sets and their development. This will be repeated in 4.1 where a notion of equivalence is introduced and the implementation in RDS is discussed.

Let G be a finite group and $N \subseteq G$. The set $R \subseteq G$ with $|R| = k$ is called a “relative difference set of order $k - \lambda$ relative to the forbidden set N” if the following properties hold:

(a) The multiset \{ $a \cdot b^{-1}$: $a, b \in R$ \} contains every nontrivial ($\neq 1$) element of $G - N$ exactly λ times.

(b) \{ $a \cdot b^{-1}$: $a, b \in R$ \} does not contain any non-trivial element of N.

Let $D \subseteq G$ be a difference set, then the incidence structure with points G and blocks \{ Dg $|$ $g \in G$ \} is called the development of D. In short: devD. Obviously, G acts on devD by multiplication from the right.

Relative difference sets with $N = 1$ are called (ordinary) difference sets. The development of a difference set with $N = 1$ and $\lambda = 1$ is projective plane of order $k - 1$.

In group ring notation a relative difference set satisfies

$$RR^{-1} = k + \lambda(G - N).$$

The set $D \subseteq G$ is called partial relative difference set with forbidden set N, if

$$DD^{-1} = \kappa + \sum_{g \in G - N} v_g g$$
holds for some $1 \leq \kappa \leq k$ and $0 \leq v_g \leq \lambda$ for all $g \in G - N$. If D is a relative difference set then D is also a partial relative difference set.

IMPORTANT NOTE

RDS implicitly assumes that the every partial difference set contains the identity element (see the notion of equivalence in 4.1 for the mathematical reason). However, the identity must not be contained in the lists representing partial relative difference sets.

So in RDS, the difference set $\{ (), (1,2,3,4,5,6,7), (1,4,7,3,6,2,5) \}$ is represented by the list $[(1,2,3,4,5,6,7), (1,4,7,3,6,2,5)]$. And no set of three non-trivial permutations will be accepted as an ordinary difference set of $\text{Group}((1,2,3,4,5,6,7))$.

For this reason the lists returned by functions like 4.4.1 do only contain non-trivial elements and look too short.
This chapter contains a number of examples as a very quick introduction to a few brute-force methods which can be used to find all (or just one) relative difference sets in a small group. Full documentation of these functions including all parameters can be found in section 4.4.

Do not expect too much from these methods alone! If you want to find examples of relative difference sets in larger groups, you should familiarize with the notion of coset signatures by also reading the next chapter.

The functions 4.4.1 and 4.4.3 present the easiest way to calculate relative difference sets.

For a quick start, try this:

```gap
LoadPackage("rds");
G:=CyclicGroup(7);
AllDiffsets(G);
[ [ f1, f1^3 ], [ f1, f1^5 ], [ f1^2, f1^3 ], [ f1^2, f1^6 ], [ f1^4, f1^5 ],
  [ f1^4, f1^6 ] ]
OneDiffset(G);
[ f1, f1^3 ]
```

The first is the set of all ordinary difference sets of order 2 in the cyclic group of order 7. Ok, they look too small (recall that the order of a difference set is the number \(k \) of elements it contains minus the multiplicity \(\lambda \)). Here is the reason:

Without loss of generality, every difference set contains the identity element of the group it lives in. RDS knows this and assumes it implicitly. So difference sets of length \(n \) are represented by lists of length \(n - 1 \).

We can calculate all ordinary difference sets in \(G \) which contain the last element using 4.4.2. Observe, that 4.4.1 calculates partial difference sets by adding elements to the given list which are lexicographically larger than the last one of this list:

```gap
AllDiffsetsNoSort([Set(G)[7]],G);
[ [ f1^6, f1^2 ], [ f1^6, f1^4 ] ]
AllDiffsets([Set(G)[7]],G);
[ ]
```

You can also generate relative difference sets. Here we must give a partial difference set to start with (the empty list is ok) and a forbidden set. Notice that a forbidden subgroup cannot be input as a group. It has to be converted to a set.

```gap
G:=ElementaryAbelianGroup(81);
<pc group of size 81 with 4 generators>
N:=Subgroup(G,GeneratorsOfGroup(G)[[1,2]]);
Group([ f1, f2 ]); OneDiffset([],Set(N),G);
[ f3, f4, f1*f3^2, f2*f3*f4, f1^2*f4^2, f2*f3^2*f4^2, f1*f2^2*f3^2*f4,
  f1^2*f2^2*f3*f4^2 ]
```
If the parameter λ is not given, it is set to 1. Of course, we can also find difference sets with $\lambda > 1$. Here is a $(12, 2, 12, 6)$ difference set in $SL(2, 3)$:

```gap
gap> G:=SmallGroup(24,3);  
<pc group of size 24 with 4 generators>
gap> N:=First(NormalSubgroups(G),i->Size(i)=2);  
Group([ f4 ])
gap> OneDiffset([],Set(N),G,6);  
[ f1, f2, f3, f1^2, f1*f2, f1*f3, f2*f3, f1*f2*f3, f1^2*f2*f4, f1^2*f3*f4,  
f1^2*f2*f3*f4 ]
```

To test if a set is a relative difference set, 4.3.2 can be used:

```gap
gap> a:=(1,2,3,4,5,6,7);  
(1,2,3,4,5,6,7)
gap> IsDiffset([a,a^3],Group(a));  #an ordinary difference set  
true
gap> IsDiffset([a,a^2,a^4],Group(a));  #no ordinary difference set  
false
gap> IsDiffset([a,a^2,a^4],Group(a),2);  #diffset with $\lambda=2$  
true
```

In some cases, 4.4.1 and 4.4.3 will refuse to work. A solution for this is to calculate IsomorphismPermGroup for your group and then work with the image under this isomorphism.

See 4.4 for details.
A basic example

This chapter shows a basic example of how to use RDS. Some of the functions used here make choices which might not be optimal but should suffice for most “everyday” situations. If you plan to do more involved computations, you should also see the other chapters to learn about the concepts behind these high-level functions.

Here we will construct relative difference sets of Dembowski-Piper type “b” and order 9 as an example. We will take the elementary abelian group as an example. The general idea is as follows: Find a “nice” normal subgroup U and generate relative difference sets coset by coset. The normal subgroup has to be chosen such that we know how many elements to choose from each coset modulo U.

The calculations here are very easy, a more demanding example can be found in chapter 6.

3.1 First Step: Integers instead of group elements

Difference sets are represented by lists of integers. Every difference set is assumed to contain 1. This is assumed implicitly. So the lists representing difference sets must not contain 1 (a partial difference set of length n is hence represented by a list of length $n - 1$). If a partial difference set contains 1, many functions will produce errors.

To find Difference sets in a group, say G, begin with generating the group (and forbidden subgroup) and defining the parameters. Like this:

```gap
gap> LoadPackage("rds");
----------------------------------------------------------------
Loading RDS 1.2
by Marc Roeder (marc_roeder@web.de)
----------------------------------------------------------------
true
gap> k:=9;;lambda:=1;;groupOrder:=81;;
gap> forbiddenGroupOrder:=9;;
gap> G:=ElementaryAbelianGroup(groupOrder);
<pc group of size 81 with 4 generators>
gap> data:=PermutationRepForDiffsetCalculations(G);;
gap> N:=Subgroup(G,GeneratorsOfGroup(G){[1,2]});
Group([ f1, f2 ])
gap> Size(N)=forbiddenGroupOrder;  #just a test...
true
```

Once we have calculated $Gdata$, this will be used very often to represent the group G as it contains much more information.

3.2 Signatures: An important tool

The “signature” of a subset $S \subseteq G$ of a group relative to a normal subgroup U is the multiset of numbers of elements S contains from each coset modulo U. Possible values of these numbers can be calculated a priori for relative difference sets.

``` gap
gap> sigdat:=SignatureData(Gdata,N,k,lambda,10^5);;
```

The argument 10^5 depends on your degree of impatience. Larger numbers take more time in this step, but give better results for later reduction steps.

Now we will look for a “nice” normal subgroup. A normal subgroup is “nice”, if it has only few signatures and the number of different entries in each signature is low. If you have different choices here do some experiments, to see what works. Let’s see what we have:

``` gap
gap> NormalSgsHavingAtMostNSigs(sigdat,1,[1..7]);
[ rec( sigs := [ [ 3, 3, 3 ] ], subgroup := Group([ f1, f2, f3 ]) ),
  rec( sigs := [ [ 3, 3, 3 ] ], subgroup := Group([ f1, f2, f4 ]) ),
  rec( sigs := [ [ 3, 3, 3 ] ], subgroup := Group([ f1, f2, f3*f4^2 ]) ) ]
```

The second parameter of 5.3.2 is the maximal number of signatures the subgroup may have. The third parameter gives the desired lengths of the signatures (the index of the normal subgroup).

So in this example we have no real choice. Let’s take the first group for U. The signature means that we have to get 3 elements from each coset modulo U. So we generate startsets of length 2 in the trivial coset U (representing partial relative difference sets of length 3). This could be done using 4.4.1, of course. But here we will use another method. The function 5.3.4 generates startsets in U by generating an initial set of startsets and then raising the length of each startset by 1. Then a reduction using signatures and automorphism is performed. This is done until all startsets have the desired length or no startset remains (in which case there is no relative difference set). For the reduction, a suitable set of automorphisms must be chosen. This is done by the function 5.3.3:

``` gap
gap> U:=last[1].subgroup;
Group([ f1, f2, f3 ])
```

``` gap
gap> auts:=SuitableAutomorphismsForReduction(Gdata,U);
[ <permutation group of size 303264 with 8 generators> ]
```

``` gap
gap> startsets:=StartsetsInCoset([],U,N,2,auts,sigdat,Gdata,lambda);
#I Size 18
#I 1/ 0 @ 0:00:00.071
#I Size 8
#I 1/ 0 @ 0:00:00.038
#I -->1 @ 0:00:00.042
[ [ 4, 22 ] ]
```

For larger examples, this takes a while. Taking 10^6 (or even more) for the generation of sigdat can save some time here. A few remarks about the parameters of 5.3.4. The first parameter $[]$ is the set of startsets which we start with (as we just started, this is empty). The second parameter is the coset we use to generate startsets and third parameter is the forbidden subgroup. The fourth parameter is the length of the startsets we want to generate (remember that 1 is assumed to be in every startset without being listed. So we want startsets of size 3 represented by lists of length 2. Hence the 2 in this place). Instead of auts a suitable list of groups of automorphisms of G in permutation representation may be inserted. These are used for the reduction of startsets. For large groups $\text{auts}[1]$ it is a good idea to add some subgroups of $\text{auts}[1]$ to the list (ascending in order) auts, as the reduction is done using the first group in the list and then reducing the already reduced list again using the next group.
3.3 Change of coset vs. brute force

Now we have startsets of length 2 in U and there are two possibilities:

(1) Find 3 more elements from another coset like this:

```gap
gap> cosets:=RightCosets(G,U);
[ RightCoset(Group( [ f1, f2, f3 ] ),<identity> of ...),
  RightCoset(Group( [ f1, f2, f3 ] ),f4),
  RightCoset(Group( [ f1, f2, f3 ] ),f4^2) ]
gap> startsets:=StartsetsInCoset(startsets,cosets[2],N,5,auts,sigdat,Gdata,lambda);
#I Size 27
#I 1/ 0 @ 0:00:00.127
#I Size 11
#I 1/ 0 @ 0:00:00.058
#I -->1 @ 0:00:03.311
#I Size 2
#I 2/ 2 @ 0:00:00.015
#I -->2 @ 0:00:00.015
[ [ 4, 22, 5, 28, 73 ], [ 4, 22, 5, 28, 77 ] ]
```

And 3 more from the last one (of course, we could also change to force, but it seems to work this way...).

```gap
gap> startsets:=StartsetsInCoset(startsets,cosets[3],N,8,auts,sigdat,Gdata,lambda);
#I Size 9
#I 1/ 0 @ 0:00:00.056
#I Size 1
#I 1/ 1 @ 0:00:00.006
#I -->1 @ 0:00:00.009
#I Size 1
#I 1/ 1 @ 0:00:00.006
#I -->1 @ 0:00:00.006
[ [ 4, 22, 5, 28, 73, 37, 66, 78 ] ]
```

So we found one difference set of order 9 in the elementary abelian group of order 81. To get the difference set containing 1 explicitly and as a subset of G, say

```gap
gap> PermList2GroupList(Concatenation(startsets[1],[1]),Gdata);
[ f3, f1*f3^2, f4, f2*f3*f4, f1*f2^2*f3^2*f4, f1^2*f4^2, f2*f3^2*f4^2,
  f1^2*f2^2*f3*f4^2, <identity> of ... ]
```

(2) Do a brute force search. Here we have to convert the forbidden group N into a list of integers Np. And we have to raise the length of the startsets by one before we can start. This is due to the ordering we chose (which is not necessarily compatible with the cosets modulo U).

```gap
gap> Np:=GroupList2PermList(Set(N),Gdata);
[ 1, 2, 3, 6, 7, 10, 16, 19, 32 ]
gap> startsets:=ExtendedStartsetsNoSort(startsets,[1..groupOrder],Np,8,Gdata,lambda);
gap> Size(startsets);
54
```

So we found 162 difference sets.
Now `foundsets` contains 162 relative $(9,9,9,1)$-difference sets (represented by lists of length 8). These are all equivalent (as seen above). Equivalence can be tested like this:

```gap
gap> ReducedStartsets(foundsets,[Gdata.Aac],i->true,Gdata);
#I  Size 162
#I  1/ 0 @ 0:00:00.001
[ [ 4, 22, 36, 39, 49, 50, 60, 61 ] ]
```
General concepts

In this chapter, we first give a definition of relative difference sets and outline a part of the theory. Then we have a quick look at the way difference sets are represented in RDS.

After that, some basic methods for the generation of difference sets are explained.

