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Chapter 1

Introduction

The purpose of this GAP package is to make a collection of p-modular character tables (Brauer tables)
of spin-symmetric groups (and some related groups) available in GAP, thereby extending Thomas
Breuer’s GAP Character Table Library [1]. The SpinSym package is based on [2] which serves as
the general reference here. If you are interested in computing with SpinSym I would like to refer
you to [2] for further references and a more thorough description of some of the topics below. And,
of course, I would like to hear from you about more or less successful attempts in using the present
functionalities.

The term ‘spin-symmetric’ refers to the groups

S̃n = 〈 z, t1, . . . , tn−1 : z2 = 1, t2
i = (titi+1)

3 = z, (t jtk)2 = z 〉

and

Ŝn = 〈 z, t1, . . . , tn−1 : z2 = 1, t2
i = (titi+1)

3 = 1, (t jtk)2 = z, zti = tiz 〉

where the relations are imposed for all admissable i, j,k with | j− k| > 1. Provided n ≥ 4, these
groups are double covers of the symmetric group Sn on n letters. Although S̃n and Ŝn are non-
isomorphic groups for n 6= 6, they are isoclinic and their representation theory is very similar. By
choice, we restrict the attention to S̃n. (However, if you are interested in character tables of Ŝn then
have a look at CharacterTableIsoclinic() in the GAP Reference Manual.)

The natural epimorphism π : S̃n → Sn, ti 7→ (i, i+ 1), whose kernel is generated by the central
involution z, gives rise to the double cover Ãn = Aπ−1

n of the alternating group An as the preimage of An

under π . Irreducible faithful representations of S̃n or Ãn are called spin representations and a similar
‘spin’ terminology is used for all related faithful objects, to set them apart from the non-faithful objects
that belong esssentially to Sn or An , respectively.

1.1 The data part

The package contains complete Brauer tables of S̃n and Ãn up to degree n = 18 in characteristic p =
3,5,7. Thus it includes the corresponding Brauer tables of Sn and An . Moreover, Brauer tables of Sn

and An up to degree n = 19 in characteristic p = 2 are part of the package too.
Every Brauer table comes with lists of character parameters (row labels) and class parameters

(column labels), see 2.2 and 2.3. I would like to mention that only some of the data is ‘new’, large
portions date back to the work of James, Morris, Yaseen, and the Modular Atlas Project. Detailed
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references are to be found in [2]. The 2-modular tables of Sn and An for n = 18,19 were computed
jointly by Jürgen Müller and the author.

Please note that some of our Brauer tables differ to some extent from those contained in the GAP
Character Table Library [1] (for example, in terms of the ordering of conjugacy classes and characters
or in terms of their parameters). Therefore it seemed appropriate to collect these tables in their own
package - so here we are.

I’m grateful to Thomas Breuer for supporting the idea of writing this package and for converting
my tables into the right GAP Character Table Library format.

1.2 The functions part

Besides Brauer tables, the package provides some related functionalities such as functions that deter-
mine class fusions of subgroup character tables and functions that compute character tables of some
Young subgroups of S̃n.

1.3 Installation and loading

To install this package, download the archive file spinsym-1.5.2.tar.gz and unpack it inside the
pkg subdirectory of your GAP installation. It creates a subdirectory called spinsym. Then load the
package using the LoadPackage command.

Example

gap> LoadPackage("spinsym");

The SpinSym package banner should appear on the screen. You may want to run a quick test of the
installation:

Example

gap> dir:= DirectoriesPackageLibrary( "spinsym", "tst" )[1];;
gap> tst:= Filename( dir, "testall.tst" );;
gap> Test( tst );
true



Chapter 2

Usage and features

2.1 Accessing the tables

All Brauer tables in this package are relative to a generic ordinary character table obtained by one of
the following constructions

CharacterTable( "2.Sym(n)" ), the character table of S̃n,

CharacterTable( "2.Alt(n)" ), the character table of Ãn,

CharacterTable( "Sym(n)" ), the character table of Sn,

CharacterTable( "Alt(n)" ), the character table of An.