If you already read chapter 3 and want to know what 5.3.4 really does, you may want to read this chapter. The most important method here is 4.3.1 as this is the function all searches start with. The main high-level function for difference set generation in this chapter is 4.3.9.

4.1 Introduction

Let G be a finite group and $N \subseteq G$. The set $R \subseteq G$ with $|R| = k$ is called a “relative difference set of order $k - \lambda$ relative to the forbidden set N” if the following properties hold:

(a) The multiset $\{a \cdot b^{-1} : a, b \in R\}$ contains every nontrivial ($\neq 1$) element of $G - N$ exactly λ times.

(b) $\{a \cdot b^{-1} : a, b \in R\}$ does not contain any non-trivial element of N.

Relative difference sets with $N = 1$ are called (ordinary) difference sets. As a special case, difference sets with $N = 1$ and $\lambda = 1$ correspond to projective planes of order $k - 1$. Here the blocks are the translates of R and the points are the elements of G.

In group ring notation a relative difference set satisfies

$$RR^{-1} = k + \lambda(G - N).$$

The set $D \subseteq G$ is called partial relative difference set with forbidden set N, if

$$DD^{-1} = \kappa + \sum_{g \in G - N} v_g g$$

holds for some $1 \leq \kappa \leq k$ and $0 \leq v_g \leq \lambda$ for all $g \in G - N$. If D is a relative difference set then, obviously, D is also a partial relative difference set.

Two relative difference sets $D, D' \subseteq G$ are called strongly equivalent if they have the same forbidden set $N \subseteq G$ and if there is $g \in G$ and an automorphism α of G such that $D' g^{-1} = D^\alpha$. The same term is applied to partial relative difference sets.

Let $D \subseteq G$ be a difference set, then the incidence structure with points G and blocks $\{Dg \mid g \in G\}$ is called the development of D. In short: devD. Obviously, G acts on devD by multiplication from the right.

If D is a difference set, then D^{-1} is also a difference set. And devD^{-1} is the dual of devD. So a group admitting an operation some structure defined by a difference set does also admit an operation on the dual structure. We may therefore change the notion of equivalence and take ϕ to be an automorphism or an anti-automorphism. Forbidden sets are closed under inversion, so this gives a “weak” sort of strong equivalence.
4.2 How partial difference sets are represented

Let G be a group. We define an enumeration $\{g_1, \ldots, g_n\} = G$ and represent $D \subseteq G$ as a list of integers (where, of course, i represents g_i for all $1 \leq i \leq n$). So the automorphism group of G is represented as a permutation group of degree n. One of the operations performed most often by methods in RDS is the calculation of quotients in G. So we calculate a look-up table for this.

This pre-calculation is done by the operation 4.3.1. So before you start generating difference set, call this function and work with the data structure returned by it.

For an exhaustive search, the ordering of G is very important. To avoid generating duplicate partial difference sets, we would like to represent partial difference sets by sets, i.e. ordered lists. But in fact, RDS does not assume that partial difference sets are sets. The operations 4.3.9 and 4.4.1 assume that the last element of partial difference set is its maximum. But they don’t test it. So if you start from scratch, these methods generate difference sets which are really sets. Whereas the NoSort versions disregard the ordering of G and will produce duplicates.

The reason for this seemingly strange behaviour is the following: Assume that we have a normal subgroup $U \leq G$ and know that every difference set $D \subseteq G$ contains exactly n_i elements from the ith coset modulo U. Then it is natural to generate difference sets by first searching all partial difference sets of length n_1 containing entirely of elements of the first coset modulo U and then proceed with the other cosets.

This method of difference set generation is normally not compatible with the ordering of G. This is why partial difference sets are not required to be sets. See chapter 6 for an example.

4.3 Basic functions for startset generation

Defining an enumeration of the a group G, every relative difference set may be represented by a list of integers. Indexing G in this way has the advantage of the automorphism group of G being a permutation group acting on the index set for G. As relative difference sets are normally calculated in small groups, it is possible to store a complete multiplication table of the group in terms of the enumeration.

If not stated otherwise, partial difference sets are always considered to be lists of integers. Note that it is not required for a partial difference set to be a set.

For a group $group$, `PermutationRepForDiffsetCalculations(group)` returns a record containing:

1. the group $G=group$,
2. the sorted list $Glist=\text{Set}(group)$,
3. the automorphism group A of $group$,
4. the group Aac, which is the permutation action of A on the indices of $Glist$,
5. $\text{ActionHomomorphism}(A, Glist)$,
6. the group Ai of anti-automorphisms of $group$ acting on the indices of $Glist$,
7. the multiplication table diffTable of $group$ in a special form.

diffTable is a matrix of integers defined such that $\text{diffTable}[i][j]$ is the position of $Glist[i](Glist[j])^{-1}$ in $Glist$ with $Glist[1]=\text{One}(group)$.

`PermutationRepForDiffsetCalculations` runs into an error if $\text{Set}(group)[1]$ is not equal to $\text{One}(group)$.

If `autgrp` is given, `PermutationRepForDiffsetCalculations` will not calculate the automorphism group of `group` but will take `autgrp` instead without any test.

If $\text{Set}(group)[1]$ is not equal to $\text{One}(group)$, then 4.3.1 returns an error message. In this case, calculating a permutation representation helps:
Chapter 4. General concepts

\begin{verbatim}
gap> G:=SL(2,3);
SL(2,3)
gap> Gdata:=PermutationRepForDiffsetCalculations(G);
Error, smallest element of group is not the identity. Try 'IsomorphismPermGroup' called from
\end{verbatim}

This function tests if \texttt{diffset} is a relative difference set with forbidden set \texttt{forbidden} and parameter \texttt{lambda} in the group \texttt{group}. If \texttt{Gdata} is the record calculated by 4.3.1, \texttt{diffset} and \texttt{forbidden} have to be lists of integers. If a group \texttt{group} is given, \texttt{diffset} and \texttt{forbidden} must consist of elements of this group.

If \texttt{forbidden} is not given, it is assumed to be trivial. If \texttt{lambda} is not given, it is set to 1. Note that 1 (\texttt{One(group)}, respectively) must not be element of \texttt{diffset}.

\begin{verbatim}
gap> a:=(1,2,3,4,5,6,7);
(1,2,3,4,5,6,7)
gap> IsDiffset([a,a^3],Group(a));
true
gap> IsDiffset([a,a^3],Group(a),2);
false
gap> IsPartialDiffset([a,a^4],Group(a),2);
true
gap> Gdata:=PermutationRepForDiffsetCalculations(Group(a));;
gap> IsDiffset([2,4],Gdata);
true
\end{verbatim}

A partial difference set may be converted from a list of group elements to a list of integers using
Section 3. Basic functions for startset generation

4 ▶ GroupList2PermList(list, Gdata)

converts a list of group elements to integers according to the enumeration given in Gdata.Glist. Here Gdata is a record containing .diffTable as returned by 4.3.1.

The inverse operation is performed by

5 ▶ PermList2GroupList(list, Gdata)

converts a list of integers into group elements according to the enumeration given in Gdata.Glist. Here Gdata is a record containing .diffTable as returned by 4.3.1.

```
gap> G:=DihedralGroup(6);;
gap> N:=NormalSubgroups(G)[2];
gap> Group([f2])
gap> dat:=PermutationRepForDiffsetCalculations(G);
gap> Nperm:=GroupList2PermList(Set(N),dat);
[ 1, 3, 5 ]
```

In the following functions the record Gdata has to contain a matrix .diffTable as returned by 4.3.1.

```
6 ▶ NewPresentables(list, newel, table)
 ▶ NewPresentables(list, newel, Gdata)
 ▶ NewPresentables(list, newlist, Gdata)
 ▶ NewPresentables(list, newlist, table)

NewPresentables(list, newel, Gdata) takes a record Gdata as returned by PermutationRepForDiffsetCalculations(group). For NewPresentables(list, newel, table), table has to be the multiplication table in the form of NewPresentables(list, newel, Gdata.diffTable)

The method returns the unordered list of quotients \(d_1\text{newel}^{-1}\) with \(d_1 \in \text{list} \cup \{1\}\) (in permutation representation).

When used with a list newlist, a list of quotients \(d_1d_2^{-1}\) with \(d_1 \in \text{list} \cup \{1\}\) and \(d_2 \in \text{newlist}\) is returned.

7 ▶ AllPresentables(list, table)
 ▶ AllPresentables(list, Gdata)

Let list be a list of integers representing elements of a group defined by Gdata (or table). AllPresentables(list,table) returns an unordered list of quotients \(ab^{-1}\) for all group elements \(a,b\) represented by integers in list. If \(1 \in \text{list}\), an error is issued. The multiplication table table has to be of the form as returned by 4.3.1. And Gdata is a record as calculated by 4.3.1.

```
gap> G:=CyclicGroup(7);;
dat:=PermutationRepForDiffsetCalculations(G);
gap> AllPresentables([2,3],dat);
[2, 3, 7, 2, 7, 6]
gap> NewPresentables([2,3],4,dat);
[4, 5, 6, 3, 7, 2]
gap> AllPresentables([1,2,3],dat);
Error...
```
Chapter 4. General concepts

 RemainingCompletions( diffset, completions [, forbidden], Gdata [, lambda] )
 RemainingCompletionsNoSort( diffset, completions [, forbidden], table [, lambda] )

For a partial difference set diffset, RemainingCompletions(diffset,completions,Gdata) returns a subset of the set completions, such that each of its elements may be added to diffset without it loosing the property to be a partial difference set. Only elements greater than the last element of diffset are returned.

For partial relative difference sets, forbidden is the forbidden set.

RemainingCompletionsNoSort does also return elements from completions which are smaller than diffset[Size(diffset)].

```gap
gap> G:=CyclicGroup(7);;
gap> RemainingCompletionsNoSort([4],[1..7],dat);
[2, 3]
gap> RemainingCompletionsNoSort([4],[1..7],dat,2);
[2, 3, 6, 7]
gap> RemainingCompletions([4],[1..7],dat);
[]
gap> RemainingCompletions([4],[1..7],dat,2);
[6, 7]
```

ExtendedStartsets( startsets, completions, [forbiddenset][, aim], Gdata [, lambda] )
ExtendedStartsetsNoSort( startsets, completions, [forbiddenset][, aim], Gdata [, lambda] )

For a set of partial (relative) difference sets startsets, the set of all extensions by one element from completions is returned. Here an “extension” of a partial difference set S is a list which has one element more than S and contains S. Here completions is a set of elements which may be appended to the lists in startsets to generate new partial difference sets. For relative difference sets, the forbidden set forbiddenset must be given. And the integer aim gives the desired total length, i.e. the number of elements of completions that have to be added to each startset plus its length. Note that the elements of startset are always extended by one element (if they can be extended). aim does only tell how many elements from completions you want to add. A partial difference set is only be extended, if there are enough admissible elements in completions, so if for some S ∈ startsets, we have less than aim - Size(S) elements in completions which can be added to S, no extension of S is returned.

If lambda is not passed as a parameter, it is assumed to be 1.

Note that ExtendedStartsets does use 4.3.8 while ExtendedStartsetsNoSort uses 4.3.8. Note that the partial difference sets generated with ExtendedStartsetsNoSort are not sets (i.e. not sorted). This may result in doing work twice. But it can also be useful, especially when generating difference sets “coset by coset”.

```gap
gap> G:=CyclicGroup(7);;
gap> ExtendedStartsets=startsets:=[[2],[4],[6]];,
[2, 4], [2, 6]
gap> ExtendedStartsets(extendedStartsets,1..7],dat);
[2, 4]
```

If lambda is not passed as a parameter, it is assumed to be 1.
4.4 Brute force methods

The following methods can be used to find (partial) difference sets by brute force. More examples are contained in chapter 2.

1. \texttt{AllDiffsets( \textit{partial}, \textit{group}, [\textit{lambda}] )}
2. \texttt{AllDiffsets( \textit{partial}, \textit{aim}, \textit{forbidden}, \textit{group}, [\textit{lambda}] )}
3. \texttt{AllDiffsets( \textit{partial}, \textit{Gdata}, [\textit{lambda}] )}
4. \texttt{AllDiffsets( \textit{partial}, \textit{aim}, \textit{forbidden}, \textit{Gdata}, [\textit{lambda}] )}
5. \texttt{AllDiffsets( \textit{partial}, \textit{completions}, \textit{aim}, \textit{forbidden}, \textit{Gdata}, \textit{lambda} )}

Let \textit{partial} be a list of elements of the group \textit{group} which form a partial relative difference set with parameter \textit{lambda} and forbidden set \textit{forbidden} (which is also a set of group elements). That means that the every non-trivial element in the list of quotients in elements of \textit{partial} occurs at most \textit{lambda} times and no element of \textit{forbidden} is in this set. Then \texttt{AllDiffsets} returns the list of all partial relative difference sets of length \textit{aim} with parameter \textit{lambda} and forbidden set \textit{forbidden} which contain \textit{partial}. Only those partial relative difference sets will be constructed, which start with \textit{partial} and continue with elements larger than the last element in \textit{partial}.

To calculate all difference sets which contain \textit{partial} as a subset, you can use 4.4.2.

Note that a difference set is also assumed to contain the identity element, but this does not occur in the returned lists. So a returned difference set contains \textit{aim} elements but actually represents a set of length \textit{aim}+1, as it still is a partial relative difference set when the identity element is added. If \textit{partial} is not given or the empty set, all difference set in the group \textit{group} are calculated. If \textit{lambda} is not given, it is set to 1. Without \textit{forbidden}, ordinary difference sets are calculated. If \textit{aim} is not given, it is set to the size of a full relative difference set with forbidden set \textit{forbidden} and parameter \textit{lambda}.

Instead of using a group \textit{group}, you can also use the data record \textit{Gdata} returned by 4.4.1. In this case, \textit{partial} and \textit{forbidden} must be lists of integers. In the last form, \textit{completions} must be a list of integers and \texttt{AllDiffsets} does only extend \textit{partial} by elements from \textit{completions}.

1. \texttt{AllDiffsetsNoSort( \textit{partial}, \textit{group} )}
2. \texttt{AllDiffsetsNoSort( \textit{partial}, \textit{Gdata} )}
3. \texttt{AllDiffsetsNoSort( \textit{partial}, \textit{completions}, \textit{aim}, \textit{forbidden}, \textit{group}, [\textit{lambda}] )}
4. \texttt{AllDiffsetsNoSort( \textit{partial}, \textit{completions}, \textit{aim}, \textit{forbidden}, \textit{Gdata}, [\textit{lambda}] )}

This calculates all partial relative difference sets which contain the partial relative difference set \textit{partial}. The returned value is a set of lists. Each of the returned lists starts with the list \textit{partial}. If \textit{partial} is not a partial relative difference set, the empty list is returned.

Note that despite the name, \texttt{AllDiffsetsNoSort} does not calculate all difference sets as unordered lists. It just calculates all difference sets which contain \textit{partial} as a subset.

As it does not only append larger elements to \textit{partial}, \texttt{AllDiffsetsNoSort} works for all groups.

If called with \textit{group} rather than \textit{Gdata}, 4.4.1 and 4.4.2 call 4.3.1. They then work with sets of integers as difference sets and convert the result back into group notation.

As 4.3.1 refuses to work if the smallest element of the group is not 1, this does not always work. So a permutation representation for \textit{group} is calculated in this case. However, this is only done for the NoSort version and if \textit{partial} is empty. Here is an example:

```gap>
m:=[
 [0,1,0,0,0,0,0],
 [0,0,1,0,0,0,0],
 [0,0,0,1,0,0,0],
 [0,0,0,0,1,0,0],
 [0,0,0,0,0,1,0],
 [0,0,0,0,0,0,1],
```
The reason for this is the fact that 4.4.1 generates difference sets from partial by appending only elements which are larger than the last element of partial. In a permutation representation, the ordering will be different from the original one, so GAP refuses to calculate the permutation representation and issues an error.

4.4.2 first appends one element regardless of ordering and then only larger ones.

This function works exactly like 4.4.1, but stops once a (partial) relative difference set is found. This (partial) relative difference set is then returned. If no set with the requested property exists, the empty list is returned.

If OneDiffset is called using Gdata and lists of integers as partial and forbidden, then the returned difference set is the lexicographically smallest one starting with partial. If the group-form is used and partial is not empty, OneDiffset does only work, if the smallest element of group is the identity. This is not the case for matrix groups in general.

This works exactly as 4.4.2 does, but stops once a set with the desired properties is found and returns it. If no difference set exists, the empty list is returned.
5

Invariants for Difference Sets

This chapter contains an important tool for the generation of difference sets. It is called the “coset signature” and is an invariant for equivalence of partial relative difference sets. For large \( \lambda \), there is an invariant calculated by 5.2.1. This invariant can be used complementary to the coset signature and is explained in section 5.2.

Most of the methods explained here are not commonly used. If you do not want to know how coset signatures work in detail, you can safely skip a large part of this and go straight to the explanation of 5.1.8 and 5.1.12.

The functions 5.1.9, 5.1.11 will be interesting for you, if you look for difference sets with the same parameters in different groups. 5.1.8 and 5.1.7

The last section (5.3) of this chapter has some functions which allow the user to use coset signatures with even less effort. But be aware that these functions make choices for you that you probably do not want if you do very involved calculations. In particular, the coset signatures are not stored globally and hence cannot be reused. For a demonstration of these easy-to-use functions, see chapter 3

5.1 The Coset Signature

Let \( R \subseteq G \) be a (partial) relative difference set (for definition see 4.1) with forbidden set \( N \subseteq G \). Let \( U \leq G \) be a normal subgroup and \( C = \{g_1, \ldots, g_{|G/U|}\} \) be a system of representatives of \( G/U \).

The intersection number of \( R \) with \( U g_i \) is defined as \( v_i = |R \cap U g_i| \). For every normal subgroup \( U \leq G \) the multiset \( \{|R \cap U g_i|; g_i \in C\} \) is called “coset signature of \( R \) (relative to \( U \)).

Let \( D \subseteq G \) be a relative difference set and \( \{v_1, \ldots, v_{|G/U|}\} \) its coset signature. Then the following equations hold (see [Bru55],[Röd06]):

\[
\sum v_i = k \\
\sum v_i v_{ij} = \lambda (|U| - |U \cap N|) + k \\
\text{for } g_i \notin U
\]

where \( v_{ij} = |D \cap g_i g_j U| \). If the forbidden set \( N \) is a subgroup of \( G \) we have \( |g_i U \cap N| \) is either 0 or equal to \( |U \cap N| \).

Given a group \( G \), the forbidden set \( N \subseteq G \) and some normal subgroup \( U \leq G \), the right sides of this equations are known. So we may ask for tuples \( \{v_1, \ldots, v_{|G/U|}\} \) solving this system of equations. Of course, we index the \( v_i \) with the elements of \( G/U \), so the last equation poses conditions to the ordering of the tuple \( \{v_1, \ldots, v_{|G/U|}\} \).

So we call any multiset \( \{v_1, \ldots, v_{|G/U|}\} \) solving the above equations an “admissible signature” for \( U \).

1 ▶ CosetSignatureOfSet( \( set \), \( cosets \) )

CosetSignatureOfSet( \( set, cosets \) ) returns the ordered list of intersection numbers of \( set \). That is, the size of the intersection of \( set \) with each Element of \( cosets \).

Note that it is not tested, if \( cosets \) is really a list of cosets. CosetSignatureOfSet( \( set, cosets \) ) works for any List \( set \) and any list of lists \( cosets \). So be careful!
Chapter 5. Invariants for Difference Sets

gap> G:=SymmetricGroup(5);;
gap> A:=AlternatingGroup(5);;
gap> CosetSignatureOfSet([[1,2),(1,5),(1,2,3)],RightCosets(G,A));
[ 1, 2 ]
gap> CosetSignatureOfSet([[1,2),(1,5),(1,2,3)],[A]);
[ 1 ]
gap> CosetSignatureOfSet([[1,2),(1,5),(1,2,3)],[[(1,2),(1,2,3)],[[3,2,1]]]);
[ 0, 2 ]

2 ▶ CosetSignatures( Gsize, Usize, diffsetorder )

CosetSignatures( Gsize, Usize, diffsetorder ) returns all Gsize/Usize tuples such that the sum of the squares of each tuple equals Usize+diffsetorder. And the sum of each tuple equals diffsetorder+1.

These are necessary conditions for signatures of difference sets and normal subgroups of order Usize in groups of order Gsize (see 5.1).

CosetSignatures( Gsize, Nsize, Usize, Intersectsizes, k, lambda ) Calculates all multiset meeting some conditions for signatures of relative difference sets and normal subgroups of order Usize in groups of order Gsize (see 5.1). Here Nsize is the size of the forbidden group, Intersectsizes is a list of integers determining the size of the intersection of the forbidden set and the normal Subgroup of order Usize. The parameters k and lambda are the usual ones for designs.

CosetSignatures returns a list containing one pair for each entry i of Intersectsizes. The first entry of this pair is [Gsize, Nsize, Usize, i, k, lambda] and the second one is a list of admissible signatures with these parameters.

gap> CosetSignatures(256,16,64,[1,4,8,16],17,1);
[ [ [ 256, 16, 64, 1, 17, 1 ], [ 256, 16, 64, 4, 1, 17, 1 ], [ 256, 16, 64, 8, 4, 1, 17, 1 ], [ 256, 16, 64, 16, 8, 4, 17, 1 ] ],
  [ [ 3, 4, 4, 6 ] ], [ 4, 4, 4, 5 ] ], [ 256, 16, 64, 16, 17, 1 ], [ 0, 2, 2, 4, 4, 5 ] ]

# And for an ordinary difference set of order 16.

gap> CosetSignatures(273,1,39,[1],17,1);
[ [ [ 273, 1, 39, 1, 17, 1 ], [ 1, 1, 1, 2, 4, 4, 4 ], [ 1, 1, 1, 2, 2, 4, 4, 5 ] ] ]

TestSignatureLargeIndex( sig, group, Normalsg[, factorgrp] )

this does only work for ordinary difference sets, not for relative difference sets in general

TestSignatureLargeIndex(sig,group,Normalsg[,factorgrp]) tests if sig meets some necessary conditions of 5.1 to be a signature for a difference set in group for the normal subgroup Normalsg. factorgrp is the factorgroup group/Normalsg. The returned value is true or false resp.

TestSignatureCyclicFactorGroup( sig, Nsize )

This does only work for ordinary difference sets, not for relative difference sets in general

TestSignatureCyclicFactorGroup(sig,Nsize) test if sig meets meets some necessary conditions of 5.1 to be a signature for a difference set in some group, which has a normal subgroup of size Nsize such that the factor group is cyclic. The returned value is true or false resp.

TestedSignatures( sigs, group, Normalsg[, maxtest][, moretest] )

this does only work for ordinary difference sets, not for relative difference sets in general

Let sigs be a list of possible signatures as returned by 5.1.2. Let Normalsg be a subgroup of group. For each signature in sigs, the necessary conditions described in 5.1 are tested to decide if the signature can be a signature of a difference set in group for the normal subgroup Normalsg.
As this involves computation for all permutations of the signature, this can be very costly. The argument \textit{maxtest} determines how many permutations are admissible. If \textit{maxtest}=0, all signatures are tested, regardless of how much work is necessary for this. If a signature has too many permutations, it is returned without test. Even though it is not wise, \textit{maxtest}=0 is the default option. If \texttt{InfoLevel(InfoRDS)} is at least 2, information about skipped signatures is echoed.

If the boolean value \textit{moretest} is \textit{false} and all signatures in \textit{sigs} but the last one are found to be not admissible, the last one is returned without test. This saves the time to test the last signature, but if chances are that there is no difference set in \textit{group}, this may also give away a chance to find out early (every difference set has signatures, so no admissible signature means that no difference set can exist). Default is \textit{true}.

\texttt{TestedSignatures} calls 5.1.4 or 5.1.3 and returns a sublist of \textit{sigs}.

\begin{verbatim}
gap> G:=SmallGroup(273,2);;
gap> N:=First(NormalSubgroups(G),g->Order(g)=39);
Group([ f1, f3 ])
gap> sigs:=CosetSignatures(273,1,39,[1],17,1);
[ [ [ 273, 1, 39, 1, 17, 1 ],
  [ [ 0, 1, 2, 3, 3, 4, 4 ], [ 0, 2, 2, 2, 3, 3, 5 ],
  [ 1, 1, 1, 2, 4, 4, 4 ], [ 1, 1, 1, 3, 3, 3, 5 ],
  [ 1, 1, 2, 2, 2, 4, 5 ] ] ]

6 \textgreater{}\texttt{TestedSignaturesRelative( sigs[1][2],G,N);}
\end{verbatim}

\texttt{TestedSignaturesRelative} takes a list \textit{sigs} of lists of integers and returns a those which may be signatures of relative difference sets with forbidden set.

\textit{fgdata} is a record as returned by \texttt{RDSFactorGroupData(U,N,lambda,Gdata)} If \textit{maxtest} is set, a signature \textit{s} is only tested if \texttt{NrPermutationsList(s)} is less than \textit{maxtest} if \textit{maxtest} is set to 0, all signatures are tested this is the default. If \textit{moretest} is tue, a signature is tested even if it is the only one left. This means we do not assume that there must be an admissable signature at all. The default for \textit{moretest} is \textit{true}.

\begin{verbatim}
7 \textgreater{}\texttt{SigInvariant( diffset , data )}
\end{verbatim}

Given a partial relative difference set \textit{diffset} and a list of records with entries \textit{cosets} and \textit{sigs}. Here \textit{cosets} is a full list of cosets and \textit{sigs} is a list of signatures that may occur for relative difference sets.

For each record \texttt{rec} in \textit{data}, the intersection numbers of \textit{diffset} with the cosets of \texttt{rec.cosets} are computed stored in a set \textit{sig}. If none of the signatures in \texttt{rec.sigs} is pointwise greater or equal \textit{sig}, \texttt{SigInvariant( diffset, data )} returns 'fail'. Otherwise \textit{sig} is added to a list of signatures that is returned.

Note the returned invariant is that of \textit{diffset} $\cup \{1\}$. The output from \texttt{SignatureDataForNormalSubgroups} can be used as \textit{data}.

\begin{verbatim}
gap> G:=SmallGroup(273,2);
<pc group of size 273 with 3 generators>
gap> Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> N:=First(NormalSubgroups(G),g->Order(g)=39);
Group([ f1, f3 ])
gap> sigs:=CosetSignatures(273,1,39,[1],17,1);
[ [ [ 273, 1, 39, 1, 17, 1 ],
  [ [ 0, 1, 2, 3, 3, 4, 4 ], [ 0, 2, 2, 2, 3, 3, 5 ],
  [ 1, 1, 1, 2, 4, 4, 4 ], [ 1, 1, 1, 3, 3, 3, 5 ],
  [ 1, 1, 2, 2, 2, 4, 5 ] ] ]

6 \textgreater{}\texttt{TestedSignaturesRelative( sigs[1][2],G,N);}
\end{verbatim}
Chapter 5. Invariants for Difference Sets