Note that these are synonymous expressions for

CharacterTable( "DoubleCoverSymmetric", n ),

CharacterTable( "DoubleCoverAlternating", n ),

CharacterTable( "Symmetric", n ),

CharacterTable( "Alternating", n ),

respectively. More detailed information on these tables is to be found in [3]. In this manual, we
call such a character table an (ordinary) SpinSym table. If ordtbl is an ordinary SpinSym table, the
relative Brauer table in characteristic p can be accessed using the mod-operator (i.e. ordtbl mod p;).
Such a Brauer table is called a (p-modular) SpinSym table in the following.

Example

gap> ordtbl:= CharacterTable( "2.Sym(18)" );
CharacterTable( "2.Sym(18)" )
gap> modtbl:= ordtbl mod 3;
BrauerTable( "2.Sym(18)", 3 )
gap> OrdinaryCharacterTable(modtbl)=ordtbl;
true
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2.2 Character parameters

An ordinary SpinSym table has character parameters, that is, a list of suitable labels corresponding
to the rows of ordtbl and therefore the irreducible ordinary characters of the underlying group. See
CharacterParameters() in the GAP Reference Manual.

2.2.1 Parameters of ordinary characters

In the following, ‘ordinary (spin) character’ is used synonymously for ‘irreducible ordinary (spin)
character’. It is well known that there is a bijection between the set of ordinary characters of Sn and
the set P(n) of all partitions of n. Recall that a partition of a natural number n is a list of non-increasing
positive integers (its parts) that sum up to n. In this way, every ordinary character χ of Sn has a label
of the form [1,c] where c is a partition of n. The labels of the ordinary characters of An are induced
by Clifford theory as follows. Either the restriction ψ = χ|An of χ to An is an ordinary character of An,
or ψ decomposes as the sum of two distinct ordinary characters ψ1 and ψ2.

In the first case there is another ordinary character of Sn, say ξ labelled by [1,d], such that the
restriction of ξ to An is equal to ψ . Moreover, the induced character of Sn obtained from ψ decomposes
as the sum of χ and ξ . Then ψ is labelled by [1,c] or [1,d].

In the second case, both ψ1 and ψ2 induce irreducibly up to χ . Then ψ1 and ψ2 are labelled by
[1,[c,’+’]] and [1,[c,’-’]].

Example

gap> ctS:= CharacterTable( "Sym(5)" );;
gap> CharacterParameters(ctS);
[ [ 1, [ 1, 1, 1, 1, 1 ] ], [ 1, [ 2, 1, 1, 1 ] ], [ 1, [ 2, 2, 1 ] ],

[ 1, [ 3, 1, 1 ] ], [ 1, [ 3, 2 ] ], [ 1, [ 4, 1 ] ], [ 1, [ 5 ] ] ]
gap> ctA:= CharacterTable( "Alt(5)" );;
gap> CharacterParameters(ctA);
[ [ 1, [ 1, 1, 1, 1, 1 ] ], [ 1, [ 2, 1, 1, 1 ] ], [ 1, [ 2, 2, 1 ] ],

[ 1, [ [ 3, 1, 1 ], ’+’ ] ], [ 1, [ [ 3, 1, 1 ], ’-’ ] ] ]
gap> chi:= Irr(ctS)[1];;
gap> psi:= RestrictedClassFunction(chi,ctA);;
gap> Position(Irr(ctA),psi);
1
gap> xi:= Irr(ctS)[7];;
gap> RestrictedClassFunction(xi,ctA) = psi;
true
gap> InducedClassFunction(psi,ctS) = chi + xi;
true
gap> chi:= Irr(ctS)[4];;
gap> psi:= RestrictedClassFunction(chi,ctA);;
gap> psi1:= Irr(ctA)[4];; psi2:= Irr(ctA)[5];;
gap> psi = psi1 + psi2;
true
gap> InducedClassFunction(psi1,ctS) = chi;
true
gap> InducedClassFunction(psi2,ctS) = chi;
true
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If χ is an ordinary character of S̃n or Ãn, then χ(z) = χ(1) or χ(z) =−χ(1). If χ(z) = χ(1), then χ is
obtained by inflation (along the central subgroup generated by z) from an ordinary character of Sn or
An, respectively, whose label is given to χ . Otherwise, if χ is a spin character, that is χ(z) = −χ(1),
then its label is described next.