```gap
gap> sigs:=TestedSignatures(sigs[1][2],G,N);
[[1, 1, 1, 2, 4, 4, 4], [1, 1, 1, 3, 3, 3, 5]]
gap> ## calculate cosets in permutation notation:
gap> rc:=List(RightCosets(G,N),i->GroupList2PermList(Set(i),Gdata));;
gap> data:=[rec(cosets:=rc,sigs:=sigs)];;
gap> SigInvariant([3,4,5],data);
[[[0, 0, 0, 0, 0, 1, 3], 1]]
```

For an example using 5.1.8 see the example after 5.1.12 below.

8 ▶ `SignatureDataForNormalSubgroups( Normals, globalSigData, forbiddenSet, Gdata, parameters )` O

Let `Gdata` be a record as returned by 4.3.1. Let `Normals` be a list of normal subgroups of `Gdata.G`, and `forbiddenSet` the forbidden set (as set of group elements or group).

`parameters` must be a list of length 4 of the form `[k,lambda,maxtest,moretest]` with `k` the length of the relative difference set to be constructed and `lambda` the parameter as always. `maxtest` and `moretest` are passed to `TestedSignaturesRelative` and must be set.

`SignatureDataForNormalSubgroups` returns a list containing one record for each group `U` in `Normals`. This record contains:

1. the subgroup `U` named `.subgroup`
2. the signatures `.sigs` for `U`
3. the cosets `.cosets` modulo `U` as lists of integers

Moreover, the list `globalSigData` is used to store global information which can be reused with other groups. The `ith` entry of `globalSigData` is a list of records that contains all known information about subgroups of order `i`. Each of these records has the following components:

1. `.cspara` the parameters for 5.1.2
2. `.sigs` the output of 5.1.2 when the input is `.cspara`
3. `.fgsigs` a list of records containing data about factor groups with parameters `.cspara`:
   3.1. `.fg` the factor group
   3.2. `.fgaut` the automorphism group of `.fg`
   3.3. `.Nfg` the image of the forbidden set `N` under the natural epimorphism to `.fg`
   3.4. `.fgintersect` the pairs `[g, |g ∩ N|]` for all `g` in `.fg`. Here `N` is the forbidden set.
   3.5. `.sigs` the known admissible signatures (this is a subset of the set in number 2. of course)

The list `globalSigData` can be used if different groups are studied. If a group has a normal subgroup with parameters (in the sense of `.cspara`) listed in `globalSigData`, the signatures from a previous calculation may be used. Of course, the factor groups have to be checked first. This check is done with 5.1.11 or 5.1.10.

So the second run of `SignatureDataForNormalSubgroups` with the same parameters and different `Gdata` and `Normals` will normally be much faster, as the signatures are already stored in `globalSigData`. Note that `maxtest` and `moretest` are not stored. So a second run with larger `maxtest` will not result in a recalculation of signatures.
Section 1. The Coset Signature

```gap
gap> G:=CyclicGroup(57);
gep> Gdata:=PermutationRepForDiffsetCalculations(G);
gep> SignatureDataForNormalSubgroups(NormalSubgroups(Gdata.G),sigdata,
 > [One(Gdata.G)],Gdata,[8,1,10^6,true]); # for ordinary diffset of order 7.
[rec(subgroup := Group([f1*f2^6]),
 sigs := [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2]],
 cosets := [[1, 20, 40], [3, 23, 43], [6, 26, 46], [9, 29, 49],
 [12, 32, 52], [15, 35, 55], [18, 38, 57],
 [4, 21, 41], [7, 24, 44], [10, 27, 47],
 [13, 30, 50], [16, 33, 53], [19, 36, 56],
 [2, 22, 39], [5, 25, 42], [8, 28, 45], [11, 31, 48],
 [14, 34, 51], [17, 37, 54]]),
rec(subgroup := Group([f2]), sigs := [[1, 3, 4]],
 cosets := [[1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42,
 45, 48, 51, 54]],
 [2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50,
 53, 56]],
 [4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49,
 52, 55, 57]])
```

The following three functions are used by 5.1.8. If you do not want to write your own function for signature management, you might not need them.

9 ▶ RDSFactorGroupData( U, N, lambda, Gdata )

- .fg the factor group modulo U
- .fglist the factor group as a strictly ordered list
- .cosets the cosets modulo U as lists of integers
- .lambda the parameter lambda as passed to the function
- .Usize the size of U
- .fgaut the automorphism group of .fg
- .Nfg the image of N in .fg
- .fgintersect a list of pairs such that the i\textsuperscript{th} entry is the pair consisting of .fg[i] and the size of the intersection of .fg with .Nfg as cosets modulo U.
- .intersectshort ist just the second component of .fgintersect.

10 ▶ MatchingFGDataNonGrp( fgdatalist, fgmatchdata )

Let fgdatalist be a list of records and fgmatchdata a record with components .fg, .Nfg and .fgintersect as returned by 5.1.9. Then MatchingFGDataNonGrp returns the entry of fgdatalist that defines the same admissible signatures as fgmatchdata. If no such entry exists, fail is returned.
The forbidden set $N$ is not assumed to be a group.

11 MatchingFGData( $fgdatalist$, $fgmatchdata$ )

Let $fgdatalist$ be a list of records and $fgmatchdata$ a record with components $.fg$, $.Nfg$, $.fgintersect$ and $.fgaut$ as returned by 5.1.9. Then MatchingFGDataNonGrp returns the entry of $fgdatalist$ that defines the same admissible signatures as $fgmatchdata$. If no such entry exists, fail is returned.

Here the forbidden set $N$ has to be a group.

12 ReducedStartsets( $startsets$, $autlist$, $csdata$, $Gdata$ )

Let $startsets$ be a set of partial relative difference sets, $autlist$ a list of permutation groups and $Gdata$ record returned by PermutationRepForDiffsetCalculations. Then ReducedStartsets partitions the list $startsets$ according to the values of the function $func$ and performs a test for equivalence on the elements of the partition. The list returned is a sublist of $startsets$ of pairwise non-equivalent partial relative difference sets if $func$ is an invariant for partial relative difference sets. All elements for which $func$ returns fail are discarded.

If a list $csdata$ of records as used for 5.1.7 (i.e. containing $.cosets$ and $.signatures$) is passed, then ReducedStartsets uses 5.1.7 for $func$.

```
gap> G:=CyclicGroup(57);<pc group of size 57 with 2 generators>
gap> Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> cosetsigs:=SignatureDataForNormalSubgroups(NormalSubgroups(Gdata.G),
> sigdata, [One(Gdata.G)],Gdata,[8,1,10^6,true]);;
gap> SigInvariant([3,4,5,9],cosetsigs);
[[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], 1],
 [[1, 1, 3], 1]]
gap> ssets:=AllDiffsets([],2,[],Gdata);;
gap> Size(ssets);
1458
gap> Size(ReducedStartsets(ssets,[Group(())],cosetsigs,Gdata));
#I 5/ 0 @ 0:00:00.126
486
gap> Size(ReducedStartsets(ssets,[Gdata.Ai],cosetsigs,Gdata));
#I 5/ 0 @ 0:00:00.123
17
```

13 MaxAutsizeForOrbitCalculation

In 5.1.12, a bound is needed to decide if Orbit or RepresentativeAction should be used. If the group is larger than $\max Autsize For OrbitCalculation@RDS$, RepresentativeAction is used. The default value for $\max Autsize For OrbitCalculation$ is $5 \times 10^6$. If you want to change it, you will have to edit the file $sigs.gd$.

5.2 An invariant for large lambda

1 MultiplicityInvariantLargeLambda( $set$, $Gdata$ )

Let $set$ be a partial relative difference set with $\lambda > 1$. Set $P:=AllPresentables(set,Gdata)$ then the set of multiplicities of $P$ is an invariant for partial relative difference sets.

MultiplicityInvariantLargeLambda returns a list in a form as Collected does.
Section 3. Blackbox functions

```gap
gap> G:=CyclicGroup(7);;Gdata:=PermutationRepForDiffsetCalculations(G);;
gap> AllPresentables([2,3],Gdata);
[2, 3, 7, 2, 7, 6]
gap> MultiplicityInvariantLargeLambda([2,3],Gdata);
[[1, 2], [2, 2]]
(Read this output as: two elements occur once and two occur twice).
```

This invariant can be used for 5.1.12 complementary to the signature invariant by defining

```gap
gap> partfunc:=function(list)
> local sig;
> if sig=fail
> then return fail;
> fi;
> return [MultiplicityInvariantLargeLambda(list,Gdata),SigInvariant(list,sigdata)];
> end;
> function(list) ... end
```

`partfunc` can then be passed to 5.1.12. Of course, `sigdata` has to be the list of records defining the coset signatures.

### 5.3 Blackbox functions

Here are a few functions used in chapter 3. These are meant as black boxes for quick tests. Some of them make choices for you which might not be suitable to the chase you consider, so for serious studies, consider using the more complicated-looking functions above (an example for this comprises chapter 6).

1. **SignatureData**
   ```gap
 F
 SignatureData(Gdata, forbiddenSet, k, lambda, maxtest)
   ```
   Let `Gdata` be a record as returned by 4.3.1. Let `forbiddenSet` the forbidden set (as set or group). `k` is the length of the relative difference set to be constructed and `lambda` the usual parameter. `maxtest` is the Then `SignatureData` calls 5.1.8 for normal subgroups of order at least `RootInt(Gdata.G)`. Here `maxtest` is an integer which determines how many permutations of a possible signature are checked to be a sorted signature. Choose a value of at least $10^5$. Larger numbers here normally result in better results when generating difference sets (making reduction more effective).

   `SignatureData` chooses normal subgroups of `Gdata.G` and uses 5.1.8 to calculate signature data. The global data generated by 5.1.8 is just discarded.

   ```gap
 gap> G:=CyclicGroup(57);;Gdata:=PermutationRepForDiffsetCalculations(G);;
 gap> sigdat:=SignatureData(Gdata,[One(Gdata.G)],8,1,10^5);
 [rec(subgroup := Group([f2]), sigs := [[1, 3, 4]],
 cosets := [[1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54],
 [2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56],
 [4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 57]]
)]
   ```

2. **NormalSgsHavingAtMostNSigs**
   ```gap
 F
 NormalSgsHavingAtMostNSigs(sigdata, n, lengthlist)
   ```
   Let `sigdata` be a list as returned by 5.1.8, an integer `n` and a list of integers `lengthlist`. `NormalSgsHavingAtMostNSigs` filters `sigdata` and returns a list of records with components .subgroup and .sigs is returned, such that for every entry .subgroup is a normal subgroup of index in `lengthlist` having at most `n` signatures.

   ```gap
 gap> G:=CyclicGroup(57);;Gdata:=PermutationRepForDiffsetCalculations(G);;
 gap> sigdat:=SignatureData(Gdata,[One(Gdata.G)],8,1,10^5);
 [rec(subgroup := Group([f2]), sigs := [[1, 3, 4]],
 cosets := [[1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54],
 [2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56],
 [4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 57]]
)]
   ```

3. **SuitableAutomorphismsForReduction**
   ```gap
 F
 SuitableAutomorphismsForReduction(Gdata, normalsg)
   ```
   Given a normal subgroup `normalsg` of `Gdata.G`, the function returns a list containing the group of automorphisms of `Gdata.G` which stabilizes all cosets modulo `normalsg`. This group is returned as a group of permutations on `Gdata.Glist` (which is actually the right regular representation). The returned list can be used with 5.3.4.
Assume, we want to generate difference sets “coset by coset” modulo some normal subgroup. Let \( ssets \) be a (possibly empty) set of startsets, \( coset \) the coset from which to take the elements to append to the startsets from \( ssets \). Furthermore, let \( aim \) be the size of the generated partial difference sets (that is, the size of the elements from \( ssets \) plus the number of elements to be added from \( coset \)). Let \( autlist \) be a list of groups of automorphisms (in permutation representation) to use with the reduction algorithm. Here the output from \texttt{SuitableAutomorphismsForReduction} can be used. And \( Gdata \) and \( sigdat \) are the records as returned by 4.3.1 and 5.1.8 (or 5.3.1, alternatively). The parameter \( lambda \) is the usual one for difference sets (the number of ways of expressing elements outside the forbidden set as quotients).

Then \texttt{StartsetsInCoset} returns a list of partial difference sets (a list of lists of integers) of length \( aim \).

The list of permutation groups \( autlist \) is used for equivalence testing. Each equivalence test is performed calculating equivalence with respect to the first group, one element per equivalence class is retained and the equivalence test is repeated using the second group from \( autlist \)... Using an ascending list of automorphism groups can speed up the process of equivalence testing.

```gap
gap> G:=CyclicGroup(57);;Gdata:=PermutationRepForDiffsetCalculations(G);
gap> sigdat:=SignatureData(Gdata,[One(Gdata)],8,1,10^5);
gap> N:=First(NormalSubgroups(G),n->Size(n)=19);
gap> auts:=SuitableAutomorphismsForReduction(Gdata,N);
[<permutation group of size 18 with 3 generators>]
gap> g:=One(G);;while g in N do
 > g:=Random(G);
 > od;
gap> coset:=GroupList2PermList(Set(RightCoset(N,g)),Gdata);
[2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56]
gap> Size(StartsetsInCoset([],coset,[],4,auts,sigdat,Gdata,1));
#I Size 19
#I 1/ 0 @ 0:00:00.003
#I Size 26
#I 1/ 0 @ 0:00:00.001
#I -- ->10 @ 0:00:00.004
#I Size 88
#I 1/ 0 @ 0:00:00.003
#I -- ->45 @ 0:00:00.018
#I Size 125
#I 1/ 0 @ 0:00:00.006
#I -- ->64 @ 0:00:00.031
64

64

gap> Size(StartsetsInCoset([],coset,[],4,[Group()],sigdat,Gdata,1));
#I Size 19
#I 1/ 0 @ 0:00:00.000
#I Size 136
#I 1/ 0 @ 0:00:00.004
#I -- ->136 @ 0:00:00.024
#I Size 648
#I 1/ 0 @ 0:00:00.021
#I -- ->648 @ 0:00:00.310
#I Size 1140
#I 1/ 0 @ 0:00:00.036
#I -- ->1140 @ 0:00:00.980
1140
```
An Example Program

Here is a similar example to that in chapter 3. But now we do a little more handwork to see how things work. Now we will calculate the relative difference sets of “Dembowski-Piper type d” and order 16. These difference sets represent projective planes which admit a quasiregular collineation group such that the fixed structure is an anti-flag. See [DP67], [Dem68] or [Röd06] for details.

To have a little more output, you may want to increase 1.3.1:

```bash
gap> SetInfoLevel(InfoRDS,3);
```

First, define some parameters and calculate the data needed:

```bash
gap> k:=16;;lambda:=1;;groupOrder:=255;; #Diffset parameters
gap> forbiddenGroupOrder:=15;; #Bound for sig testing
gap> maxtest:=10^6;;

gap> G:=CyclicGroup(groupOrder);
<pc group of size 255 with 3 generators>

gap> Gdata:=PermutationRepForDiffsetCalculations(G);

gap> MakeImmutable(Gdata);
```

Now the forbidden group is calculated in a very ineffective way. Then we calculate admissible signatures. As there are only few normal subgroups in \( G \), we calculate them all. For other groups, one should choose more wisely.