The set of ordinary spin characters of S̃n is parameterized by the subset D(n) of P(n) of all distinct-
parts partitions of n (also called bar partitions). If c is an even distinct-parts partition of n, then there
is a unique ordinary spin character of S̃n that is labelled by [2,c]. In contrast, if c is an odd distinct-
parts partition of n, then there are two distinct ordinary spin characters of S̃n that are labelled by
[2,[c,’+’]] and [2,[c,’-’]]. Now the labels of the ordinary spin characters of Ãn follow from
the labels of S̃n in the same way as those of An follow from the labels of Sn (see the beginning of this
subsection 2.2.1).

Example

gap> ctS:= CharacterTable( "Sym(5)" );;
gap> ct2S:= CharacterTable( "2.Sym(5)" );;
gap> ch:= CharacterParameters(ct2S);
[ [ 1, [ 1, 1, 1, 1, 1 ] ], [ 1, [ 2, 1, 1, 1 ] ], [ 1, [ 2, 2, 1 ] ],

[ 1, [ 3, 1, 1 ] ], [ 1, [ 3, 2 ] ], [ 1, [ 4, 1 ] ], [ 1, [ 5 ] ],
[ 2, [ [ 3, 2 ], ’+’ ] ], [ 2, [ [ 3, 2 ], ’-’ ] ],
[ 2, [ [ 4, 1 ], ’+’ ] ], [ 2, [ [ 4, 1 ], ’-’ ] ], [ 2, [ 5 ] ] ]

gap> pos:= Positions( List(ch, x-> x[1]), 1 );;
gap> RestrictedClassFunctions( Irr(ctS), ct2S ) = Irr(ct2S){pos}; #inflation
true
gap> ct2A:= CharacterTable( "2.Alt(5)" );;
gap> CharacterParameters(ct2A);
[ [ 1, [ 1, 1, 1, 1, 1 ] ], [ 1, [ 2, 1, 1, 1 ] ], [ 1, [ 2, 2, 1 ] ],

[ 1, [ [ 3, 1, 1 ], ’+’ ] ], [ 1, [ [ 3, 1, 1 ], ’-’ ] ], [ 2, [ 3, 2 ] ],
[ 2, [ 4, 1 ] ], [ 2, [ [ 5 ], ’+’ ] ], [ 2, [ [ 5 ], ’-’ ] ] ]

2.2.2 Parameters of modular characters

In the following, ‘p-modular (spin) character’ is used synonymously for ‘irreducible p-modular (spin)
character’. The set of p-modular characters of Sn is parameterized by the set of all p-regular partitions
of n. A partition is p-regular if no part is repeated more than p− 1 times. Now every p-modular
character χ of Sn has a label of the form [1,c] where c is a p-regular partition of n.

Again, the labels for the p-modular spin characters of An follow from the labels of Sn. However,
comparing subsection 2.2.1, their format is slightly different.

If χ and ξ are distinct p-modular characters of Sn that restrict to the same p-modular character
ψ of An , then ψ is labelled by [1,[c,’0’]] where either χ or ξ is labelled by [1,c]. If χ is a
p-modular character of Sn whose restriction to An decomposes as the sum of two distinct p-modular
characters, then these are labelled by [1,[c,’+’]] and [1,[c,’-’]] where χ is labelled by [1,c].

As in the ordinary case, the set of p-modular characters of S̃n is the union of the subset consisting
of all inflated p-modular characters of Sn and the subset of spin characters characterized by negative
integer values on the central element z. The analogue statement holds for Ãn. The set of p-modular
spin characters of S̃n is parameterized by the set of all restricted p-strict partitions of n. A partition
is called p-strict if every repeated part is divisible by p, and a p-strict partition λ is restricted if
λi− λi+1 < p whenever λi is divisible p, and λi− λi+1 ≤ p otherwise for all parts λi of λ (where
we set λi+1 = 0 if λi is the last part). If c is a restricted p-strict partition of n such that n minus the
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number of parts not divisible by p is even, then there is a unique p-modular spin character of S̃n that
is labelled by [2,[c,’0’]]. Its restriction to Ãn decomposes as the sum of two distinct p-modular
characters which are labelled by [2,[c,’+’]] and [2,[c,’-’]]. If n minus the number of parts of
c that are not divisible by p is odd, then there are two distinct p-modular spin characters of S̃n that are
labelled by [2,[c,’+’]] and [2,[c,’-’]]. Both of these characters restrict to the same irreducible
p-modular spin character of Ãn which is labelled by [2,[c,’0’]].