```bash
gap> N:=First(NormalSubgroups(Gdata.G),i->Size(i)=forbiddenGroupOrder);
Group([f1*f3^9, f2*f3^10])

gap> normals:=Filtered(NormalSubgroups(Gdata.G),n->Size(n) in [2..groupOrder-1]);

gap> sigdat:=SignatureDataForNormalSubgroups(normals,globalSigData,
> N,Gdata,[k,lambda,maxtest,true]);
```

The last step gives better results, if a larger \( \text{maxtest} \) is chosen. But it also takes more time. To find a suitable \( \text{maxtest} \), the output of 5.1.8 can be used, if InfoLevel(InfoRDS) is at least 2. Note that for recalculating signatures, you will have to reset \( \text{globalSigData} \) to \([\,]\). Try experimenting with \( \text{maxtest} \) to see the effect of signatures for the generation of startsets.

Now examine the signatures found. Look if there is a normal subgroup which has only one admissible signature (of course, you can also use 5.3.2 here):

```bash
gap> Set(Filtered(sigdat,s->Size(s.sigs)=1 and Size(s.sigs[1])<=5),i->i.sigs);
[[0, 4, 4, 4, 4]], [[4, 4, 8]]
```

Great! we’ll take the subgroup of index 3. The cosets modulo this group will be used to generate startsets and we assume that the trivial coset contains 8 elements of the difference set. So we generate startsets in \( U \) and make a first reduction. For this, we need \( U \) and \( N \) as lists of integers (recall that difference sets are asumed to be lists of integers). We will call these lists \( U_p \) and \( N_p \). Furthermore, we will have to choose a suitable group of automorphisms for reduction. As \( G \) is cyclic, we may take \( Gdata \cdot Aac \) here. A good choice is the stabilizer of all cosets modulo \( U \).
Yet sometimes larger groups may be possible. For example if we want to generate start sets in $U$ and then do a brute force search. In this case, we may take the stabilizer of $U$ for reduction.

```gap
gap> U:=First(sigdat,s->s.sigs=[[4, 4, 8]]).subgroup;
Group([f2, f3])
gap> cosets:=RightCosets(G,U);
gap> U1:=cosets[2];;U2:=cosets[3];;
gap> Up:=GroupList2PermList(Set(U),Gdata);;
gap> Np:=GroupList2PermList(Set(N),Gdata);
[1, 12, 25, 43, 78, 97, 115, 116, 134, 151, 169, 188, 207, 238, 249]
gap> comps:=Difference(Up,Np);
gap> sssets:=List(comps,i->[i]);;
gap> ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);
#I Size 80
#I 2/ 0 @ 0:00:00.061
[[3], [4]]
```

Observe that 1 is assumed to be element of every difference set and is not recorded explicitly. So the partial difference sets represented by `ssets` at this point are `[[1,3], [1,4]]`. Now the start sets are extended to size 7 using elements of $U$. The runtime varies depending on the output of 5.1.8 and hence on `maxtest`.

```gap
gap> repeat
 > ssets:=ExtendedStartsets(ssets,comps,Np,7,Gdata);
 > ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);
 > until ssets=[] or Size(ssets[1])=7;
#I Size 133
#I 3/ 0 @ 0:00:00.133
#I Size 847
#I 4/ 0 @ 0:00:00.949
#I Size 6309
#I 4/ 0 @ 0:00:07.692
#I Size 21527
#I 5/ 0 @ 0:00:28.337
#I Size 15884
#I 4/ 0 @ 0:00:21.837
#I Size 1216
#I 4/ 0 @ 0:00:01.758
gap> Size(ssets);
192
```

At a higher level of 1.3.1, the number of start sets which are discarded because of wrong signatures are also shown. Now the cosets are changed. Here we use the NoSort version of 4.3.9. This leads to a lot of start sets in the first step. If the number of start sets in $U$ is very large, this could be too much for a reduction. Then the only option is using the brute force method. But also for the brute force search, 4.3.9 must be called first (remember that we choose an enumeration of $G$ and assume the last element from each startset to be the largest “interesting” one for further completions).

```gap
gap> comps:=Difference(GroupList2PermList(Set(U1),Gdata),Np);;
gap> sssets:=ExtendedStartsetsNoSort(ssets,comps,Np,11,Gdata);;
gap> ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);
#I Size 8640
#I 9/ 0 @ 0:00:14.159
gap> Size(ssets);
6899
```
And as above, we continue:

```plaintext
repeat
 ssets:=ExtendedStartsets(ssets,comps,Np,11,Gdata);
 ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);
 until ssets=[] or Size(ssets[1])=11;
 comps:=Difference(GroupList2PermList(Set(U2),Gdata),Np);
 RaiseStartSetLevelNoSort(ssets,comps,Np,15,Gdata);
repeat
 ssets:=ExtendedStartsets(ssets,comps,Np,15,Gdata);
 ssets:=ReducedStartsets(ssets,[Gdata.Aac],sigdat,Gdata.diffTable);
 until ssets=[] or Size(ssets[1])=15;
```
In this chapter, we will discuss two methods to calculate ordered signatures. The first one can be used for relative difference sets with forbidden set, while the second one does only work for ordinary difference sets. The methods introduced here can only be used in some special cases.

### 7.1 Ordered signatures by quotient images

Let $D \subseteq G$ be a relative difference set with parameters $(v/n, n, k, \lambda)$ and forbidden set $N \subseteq G$. Let $U \leq G$ be a normal subgroup such that $U \subseteq N$.

Then the coset signature $\langle v_1, \ldots, v_{|G:U|} \rangle$ of $D$ has only the entries 1 ($k$-times) and 0 ($|G:U| - k$-times). And as in chapter 5 we have

$$\sum_j v_j v_{ij} = \lambda(|U| - |g_i U \cap N|) \quad \text{for } g_i \notin U$$

where $v_{ij} = |D \cap g_i g_j U|$. If the forbidden set $N$ is a subgroup of $G$ we have $|g_i U \cap N|$ is either 0 or equal to $|U \cap N| = |U|$. Let $\phi: G \to G/U$ be the canonical epimorphism. Then $D^\phi$ is a relative difference set in $G/U$ with forbidden set $N^\phi$ and parameters $(v/n, n/|U|, k, |U|\lambda)$.

So the ordered signatures with respect to $U$ are equivalent to the relative difference sets in $G/U$. Observe that we may not apply reduction in $G/U$ using the full automorphism group of $G/U$ but only the group induced by the stabiliser of $U$ in the automorphism group of $G$. This is due to the fact that we use an “induced” notion of equivalence in $G/U$ because we are interested in signatures and not primarily in difference sets in $G/U$.

1. **NormalSgsForQuotientImages** (forbidden, Gdata) calculates all normal subgroups of $G$ which lie in forbidden. The returned value is a list of normal subgroups which define pairwise non-isomorphic factor groups.

2. **DataForQuotientImage** (normal, forbidden, k, lambda, Gdata) Let $G$ be the usual record for a group $G$. And let $k$ and $\lambda$ be the parameters of the relative difference set we want to find. Let then forbidden be the forbidden set (as a group or a list of group elements or integers) and normal a normal subgroup of $G$ which is contained in forbidden.

Then **DataForQuotientImage** returns a record containing the record $G$ of the factor group $G/U$ where the automorphism group is the one induced by the stabiliser of normal in the automorphism group of $G$. Furthermore the returned record contains the forbidden set forbidden in $G/U$ and the new parameter lambda for the difference set in $G/U$.

The data returned by 7.1.2 can be used to calculate difference sets in $G/U$ in the way outlined in chapter 3. A quotient image of a relative difference set has a larger $\lambda$ than the initial difference set. So 5.2.1 can be used as in invariant here (see 5.2)

After all difference sets are known, they must be converted into ordered signatures. This is done by the following function:
3 ▶ OrderedSigsFromQuotientImages( fGroupData, qimages, forbidden, normal, Gdata )

Let $Gdata$ be the usual record for a group $G$ and $normal$ a normal subgroup of $G$ which lies in the forbidden set $forbidden$. Let then $fGroupData$ be the record $Gdata$ describing $G/normal$ as returned by 7.1.2 and $qimages$ a set of difference sets in $G/normal$.

Then OrderedSigsFromQuotientImages returns a record containing a list of ordered signatures $orderedSigs$ and a list of cosets $cosets$ as well as the factor group $fg$ defined by $fGroupData$ and its full automorphism group $fgaut$ and the image of $forbidden$ in $fg$ is returned as $Nfg$.

4 ▶ MatchingFGDataForOrderedSigs( forbidden, Gdata, Normalsgs, fgdata )

Let $fgdata$ be a list of records of the form returned by 7.1.3 and $Normalsgs$ a list of normal subgroups of the group $Gdata.G$. Furthermore let $forbidden$ be the forbidden set as a list of group elements or integers or a subgroup of $Gdata.G$.

Then MatchingFGDataForOrderedSigs returns all elements of $fgdata$ which match a normal subgroup of $Normalsgs$. The returned value is a record containing the normal subgroup $normal$ from $Normalsgs$, the record $sigdata$ from $fgdata$ and a homomorphism $hom$ which maps $Gdata.G$ onto $sigdata.Gdata.G$ and takes $forbidden$ to $sigdata.Nfg$.

5 ▶ OrderedSigInvariant( set, data )

does the same as 5.1.7, but for ordered signatures. Here $data$ has to be a list of records containing ordered signatures called $orderedSigs$ and cosets $cosets$ just as returned by 7.1.3.

Assume we have calculated ordered signatures and have stored them in a record $osigs$ and a list $normalSubgroupsData$ as returned by 5.3.1 containing the admissible signatures. A function for partitioning partial relative difference sets as required by 5.1.12 can be defined as follows:

```plaintext
partitionfunc:=function(list)
local si, osi;
 si:=SigInvariant(Union(list,[1]),normalSubgroupsData);
 osi:=OrderedSigInvariant(Union(list,[1]),[osigs]);
 if osi=fail or si=fail
 then
 return fail;
 else
 return si;
 fi;
end;
```

7.2 Ordered signatures using representations

This section contains some methods for ordered signatures in ordinary difference sets. Unfortunately, these methods are not as comfortable as those for unordered signatures. The reason for this is simply that I didn’t have any time to tie them together to high-level functions. If you need help here, don’t hesitate to contact me.
7.3 Definition

Let $R \subseteq G$ be a (partial) ordinary difference set (for definition see 4.1). Let $U \leq G$ be a normal subgroup and $C = \{g_1, \ldots, g_{|G/U|}\}$ be a system of representatives of $G/U$.

As in 5.1 we may define the coset signature of $R$ relative to $U$. Let $U = g_1, \ldots, g_{|G/U|}$ be an enumeration of $G/U$. An “admissible ordered signature” for $U$ is a tuple $(v_1, \ldots, v_{|G/U|})$ such that

$$\sum v_i = k$$
$$\sum v_i^2 = \lambda(|U| - 1) + k$$
$$\sum v_i v_{ij} = \lambda(|U| - 1)$$

for $g_i \notin U$ holds where we index the $v_i$ by elements of $G/U$, so $v_i = v_{g_i}$ and write $v_{ij} = v_{g_i g_j}$. Observe that the third equation is a restriction on the ordering of the tuple $(v_1, \ldots, v_{|G/U|})$. If $v$ is an admissible ordered signature, then the multiset of $v$ is an unordered signature.

Getting ordered admissible signatures from unordered ones can be done by taking all permutations of the unordered signature and verifying the above equations. Obviously, this method isn’t very satisfying (nevertheless, the methods for testing unordered signatures from section 5.1 do this to find out if there is an ordered signature at all. Except that they stop when they find an ordered signature).

For ordinary difference sets in extensions of semidirect products of cyclic groups, ordered signatures may be calculated a lot easier (see [Röd06] for details).

7.4 Methods for calculating ordered signatures

1. NormalSubgroupsForRep( groupdata, divisor )

Let groupdata be the output of 4.3.1 and divisor an integer. Then NormalSubgroupsForRep calculates all normal subgroups of groupdata.G such that the size of the factor group is divisible by divisor and the factor group is a semidirect product of cyclic groups.

The output is a record consisting of

1. a normal subgroup .Nsg of $G$
2. the factor group .fgrp=G/Nsg
3. the epimorphism .epi from $G$ to .fgrp
4. a root of unity .root
5. a galois automorphism .alpha
6. a list .int2pairtable such that the $i$th entry is the pair $[m,n]$ with that $Glist[i] \odot epip^{-1} = a^{(m-1)*n}\odot (n-1)$

.alpha and .root may be used as input for 7.4.2

2. OrderedSigs( coeffSums, absSum, alpha, root )

Let $G$ be group which contains a normal subgroup of index $s$ such that the coset signature for a difference set for this normal subgroup is coeffSums. Let $N$ be a normal subgroup of $G$ such that $G/N$ is a semidirect product of cyclic group of orders $s, q$ and $i$ divides the order of $G/N$.

Then OrderedSigs(coeffSums, absSum, alpha, root) calculates all ordered signatures for $N$. Here root is a primitive $q$-th root of unity and alpha is a Galois- automorphism of $CS(q)$ with order dividing $s$. absSum is the order of the difference set. (i.e. order = $k - \lambda$).
OrderedSigs is based on calculations using an $s$-dimensional unitary representation of $G/N$. In this representation a subset of $G$ induces a semi-circular matrix. The returned value is a list of lists $s$-tuples. The entries of the $s$-tuples are coefficients of numbers in $\mathbb{Z}[\sqrt{\text{root}}]$ such that the semi-circular matrix defined by these numbers together with $\alpha$ meets necessary conditions for matrices induced by difference sets. To gain the algebraic numbers from the $s$-tuple $\text{tup}$, use $\text{List}(\text{tup},1->\text{CoeffList2CyclotomicList}(1,\text{root}))$.

Each $|\text{coeffSums}|$-tuple returned defines an ordered signature. The ordering of $G/N$ is chosen to fit to the data returned by 7.4.1:

$$[a^0, a^1, \ldots, a^{q-1}], [a^0b, a^1b, \ldots, a^{q-1}b], \ldots, [a^{q-1}b^{q-1}, \ldots, a^{q-1}b^{q-1}]$$

So for the calculation of ordered signatures, smaller ordered signatures $\text{coeffSums}$ have to be known. But this is not so bad, as small signatures are easy to calculate. The following example shows an application.

```gap
gap> G:=SmallGroup(273,3);
<pc group of size 273 with 3 generators>
gap> Gdata:=PermutationRepForDiffsetCalculations(G,);
gap> CosetSignatures(273,273/3,16);
[[3, 7, 7]]
gap> nsgs:=NormalSubgroupsForRep(Gdata,3);
[rec(Nsg := Group([f2]), alpha := ANFAutomorphism(CF(13), 3),
 root := E(13), fgrp := Group([f1, <identity> of ..., f2]),
 epi := [f1, f2, f3] -> [f1, <identity> of ..., f2], a := f2, b := f1,
 int2pairtable := [[1, 1], [1, 2], [1, 1], [2, 1], [1, 3],
 [8, 3], [11, 3], [5, 2], [11, 3]]),
 rec(Nsg := Group([f3]), alpha := ANFAutomorphism(CF(7), 2),
 root := E(7), fgrp := Group([f1, f2, <identity> of ...]),
 epi := [f1, f2, f3] -> [f1, f2, <identity> of ...], a := f2, b := f1,
 int2pairtable := [[1, 1], [1, 2], [2, 1], [1, 1], [1, 3],
 [6, 3], [4, 3], [4, 2], [6, 3]])]
gap> osigs:=OrderedSigs([3,7,7],16,nsgs[2].alpha,nsgs[2].root);
[[[0, 0, 0, 1, 0, 1, 1], [0, 1, 2, 0, 2, 0, 1]],
 [[0, 0, 0, 1, 0, 1, 1], [0, 1, 2, 0, 2, 0, 1]],
 [[2, 2, 1, 0, 0, 2, 0]]]
gap> Size(osigs);
98

gap> Set(osigs,g->SortedList(Concatenation(g)));
[[0, 0]]
```

Note that the signature $[3, 7, 7]$ can be assumed to be ordered (by passing to a suitable translate). So even if we are not interested in ordered signatures, we have found out that there is only one admissible unordered signature for this normal subgroup. To get this result using 5.1.5 would have taken a very long time.

Of course, ordered signatures can also be used directly.

```>
3 ▶ OrderedSignatureOfSet(set, normal_data) O
```
This section contains functions to help studying projective planes. There is also a function converting relative difference sets to block designs. Those designs can be studied with the DESIGN [Soi06a] package by L. Soicher.

Projective planes are always assumed to consist of positive integers (as points) and sets of integers (as blocks). The incidence relation is assumed to be the element relation. The blocks of a projective plane must be sets.

1. \textbf{ProjectivePlane( blocks )}

Given a list of lists \texttt{blocks} which represents the blocks of a projective plane, a block design is generated. If the \texttt{blocks} is not a set of sets of the integers \([1..v]\) for some \(v\), the points are sorted and enumerated and the blocks are changed accordingly. But the original names are known to the returned BlockDesign.

The block design generated this way will contain two extra entries, \texttt{jblock} and \texttt{isProjectivePlane}. The matrix \texttt{jblock} contains the number of the block containing the points \(i\) and \(j\) at the \((i,j)\)th position. And \texttt{isProjectivePlane} will be true. If \texttt{blocks} do not form the lines of a projective plane, an error is issued.

\begin{verbatim}
gap> b:= [ [ 1, 3 ], [ 1, 6 ], [ 2, 4 ], [ 2, 7 ],
         [ 3, 5 ], [ 4, 6 ], [ 5, 7 ] ];;
gap> plane:= ProjectivePlane(b);
rec( isBlockDesign := true, v := 7,
     blocks := [ [ 1, 3 ], [ 1, 6 ], [ 2, 4 ], [ 2, 7 ],
                 [ 3, 5 ], [ 4, 6 ], [ 5, 7 ] ],
     jblock := [ [ 0, 0, 1, 0, 0, 2, 0 ], [ 0, 0, 3, 0, 4, 0, 0 ],
                 [ 1, 0, 0, 0, 5, 0, 0 ], [ 0, 3, 0, 0, 6, 0 ],
                 [ 0, 0, 5, 0, 0, 7 ], [ 2, 0, 0, 0, 0, 0 ],
                 [ 0, 4, 0, 7, 0, 0 ] ],
     isProjectivePlane := true )
gap> PointJoiningLinesProjectivePlane(plane);
[ [ 0, 1, 0, 0, 3, 0, 0 ], [ 1, 0, 0, 0, 2, 0, 0 ],
  [ 0, 0, 0, 2, 0, 0, 7 ], [ 3, 0, 0, 0, 0, 5 ], [ 0, 6, 0, 0, 0, 0 ],
  [ 0, 0, 0, 7, 0, 0 ] ]
gap> RecNames(plane);
[ "isBlockDesign", "v", "blocks", "jblock", "isProjectivePlane", "jpoint" ]
\end{verbatim}

2. \textbf{PointJoiningLinesProjectivePlane( plane )}

Returns a matrix which has as \(ij\)th entry the point which is contained in the blocks with numbers \(i\) and \(j\). This matrix is also stored in \texttt{plane}. Some operations are faster if \texttt{plane} contains this matrix. If \texttt{plane} is not a projective plane, an error is issued.

\begin{verbatim}
gap> b:= [ [ 1, 3 ], [ 1, 6 ], [ 2, 4 ], [ 2, 7 ],
         [ 3, 5 ], [ 4, 6 ], [ 5, 7 ] ];;
gap> plane:= ProjectivePlane(b);
\end{verbatim}

3. \textbf{DevelopmentOfRDS( diffset, Gdata )}

This calculates the development of a (partial relative) difference set \texttt{diffset} in the group given by \texttt{Gdata}. That is, the associated block design.

\texttt{diffset} can be given as a list of group elements or a list of integers (positions in the set of group elements). \texttt{Gdata} can either be the record returned by 4.3.1 or a group or a set of group elements.
In either case, the returned object is a BlockDesign in the sense of L. Soicher's DESIGN package.

```gap
G:=CyclicGroup(21);; Gdata:=PermutationRepForDiffsetCalculations(G);;
AllDiffsets([2],[1..21],4,[],Gdata,1);
[[2, 5, 16, 17], [2, 6, 10, 18]]
d1:=DevelopmentOfRDS(Set(G){[2,5,16,17]},Set(G));;
rec(isBlockDesign := true, v := 21,
blocks := [[1, 2, 5, 16, 17], [1, 3, 14, 15, 21], [1, 4, 8, 10, 13],
[1, 6, 7, 9, 20], [1, 11, 12, 18, 19], [2, 3, 9, 10, 12],
[2, 4, 7, 15, 19], [2, 6, 8, 11, 21], [2, 13, 14, 18, 20],
[3, 4, 6, 17, 18], [3, 5, 8, 19, 20], [3, 7, 11, 13, 16],
[4, 5, 9, 11, 14], [4, 12, 16, 20, 21], [5, 6, 12, 13, 15],
[5, 7, 10, 18, 21], [6, 10, 14, 16, 19], [7, 8, 12, 14, 17],
[8, 9, 15, 16, 18], [9, 13, 17, 19, 21], [10, 11, 15, 17, 20]],
autSubgroup := <permutation group with 21 generators>,
pointNames := [<identity> of ..., f1, f2, f1*f2, f2^2, f1^2*f2,
f1*f2^2, f2^2, f1^2*f2^2, f1*f2^3, f2^4, f1^2*f2^3, f1*f2^4, f2^5,
f1^2*f2^4, f1*f2^5, f2^6, f1^2*f2^5, f1*f2^6, f1^2*f2^6],
blockSizes := [5], blockNumbers := [21], isSimple := true,
isBinary := true)
d2:=DevelopmentOfRDS([2,5,16,17],Gdata);;
d1=d2
true
d1=DevelopmentOfRDS(Set(G){[2,5,16,17]},G);
true
d1=DevelopmentOfRDS([2,5,16,17],G);
true
```

Note that equality for block designs means equality of records. So DevelopmentOfRDS generates exactly the same record in each of the above examples. The output is in fact independent of the chosen data type of the input (as long as it is valid). In particular, the design always knows its pointNames.

```
4 ▶ ProjectiveClosureOfPointSet(points [, maxsize] , plane)

Let plane be a projective plane. Let points be a set of non-collinear points (integers) of this plane. Then ProjectiveClosureOfPointSet returns a record with the entries .closure and .embedding.

Here .closure is the projective closure of points (the smallest projectively closed subset of plane containing the points points). It is not checked, whether this is a projective plane. As the BlockDesign .closure has points [1..w] and plane has points [1..v] with w ≤ v, we need an embedding of .closure into plane. This embedding is the permutation .embedding. It is a permutation on [1..v] which takes the points of .closure to a set of points in plane containing points and preserving incidence. Note that nothing is known about the behaviour of .embedding on any point outside [1..w] and [1..w]^cembedding.

If maxsize is given and maxsize ≠ 0, calculations are stopped if the closure is known to have at least maxsize points and the plane plane is returned as .closure with the trivial permutation as embedding.

Let's find a Baer subplane in the desarguesian plane of order 4:
```
G:=CyclicGroup(21);; Gdata:=PermutationRepForDiffsetCalculations(G);;
AllDiffsets([2],[1..21],4,[],Gdata,1);
[ [ 2, 5, 16, 17 ], [ 2, 6, 10, 18 ] ]
plane:=DevelopmentOfRDS([2,5,16,17],Gdata);;
ProjectiveClosureOfPointSet([1,3,4],plane);
rec( closure := rec( isBlockDesign := true, v := 3,
blocks := [ [ 1, 2 ], [ 1, 3 ], [ 2, 3 ] ]
```
pointNames := [<identity> of ..., f2, f1^-2]),
embedding := (2,3,4)

gap> IsProjectivePlane(last.closure);
false

gap> baer:=ProjectiveClosureOfPointSet([1,3,4,5],plane);

[[1, 2, 6], [1, 3, 5], [1, 4, 7], [2, 3, 7],
[2, 4, 5], [3, 4, 6], [5, 6, 7]]

gap> IsProjectivePlane(baer.closure);
true

gap> Set(baer.closure.blocks,b->OnSets(b,baer.embedding));

[[1, 3, 14], [1, 4, 8], [1, 5, 17], [3, 4, 17],
[3, 5, 8], [4, 5, 14], [8, 14, 17]]

8.1 Isomorphisms and Collineations

Isomorphisms of projective planes are mappings which take points to points and blocks to blocks and respect incidence. A collineation of a projective plane \(P \) is an isomorphism from \(P \) to \(P \).

As projective planes are assumed to live on the integers, isomorphisms of projective planes are represented by permutations. To test if a permutation on points is actually an isomorphism of projective planes, the following methods can be used.

1 ▶ IsIsomorphismOfProjectivePlanes(perm, plane1, plane2)

Let \(plane1, plane2 \) be two projective planes. \IsIsomorphismOfProjectivePlanes\ test if the permutation \(perm \) on points defines an isomorphism of the projective planes \(plane1 \) and \(plane2 \).

2 ▶ IsCollineationOfProjectivePlane(perm, plane)

Let \(plane \) be a projective plane and \(perm \) a permutation on the points of this plane. \IsCollineationOfProjectivePlane\(perm, plane \) returns \true\, if \(perm \) induces a collineation of \(plane \).

This is just another form to call \IsIsomorphismOfProjectivePlanes\(perm, plane, plane \).

3 ▶ IsomorphismProjPlanesByGenerators(gens1, plane1, gens2, plane2)

Let \(gens1 \) be a list of points generating the projective plane \(plane1 \) and \(gens2 \) a list of generating points for \(plane2 \). Then a permutation is returned representing a mapping from the points of \(plane1 \) to those of \(plane2 \) and taking the list \(gens1 \) to the list \(gens2 \). If there is no such mapping which defines an isomorphism of projective planes, fail is returned.

\IsomorphismProjPlanesByGeneratorsNC\ does not check whether \(gens1 \) and \(gens2 \) really generate the planes \(plane1 \) and \(plane2 \).

Look at the above example again:

\begin{verbatim}
gap> P:=ProjectivePlane([[1, 2, 6], [1, 3, 5], [1, 4, 7],
> [2, 3, 7], [2, 4, 5], [3, 4, 6], [5, 6, 7]]);
gap> pi:=IsomorphismProjPlanesByGenerators([[1,2,3,4],P,[2,4,6,7],P);
(1,2,4,7,3,6,5)
gap> IsIsomorphismOfProjectivePlanes(pi,P);
true
gap> IsCollineationOfProjectivePlane(pi,P);
true
gap> IsomorphismProjPlanesByGenerators([[1,2,3,4],P,[1,2,3,5],P);
fail

gap> ProjectiveClosureOfPointSet([[1,2,3,5],P].closure.v;
\end{verbatim}
8.2 Central Collineations

Let \(\phi \) be a collineation of a projective plane which fixes one point block-wise (the so-called centre) and one block point-wise (the so-called axis). If the centre is contained in the axis, \(\phi \) is called elation. Otherwise, \(\phi \) is called homology. The group of elations with given axis is called translation group of the plane (relative to the chosen axis). A projective plane with transitive translation group is called translation plane. Here transitivity is on the points outside the axis.