Example

gap> ctS:= CharacterTable( "Sym(5)" ) mod 3;;
gap> ct2S:= CharacterTable( "2.Sym(5)" ) mod 3;;
gap> ch:= CharacterParameters(ct2S);
[ [ 1, [ 5 ] ], [ 1, [ 4, 1 ] ], [ 1, [ 3, 2 ] ],

[ 1, [ 3, 1, 1 ] ], [ 1, [ 2, 2, 1 ] ],
[ 2, [ [ 4, 1 ], ’+’ ] ], [ 2, [ [ 4, 1 ], ’-’ ] ],
[ 2, [ [ 3, 2 ], ’0’ ] ] ]

gap> pos:= Positions( List(ch, x-> x[1]), 1 );;
gap> RestrictedClassFunctions( Irr(ctS), ct2S ) = Irr(ct2S){pos}; #inflation
true
gap> ct2A:= CharacterTable( "2.Alt(5)" ) mod 3;;
gap> CharacterParameters(ct2A);
[ [ 1, [ [ 5 ], ’0’ ] ], [ 1, [ [ 4, 1 ], ’0’ ] ],

[ 1, [ [ 3, 1, 1 ], ’+’ ] ], [ 1, [ [ 3, 1, 1 ], ’-’ ] ],
[ 2, [ [ 4, 1 ], ’0’ ] ], [ 2, [ [ 3, 2 ], ’+’ ] ], [ 2, [ [ 3, 2 ], ’-’ ] ] ]

2.3 Class parameters

Let ct be an ordinary SpinSym table. Then ct has a list of class parameters, that is, a list of suit-
able labels corresponding to the columns of ct and therefore the conjugacy classes of the underlying
group. See ClassParameters() in the GAP Reference Manual. If bt is a Brauer table in character-
istic p relative to ct, its class parameters are inherited from ct in correspondence with the p-regular
conjugacy classes of the underlying group.

Let P(n) denote the set of partitions of n.
The conjugacy classes of Sn are naturally parameterized by the cycle types of their elements, and

each cycle type corresponds to a partition of n. Therefore a conjugacy class C of Sn is characterized
by its type c ∈ P(n). The corresponding entry in the list of class parameters is [1,c]. Assume that
C ⊂ An . Then C is also a conjugacy class of An if and only if not all parts of c are odd and pairwise
distinct. Otherwise, C splits as the union of two distinct An -classes of the same size, C+ of type c+

and C− of type c−. The corresponding entries in the list of class parameters are [1,[c,’+’]] and
[1,[c,’-’]], respectively.

Furthermore, C̃ =Cπ−1 ⊂ S̃n is either a conjugacy class of S̃n of type c with class parameter [1,c],
or C̃ splits as the union of two distinct S̃n-classes C̃1 and C̃2 = zC̃1, both of type c with corresponding
class parameters [1,c] and [2,c], respectively. An analogous description applies for the conjugacy
classes of Ãn.

Example

gap> ct:= CharacterTable( "Sym(3)" );;
gap> ClassParameters(ct);
[ [ 1, [ 1, 1, 1 ] ], [ 1, [ 2, 1 ] ], [ 1, [ 3 ] ] ]
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gap> ct:= CharacterTable( "Alt(3)" );;
gap> ClassParameters(ct);
[ [ 1, [ 1, 1, 1 ] ], [ 1, [ [ 3 ], ’+’ ] ], [ 1, [ [ 3 ], ’-’ ] ] ]
gap> ct:= CharacterTable( "2.Sym(3)" );;
gap> ClassParameters(ct);
[ [ 1, [ 1, 1, 1 ] ], [ 2, [ 1, 1, 1 ] ], [ 1, [ 2, 1 ] ], [ 2, [ 2, 1 ] ],

[ 1, [ 3 ] ], [ 2, [ 3 ] ] ]
gap> ct:= CharacterTable( "2.Alt(3)" );;
gap> ClassParameters(ct);
[ [ 1, [ 1, 1, 1 ] ], [ 2, [ 1, 1, 1 ] ],

[ 1, [ [ 3 ], ’+’ ] ], [ 2, [ [ 3 ], ’+’ ] ],
[ 1, [ [ 3 ], ’-’ ] ], [ 2, [ [ 3 ], ’-’ ] ] ]

To each conjugacy class of S̃n or Ãn a certain standard representative is assigned in the following way.
Let c = [c1,c2, . . . ,cm] be a partition of n. We set d1 = 0, di = c1 + . . .+ ci−1 for i≥ 2, and

t(ci,di) = tdi+1tdi+2 . . . tdi+ci−1

for 1≤ i≤ m−1, where t(ci,di) = 1 if ci = 1. The standard representative of type c is defined as

tc = t(c1,d1)t(c2,d2) · · · t(cm−1,dm−1).