1. \(\text{ElationByPair(centre, axis, pair, plane)} \)

Let centre be a point and axis a block of a projective plane plane. pair must be a pair of points outside axis and lie on a block containing center. Then there is a unique collineation fixing axis pointwise and centre blockwise (an elation) and taking point[1] to point[2].

If one of the conditions is not met, an error is issued. This method is faster, if plane.jpoint is known (see 8)

2. \(\text{AllElationsCentAx(centre, axis, plane[, "generators"])} \)

Let centre be a point and axis a block of the projective plane plane. AllElationsCentAx returns the group of all elations with centre centre and axis axis as a group of permutations on the points of plane.

If “generators” is set, only a list of generators of the translation group is returned. This method is faster, if plane.jpoint is known (see 8)

3. \(\text{AllElationsAx(axis, plane[, "generators"])} \)

Let axis be a block of a projective plane plane. AllElationsAx returns the group of all elations with axis axis.

If “generators” is set, only a set of generators for the group of elations is returned. This method is faster, if plane.jpoint is known (see 8)

4. \(\text{IsTranslationPlane([infline,]plane)} \)

Returns true if the plane plane has a block b such that the group of elations with axis b is transitive outside b.

If infline is given, only the group of elations with axis infline is considered. This is faster than calculating the full translation group if the projective plane plane is not a translation plane. If plane is a translation plane, the full translation group is calculated.

This method is faster, if plane.jpoint is known (see 8)
5 HomologyByPair(centre, axis, pair, plane)

HomologyByPair returns the homology defined by the pair pair fixing centre blockwise and axis pointwise. The returned permutation fixes axis pointwise and centre linewise and takes pair[1] to pair[2].

6 GroupOfHomologies(centre, axis, plane)

returns the group of homologies with centre centre and axis axis of the plane plane.

7 InducedCollineation(baerplane, baercoll, point, image, planedata, embedding)

If a projective plane contains a Baer subplane, collineations of the subplane may be lifted to the full plane. If such an extension to the full plane exists, it is uniquely determined by the image of one point outside the Baer plane.

Here baercoll is a collineation (a permutation of the points) of the projective plane baerplane. The permutation embedding is a permutation on the points of the full plane which converts the enumeration of baerplane to that of the full plane. This means that the image of the points of baerplane under embedding is a subset of the points of plane. Namely the one representing the Baer plane in the enumeration used for the whole plane. point and image are points outside the Baer plane.

The data for baerplane and embedding can be calculated using 8.

InducedCollineation returns a collineation of the full plane (as a permutation on the points of plane) which takes point to image and acts on the Baer plane as baercoll does. If no such collineation exists, fail is returned.

This method needs plane.jpoint. If it is unknown, it is calculated (see 8)

Let’s go back to an earlier example and find a planar collineation:

7 G:=CyclicGroup(21); Gdata:=PermutationRepForDiffsetCalculations(G);;
7 AllDiffsets([2],[1..21],4,[],Gdata,1);
7 plane:=DevelopmentOfRDS([2,5,16,17],Gdata,1);
7 baer:=ProjectiveClosureOfPointSet([1,3,4,5],plane,);
7 pi:=InducedCollineation(baer.closure,(),21,15,plane,baer.embedding);
7 (2,16)(6,18)(7,12)(9,11)(10,13)(15,21)(19,20)
7 pi^21;
7 15
7 ForAll(OnSets([1..7],baer.embedding),i->i^pi=i);
7 true

8.3 Collineations on Baer Subplanes

Let P be a projective plane of order n^2. A subplane B of order n of P is called Baer subplane. Baer subplanes are exactly the maximal subplanes of P.

8 InducedCollineation returns a collineation of the full plane (as a permutation on the points of plane) which takes point to image and acts on the Baer plane as baercoll does. If no such collineation exists, fail is returned.

This method needs plane.jpoint. If it is unknown, it is calculated (see 8)
8.4 Invariants for Projective Planes

The functions \texttt{NrFanoPlanesAtPoints}, \texttt{PRank@RDS}, \texttt{FingerprintAntiFlag} and \texttt{FingerprintProjPlane} calculate invariants for finite projective planes. For more details see [Röd06] and [Moo95]. The values of some of these invariants are available from the homepages of [Moo] and [Roy] for many planes.

\begin{verbatim}
1 ▶ NrFanoPlanesAtPoints(points, plane) O

For a projective plane \texttt{plane}, \texttt{NrFanoPlanesAtPoints(points,plane)} calculates the so-called Fano invariant. That is, for each point in \texttt{points}, the number of subplanes of order 2 (so-called Fano planes) containing this point is calculated. The method returns a list of pairs of the form \texttt{[point, number]} where \texttt{number} is the number of Fano sub-planes in \texttt{point}.

This method is faster, if \texttt{plane.jpoint} is known (see 8). Indeed, if \texttt{plane.jpoint} is not known, this method is very slow.

gap> G:=CyclicGroup(4^2+5);
<pc group of size 21 with 2 generators>
gap> diffset:=OneDiffset(G);
[f1, f1*f2, f1^2*f2^4, f1*f2^5]

\begin{verbatim}
2 ▶ IncidenceMatrix(plane) O

returns a matrix \texttt{I}, where the columns are numbered by the blocks and the rows are numbered by points. And \texttt{I[i][j]=1} if and only if \texttt{points[i]} is incident (contained in) \texttt{blocks[j]} (an 0 else).

\begin{verbatim}
3 ▶ PRank(plane, p) O

Let \texttt{I} be the incidence matrix of the projective plane \texttt{plane} and \texttt{p} a prime power. The rank of \texttt{I · I'} as a matrix over \texttt{GF(p)} is called \texttt{p}-rank of the projective plane. Here \texttt{I'} denotes the transposed matrix. Note that this is a method within the RDS workspace, so it has to be called as \texttt{PRank@RDS}

\begin{verbatim}
4 ▶ FingerprintProjPlane(plane) O

For each anti-flag \((p, l)\) of a projective plane \texttt{plane} of order \(n\), define an arbitrary but fixed enumeration of the lines through \(p\) and the points on \(l\). Say \(l_1,\ldots,l_{n+1}\) and \(p_1,\ldots,p_{n+1}\). The incidence relation defines a canonical bijection between the \(l_i\) and the \(p_i\) and hence a permutation on the indices \(1,\ldots,n+1\). Let \(\sigma_{(p,l)}\) be this permutation.

Denote the points and lines of the plane by \(q_1,\ldots,q_{2^n+1}\) and \(e_1,\ldots,e_{2^n+1}\). Define the sign matrix as \(A_{ij} = sgn(\sigma_{(q_i,e_j)})\) if \((q_i,e_j)\) is an anti-flag and = 0 if it is a flag. Then the fingerprint is defined as the multiset of the entries of \(|AA^t|\).\n\end{verbatim}
\end{verbatim}
\section*{FingerprintAntiFlag(point, linenr, plane)}

Let m_1, \ldots, m_{n+1} be the lines containing $point$ and E_1, \ldots, E_{n+1} the points on the line given by $linenr$ such that E_i is incident with m_i. Now label the points of m_i as $point = P_{i,1}, \ldots, P_{i,n+1} = E_i$ and the lines of E_i as $line = l_1, \ldots, l_{n+1} = m_i$. For $i \neq j$, each $P_{j,k}$ lies on exactly one line $l_{i,\sigma_{i,j}}$ containing E_i for some permutation $\sigma_{i,j}$.

Define a matrix A, where $A_{i,j}$ is the sign of $\sigma_{i,j}$ if $i \neq j$ and $A_{i,i} = 0$ for all i. The partial fingerprint is the multiset of entries of $|AA^t|$ where A^t denotes the transposed matrix of A.

Look at the above example again:

```gap
gap> NrFanoPlanesAtPoints([1,2,3],plane);
[ [ 1, 240 ], [ 2, 240 ], [ 3, 240 ] ]
gap> Set(NrFanoPlanesAtPoints([1..plane.v],plane),i->i[2])=[240];
true
```
This chapter contains a number of functions that did not fit in anywhere else. Some of them might be useful for other people, too, so they were included here.

9.1 Groups and actions

1. **OnSubgroups(subgroup, aut)**

For a group G and an automorphism aut of G, $\text{OnSubgroups}(\text{subgroup},\text{aut})$ is the image of subgroup under aut.

```gap
gap> G:=Group((1,2,3),(2,3));
group: Group([ (1,2,3), (2,3) ])
gap> alpha:=InnerAutomorphism(G,(1,2,3));
  (1,2,3)
gap> OnSubgroups(Subgroup(G,[(2,3)]),alpha);
group: Group([ (1,3) ])
```

2. **RepsCClassesGivenOrder(group, order)**

`RepsCClassesGivenOrder(group, order)` returns all elements of order order up to conjugacy. Note that the representatives are not always the smallest elements of each conjugacy class.

```gap
gap> RepsCClassesGivenOrder(SymmetricGroup(5),2);
[ (4,5), (2,3)(4,5) ]
```

9.2 Iterators

1. **CartesianIterator(tuplelist)**

Returns an iterator for `Cartesian(tuplelist)`.

2. **ConcatenationOfIterators(iterlist)**

`ConcatenationOfIterators(iterlist)` returns an iterator which runs through all iterators in `iterlist`. Note that the returned iterator loops over the iterators in `iterlist` sequentially beginning with the first one.

```gap
gap> it:=Iterator([1,2,3]);
gap> it2:=CartesianIterator([[[9,10],[11]]]);
gap> cit:=ConcatenationOfIterators([it,it2]);
gap> repeat
  > Print(NextIterator(cit),",\c")
  > until IsDoneIterator(cit);
1,2,3,[ 9, 11 ],[ 10, 11 ],
```
9.3 Lists and Matrices

1. IsListOfIntegers(list)

IsListOfIntegers(list) returns IsSubset(Integers, list) if list is a dense list and false otherwise.

2. List2Tuples(list, int)

If Size(list) is divisible by int, List2Tuples(list, int) returns a list list2 of size int such that Concatenation(list2) = list and every element of list2 has the same size.

```
gap> List2Tuples([1..6],2);
[ [ 1, 2, 3 ], [ 4, 5, 6 ] ]
```

3. MatTimesTransMat(mat)

does the same as mat*TransposedMat(mat) but uses slightly less space and time for large matrices.

4. PartitionByFunctionNF(list, f)

PartitionByFunctionNF(list, f) partitions the list list according to the values of the function f defined on list. If f returns fail for some element of list, PartitionByFunctionNF(list, f) enters a break loop. Leaving the break loop with 'return;' is safe because PartitionByFunctionNF treats fail as all other results of f.

```
gap> PartitionByFunctionNF([-1..5],x->x^2);
[ [ 0 ], [ -1, 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] ]
gap> test:=function(x)
> if x>0 then return Sqrt(x);
> else return fail;
> fi;
> end;
function( x ) ... end
gap> PartitionByFunction([-1..5],test);
[ [ 1 ], [ 4 ], [ 5 ], [ 2 ], [ 3 ] ]
gap> SetInfoLevel(InfoRDS,2);
gap> PartitionByFunction([-1..5],test);
#I -2-
[ [ 1 ], [ 4 ], [ 5 ], [ 2 ], [ 3 ] ]
```

5. PartitionByFunction(list, f)

PartitionByFunction(list, f) partitions the list list according to the values of the function f defined on list. All elements, for which f returns fail are omitted, so PartitionByFunction does not necessarily return a partition. If InfoLevel(InfoRDS) is at least 2, the number of elements for which f returns fail is shown (if fail is returned at all).

```
gap> PartitionByFunction([-1..5],x->x^2);
[ [ 0 ], [ -1, 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ] ]
gap> test:=function(x)
> if x>0 then return Sqrt(x);
> else return fail;
> fi;
> end;
function( x ) ... end
gap> PartitionByFunction([-1..5],test);
[ [ 1 ], [ 4 ], [ 5 ], [ 2 ], [ 3 ] ]
gap> PartitionByFunction([-1..5],test);
#I -2-
[ [ 1 ], [ 4 ], [ 5 ], [ 2 ], [ 3 ] ]
gap> PartitionByFunction([-1..5],test);
Error, function returned <fail> called from
...:
brk> return;
[ [ 1 ], [ 4 ], [ 5 ], [ 2 ], [ 3 ], [ -1, 0 ] ]
```
9.4 Cyclotomic numbers

IsRootOfUnity(cyc)
IsRootOfUnity tests if a given cyclotomic is actually a root of unity.

CoeffList2CyclotomicList(list, root)
CoeffList2CyclotomicList(list, root) takes a list of integers list and a root of unity root and returns a list list2, where list2[i]=list[i]*root^(i-1).

AbssquareInCyclotomics(list, root)
For a list of integers and a root of unity, AbssquareInCyclotomics(list, root) returns the modulus of Sum(CoeffList2CyclotomicList(list, root)).

CycsGivenCoeffSum(sum, root)
CycsGivenCoeffSum(sum, root) returns all elements of Z[root] such that the coefficient sum is sum and all coefficients are non-negative. The returned list has the following form: The cyclotomic numbers are represented by coefficients. 9.4.2 can be used to get the algebraic number represented by list. The list is partitioned into equivalence classes of elements having the same modulus. For each class the modulus is returned. This means that CycsGivenCoeffSum returns a list of pairs where the first entry of each pair is the square of the modulus of an element of the second entry. And the second entry is a list of coefficient lists of cyclotomics in Z[root] having the coefficient sum sum.

gap> CycsGivenCoeffSum(3, E(3));
[[0, [[1, 1, 1]]],
 [3, [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1],
 [2, 1, 0]]], [9, [[0, 0, 3], [0, 3, 0], [3, 0, 0]]]]
gap> CycsGivenCoeffSum(2, E(2));
[[0, [[1, 1]]], [4, [[0, 2], [2, 0]]]]

9.5 Filters and Categories

The following was originally posted at the GAP forum by Thomas Breuer [Bre05].