Furthermore, we define the standard representatives of type c+ =[c,’+’] and c− =[c,’-’] to be
tc+ = tc and tc− = t−1

1 tct1, respectively.
For example, the standard representative of type c = [7,4,3,1] ∈ P(15) is

tc = t1t2t3t4t5t6t8t9t10t12t13.

Now C̃ is a conjugacy class of S̃n or Ãn with parameter

[1,c] if and only if tc ∈ C̃,

[2,c] if and only if ztc ∈ C̃,

[1,[c,’+’]] if and only if tc+ ∈ C̃,

[2,[c,’+’]] if and only if ztc+ ∈ C̃,

[1,[c,’-’]] if and only if tc− ∈ C̃,

[2,[c,’-’]] if and only if ztc− ∈ C̃.

2.3.1 SpinSymStandardRepresentative

. SpinSymStandardRepresentative(c, rep) (function)

Returns: the image of the standard representative of type c under a given S̃n -representation.
Expecting the second entry of a class parameter of S̃n or Ãn, say c , the standard representative

of type c under a given representation of S̃n is computed. The argument rep is assumed to be a
list [tR

1 , t
R
2 , . . . , t

R
n−1] given by the images of the generators t1, . . . , tn−1 of S̃n under a (not necessarily

faithful) representation R of S̃n.
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Example

gap> ct:= CharacterTable("2.Sym(15)") mod 5;;
gap> cl:= ClassParameters(ct)[99];
[ 1, [ 7, 4, 3, 1 ] ]
gap> c:= cl[2];;
gap> rep:= BasicSpinRepresentationOfSymmetricGroup(15,5);;
gap> t:= SpinSymStandardRepresentative(c,rep);
< immutable compressed matrix 64x64 over GF(25) >
gap> OrdersClassRepresentatives(ct)[99];
168
gap> Order(t);
168
gap> BrauerCharacterValue(t);
0

2.3.2 SpinSymStandardRepresentativeImage

. SpinSymStandardRepresentativeImage(c[, j]) (function)

Returns: the image of the standard representative of type c under the natural epimorphism
π : S̃{ j,..., j+n−1}→ S{ j,..., j+n−1} .

Given the second entry c of a class parameter of S̃n or Ãn, and optionally a positive integer j , the
image of the standard representative of type c under π : S̃{ j,..., j+n−1}→ S{ j,..., j+n−1} with tπ

i = (i, i+1)
for j≤ i≤ j+n−2 is computed by calling SpinSymStandardRepresentative(c,rep) where rep
is the list [(j,j+1),(j+1,j+2),...,(j+n-2,j+n-1)]. By default, j=1.

Example

gap> s1:= SpinSymStandardRepresentativeImage([7,4,3,1]);
(1,7,6,5,4,3,2)(8,11,10,9)(12,14,13)
gap> s2:= SpinSymStandardRepresentativeImage([[7,4,3,1],’-’]);
(1,2,7,6,5,4,3)(8,11,10,9)(12,14,13)
gap> s2 = s1^(1,2);
true
gap> SpinSymStandardRepresentativeImage([7,4,3,1],3);
(3,9,8,7,6,5,4)(10,13,12,11)(14,16,15)

2.3.3 SpinSymPreimage

. SpinSymPreimage(c, rep) (function)

Returns: a (standard) lift of the element c of Sn in S̃n under a given S̃n -representation.
See [2, (5.1.12)] for the definition of the lift that is returned by this function. The permutation

c is written as a product of simple transpositions (i, i+ 1), then these are replaced by the images of
their canonical lifts ti under a given representation R of S̃n (recall the beginning of Chapter 1 for the
definition of ti). Here rep is assumed to be the list [tR

1 , t
R
2 , . . . , t

R
n−1].