Each filter in GAP is either a simple filter or a meet of filters. For example, IsInt and IsPosRat are simple filters, and IsPosInt is defined as their meet IsInt and IsPosRat. Each simple filter is of one of the following kinds.

1. property: Such a filter is an operation, the filter value can be computed. The (unary) methods of this operation must return true or false, and the return value is stored in the argument, except if the argument is of a basic data type such as cyclotomic (including rationals and integers), finite field element, permutation, or internally represented list –the latter with a few exceptions. Examples of properties are IsFinite, IsAbelian, IsSSortedList.

2. attribute tester: Such a filter is associated to an operation that has been created via DeclareAttribute, in the sense that the value is true if and only if a return value for (a unary method of) this operation is stored in the argument. Currently, attribute values are stored in objects in the filter IsAttributeStoringRep. Examples of attribute testers are HasSize, HasCentre, HasDerivedSubgroup.

3. property tester: Such a filter is similar to an attribute tester, but the associated operation is a property. So property testers can return true also if the argument is not in the filter IsAttributeStoringRep. Examples of property testers are HasIsFinite, HasIsAbelian, HasIsSSortedList.

3. category or representation: These filters are not associated to operations, their values cannot be computed but are set upon creation of an object and should not be changed later, such that for a filter of this kind, one can rely on the fact that if the value is true then it was true already when the object in question was created.

Section 5. Filters and Categories

9.4 Cyclotomic numbers

1 ▶ IsRootOfUnity(cyc)
IsRootOfUnity tests if a given cyclotomic is actually a root of unity.

2 ▶ CoeffList2CyclotomicList(list, root)
CoeffList2CyclotomicList(list, root) takes a list of integers list and a root of unity root and returns a list list2, where list2[i]=list[i]*root^(i-1).

3 ▶ AbssquareInCyclotomics(list, root)
For a list of integers and a root of unity, AbssquareInCyclotomics(list, root) returns the modulus of Sum(CoeffList2CyclotomicList(list, root)).

4 ▶ CycsGivenCoeffSum(sum, root)
CycsGivenCoeffSum(sum, root) returns all elements of Z[root] such that the coefficient sum is sum and all coefficients are non-negative. The returned list has the following form: The cyclotomic numbers are represented by coefficients. 9.4.2 can be used to get the algebraic number represented by list. The list is partitioned into equivalence classes of elements having the same modulus. For each class the modulus is returned. This means that CycsGivenCoeffSum returns a list of pairs where the first entry of each pair is the square of the modulus of an element of the second entry. And the second entry is a list of coefficient lists of cyclotomics in Z[root] having the coefficient sum sum.

gap> CycsGivenCoeffSum(3, E(3));
[[0, [[1, 1, 1]]],
 [3, [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1],
 [2, 1, 0]]], [9, [[0, 0, 3], [0, 3, 0], [3, 0, 0]]]]
gap> CycsGivenCoeffSum(2, E(2));
[[0, [[1, 1]]], [4, [[0, 2], [2, 0]]]]

9.5 Filters and Categories

The following was originally posted at the GAP forum by Thomas Breuer [Bre05].

Each filter in GAP is either a simple filter or a meet of filters. For example, IsInt and IsPosRat are simple filters, and IsPosInt is defined as their meet IsInt and IsPosRat. Each simple filter is of one of the following kinds.

1. property: Such a filter is an operation, the filter value can be computed. The (unary) methods of this operation must return true or false, and the return value is stored in the argument, except if the argument is of a basic data type such as cyclotomic (including rationals and integers), finite field element, permutation, or internally represented list –the latter with a few exceptions. Examples of properties are IsFinite, IsAbelian, IsSSortedList.

2. attribute tester: Such a filter is associated to an operation that has been created via DeclareAttribute, in the sense that the value is true if and only if a return value for (a unary method of) this operation is stored in the argument. Currently, attribute values are stored in objects in the filter IsAttributeStoringRep. Examples of attribute testers are HasSize, HasCentre, HasDerivedSubgroup.

2.' property tester: Such a filter is similar to an attribute tester, but the associated operation is a property. So property testers can return true also if the argument is not in the filter IsAttributeStoringRep. Examples of property testers are HasIsFinite, HasIsAbelian, HasIsSSortedList.

3. category or representation: These filters are not associated to operations, their values cannot be computed but are set upon creation of an object and should not be changed later, such that for a filter of this kind, one can rely on the fact that if the value is true then it was true already when the object in question was created.
Chapter 9. Some functions for everyday use

The distinction between representation and category is intended to express dependency on or independence of the way how the object is stored internally. For example, IsPositionalObjectRep, IsComponentObjectRep, and IsInternalRep are filters of the representation kind; the idea is that such filters are used in low level methods, and that higher level methods can be implemented without referring to these filters.

Examples of categories are IsInt, IsRat, IsPerm, IsFFE, and filters expressing algebraic structures, such as IsMagma, IsMagmaWithOne, IsAdditiveMagma. When one calls such a filter, one can be sure that no computation is triggered. For example, whenever a quotient of two integers is formed, the result is clearly in the filter IsRat, but the system also stores the value of IsInt, i.e., GAP does not support “unevaluated rationals” for which the IsInt value is computed on demand and then stored.

4. other filters: Some filters do not belong to the above kinds, they are not associated to operations but they are intended to be set (or even reset) by the user or by functions also after the creation of objects. Examples are IsQuickPositionList, CanEasilyTestMembership, IsHandledByNiceBasis.

Each meet of filters can involve computable simple filters (properties, attribute and property testers) and not computable simple filters (categories, representations, other filters). When one calls a meet of two filters then the two filters from which the meet was formed are evaluated (if necessary). So a meet of filters is computable only if at least one computable simple filter is involved.

\begin{verbatim}
> IsComputableFilter(IsFinite);
true
> IsComputableFilter(HasSize);
true
> IsComputableFilter(HasIsFinite);
true
> IsComputableFilter(IsPositionalObjectRep);
false
> IsComputableFilter(IsInt);
false
> IsComputableFilter(IsQuickPositionList);
false
> IsComputableFilter(IsInt and IsPosRat);
false
> IsComputableFilter(IsMagma);
false
\end{verbatim}
Bibliography

http://www.uwyo.edu/moorhouse/.

[Soi06a] Leonard H. Soicher. The design package for GAP.

[Soi06b] Leonard H. Soicher. The grape package for GAP.
Index

This index covers only this manual. A page number in *italics* refers to a whole section which is devoted to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter” comes before “permutation group”.

<table>
<thead>
<tr>
<th>A</th>
<th>AbssquareInCyclotomics, 44</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acknowledgements, 3</td>
</tr>
<tr>
<td></td>
<td>AllDiffsets, 17</td>
</tr>
<tr>
<td></td>
<td>AllDiffsetsNoSort, 17</td>
</tr>
<tr>
<td></td>
<td>AllElationsAx, 38</td>
</tr>
<tr>
<td></td>
<td>AllElationsCentAx, 38</td>
</tr>
<tr>
<td></td>
<td>AllPresentables, 15</td>
</tr>
<tr>
<td></td>
<td>An invariant for large lambda, 24</td>
</tr>
<tr>
<td>B</td>
<td>Basic functions for startset generation, 13</td>
</tr>
<tr>
<td></td>
<td>Blackbox functions, 25</td>
</tr>
<tr>
<td></td>
<td>Brute force methods, 17</td>
</tr>
<tr>
<td>C</td>
<td>CartesianIterator, 42</td>
</tr>
<tr>
<td></td>
<td>Central Collineations, 38</td>
</tr>
<tr>
<td></td>
<td>Change of coset vs. brute force, 10</td>
</tr>
<tr>
<td></td>
<td>CoeffList2CyclotomicList, 44</td>
</tr>
<tr>
<td></td>
<td>Collineations on Baer Subplanes, 39</td>
</tr>
<tr>
<td></td>
<td>ConcatenationOfIterators, 42</td>
</tr>
<tr>
<td></td>
<td>CosetSignatureOfSet, 19</td>
</tr>
<tr>
<td></td>
<td>CosetSignatures, 20</td>
</tr>
<tr>
<td></td>
<td>Cyclotomic numbers, 44</td>
</tr>
<tr>
<td></td>
<td>CycsGivenCoeffSum, 44</td>
</tr>
<tr>
<td>D</td>
<td>DataForQuotientImage, 31</td>
</tr>
<tr>
<td></td>
<td>DebugRDS, 4</td>
</tr>
<tr>
<td></td>
<td>Definition, 33</td>
</tr>
<tr>
<td></td>
<td>Definitions and Objects, 4</td>
</tr>
<tr>
<td></td>
<td>DevelopmentOfRDS, 35</td>
</tr>
<tr>
<td>E</td>
<td>ElationByPair, 38</td>
</tr>
<tr>
<td></td>
<td>ExtendedStartsets, 16</td>
</tr>
<tr>
<td></td>
<td>ExtendedStartsetsNoSort, 16</td>
</tr>
<tr>
<td>F</td>
<td>Filters and Categories, 44</td>
</tr>
<tr>
<td></td>
<td>FingerprintAntiFlag, 41</td>
</tr>
<tr>
<td></td>
<td>FingerprintProjPlane, 40</td>
</tr>
<tr>
<td></td>
<td>First Step: Integers instead of group elements, 8</td>
</tr>
<tr>
<td>G</td>
<td>GroupList2PermList, 15</td>
</tr>
<tr>
<td></td>
<td>GroupOfHomologies, 39</td>
</tr>
<tr>
<td></td>
<td>Groups and actions, 42</td>
</tr>
<tr>
<td>H</td>
<td>HomologyByPair, 39</td>
</tr>
<tr>
<td></td>
<td>How partial difference sets are represented, 13</td>
</tr>
<tr>
<td>I</td>
<td>IncidenceMatrix, 40</td>
</tr>
<tr>
<td></td>
<td>InducedCollineation, 39</td>
</tr>
<tr>
<td></td>
<td>InfoRDS, 4</td>
</tr>
<tr>
<td></td>
<td>InfoRDS, 21, 43</td>
</tr>
<tr>
<td></td>
<td>Installation, 3</td>
</tr>
<tr>
<td></td>
<td>Introduction, 12</td>
</tr>
<tr>
<td></td>
<td>Invariants for Projective Planes, 40</td>
</tr>
<tr>
<td></td>
<td>IsCollineationOfProjectivePlane, 37</td>
</tr>
<tr>
<td></td>
<td>IsComputableFilter, 45</td>
</tr>
<tr>
<td></td>
<td>IsDiffset, 14</td>
</tr>
<tr>
<td></td>
<td>IsIsomorphismOfProjectivePlanes, 37</td>
</tr>
<tr>
<td></td>
<td>IsListOfIntegers, 43</td>
</tr>
<tr>
<td></td>
<td>IsomorphismProjPlanesByGenerators, 37</td>
</tr>
<tr>
<td></td>
<td>IsomorphismProjPlanesByGeneratorsNC, 37</td>
</tr>
<tr>
<td></td>
<td>Isomorphisms and Collineations, 37</td>
</tr>
<tr>
<td></td>
<td>IsPartialDiffset, 14</td>
</tr>
<tr>
<td></td>
<td>IsRootOfUnity, 44</td>
</tr>
<tr>
<td></td>
<td>IsTranslationPlane, 38</td>
</tr>
<tr>
<td></td>
<td>Iterators, 42</td>
</tr>
<tr>
<td>L</td>
<td>List2Tuples, 43</td>
</tr>
<tr>
<td></td>
<td>Lists and Matrices, 43</td>
</tr>
<tr>
<td>M</td>
<td>MatchingFGData, 24</td>
</tr>
<tr>
<td></td>
<td>MatchingFGDataForOrderedSigs, 32</td>
</tr>
</tbody>
</table>
Index

MatchingFGDataNonGrp, 23
MatTimesTransMat, 43
MaxAutsizeForOrbitCalculation, 24
Methods for calculating ordered signatures, 33
MultiplicityInvariantLargeLambda, 24

N
NewPresentables, 15
NormalSgsForQuotientImages, 31
NormalSgsHavingAtMostNSigs, 25
NormalSubgroupsForRep, 33
NrFanoPlanesAtPoints, 40

O
OneDiffset, 18
OneDiffsetNoSort, 18
OnSubgroups, 42
OrderedSigInvariant, 32
OrderedSignatureOfSet, 34
Ordered signatures by quotient images, 31
Ordered signatures using representations, 32
OrderedSigs, 33
OrderedSigsFromQuotientImages, 32

P
PartitionByFunction, 43
PartitionByFunctionNF, 43
PermList2GroupList, 15
PermutationRepForDiffsetCalculations, 13
PointJoiningLinesProjectivePlane, 35
PRank, 40
ProjectiveClosureOfPointSet, 36
ProjectivePlane, 35

R
RDSFactorGroupData, 23
ReducedStartsets, 24
RemainingCompletions, 16
RemainingCompletionsNoSort, 16
RepsCClassesGivenOrder, 42

S
SigInvariant, 21
SignatureData, 25
SignatureDataForNormalSubgroups, 22
Signatures: An important tool, 9
StartsetsInCoset, 26
SuitableAutomorphismsForReduction, 26

T
TestedSignatures, 20
TestedSignaturesRelative, 21
TestSignatureCyclicFactorGroup, 20
TestSignatureLargeIndex, 20
The Coset Signature, 19

V
Verbosity, 4