Note that a more efficient computation may be achieved by computing and storing a list of all
necessary transpositions once and for all, before lifting (many) elements (under a possibly large rep-
resentation).
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Example

gap> rep:= BasicSpinRepresentationOfSymmetricGroup(15);;
gap> c:= SpinSymStandardRepresentativeImage([5,4,3,2,1]);
(1,5,4,3,2)(6,9,8,7)(10,12,11)(13,14)
gap> C:= SpinSymPreimage(c,rep);
< immutable compressed matrix 64x64 over GF(9) >
gap> C = SpinSymStandardRepresentative([5,4,3,2,1],rep);
true

2.3.4 SpinSymBrauerCharacter

. SpinSymBrauerCharacter(ccl, ords, rep) (function)

Returns: the Brauer character afforded by a given representation of S̃n.
This function is based on a simplified computation of the GAP attribute

BrauerCharacterValue(mat) for an invertible matrix mat over a finite field whose charac-
teristic is coprime to the order of mat.

The arguments ccl and ords are expected to be the values of the attributes
ClassParameters(modtbl) and OrdersClassRepresentatives(modtbl) of a (possibly
incomplete) p-modular SpinSym table modtbl of S̃n.

The argument rep is assumed to be a list [tR
1 , t

R
2 , . . . , t

R
n−1] given by the images of the generators

t1, . . . , tn−1 of S̃n under a (not necessarily faithful) S̃n-representation R.
Example

gap> ct:= CharacterTable("DoubleCoverSymmetric",15);;
gap> bt:= CharacterTableRegular(ct,5);;
gap> fus:= GetFusionMap(bt,ct);;
gap> ccl:= ClassParameters(ct){fus};;
gap> ords:= OrdersClassRepresentatives(bt);;
gap> rep:= BasicSpinRepresentationOfSymmetricGroup(15,5);;
gap> phi:= SpinSymBrauerCharacter(ccl,ords,rep);;
gap> phi in Irr(ct mod 5);
true

2.3.5 SpinSymBasicCharacter

. SpinSymBasicCharacter(modtbl) (function)

Returns: a p-modular basic spin character of the (possibly incomplete) p-modular SpinSym table
modtbl of S̃n.

This is just a shortcut for constructing a basic spin representation of S̃n in characteristic p and
computing its Brauer character by calling SpinSymBrauerCharacter (2.3.4) afterwards.

Example

gap> SetClassParameters(bt,ccl);
gap> SpinSymBasicCharacter(bt) = phi;
true
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2.4 Young subgroups

Let k and l be integers greater than 1 and set n = k+ l. The following subgroup of S̃n,

S̃k,l = 〈t1, . . . , tk−1, tk+1, . . . , tn−1〉,

is called a (maximal) Young subgroup of S̃n. Similarly, Ãk,l = S̃k,l ∩ Ãn is a (maximal) Young subgroup
of Ãn. Note that (S̃k,l)

π ∼= Sk×Sl and (Ãk,l)
π ∼= Ak×Al but only Ãk,l ∼= (Ãk× Ãl)/〈(z,z)〉 is a central

product. In between Ãk,l and S̃k,l there are further central products S̃k ◦ Ãl ∼= (S̃k × Ãl)/〈(z,z)〉 and
Ãk ◦ S̃l ∼= (Ãk× S̃l)/〈(z,z)〉 which are π-preimages of Sk×Al and Ak×Sl , respectively. See [2, Section
5.2].

2.4.1 SpinSymCharacterTableOfMaximalYoungSubgroup

. SpinSymCharacterTableOfMaximalYoungSubgroup(k, l, type) (function)

Returns: the ordinary character table of a maximal Young subgroup depending on type .
For integers k and l greater than 1 the function returns the ordinary character table of Ãk,l , Ãk ◦ S̃l ,

S̃k ◦ Ãl , or S̃k,l depending on the string type being "Alternating", "AlternatingSymmetric",
"SymmetricAlternating", or "Symmetric", respectively.

If type is "Symmetric" then the output is computed by means of Clifford’s theory from the char-
acter tables of S̃k ◦ Ãl , Ãk,l , and Ãk ◦ S̃l (see [2, Section 5.2]). These ‘ingredients’ are computed and then
stored in the attribute SpinSymIngredients so they can be accessed during the construction (and for
the construction of a relative Brauer table too, see SpinSymBrauerTableOfMaximalYoungSubgroup
(2.4.2)).

The construction of the character tables of type "Alternating", "AlternatingSymmetric", or
"SymmetricAlternating" is straightforward and may be accomplished by first construcing a direct
product, for example, the character table of S̃k× Ãl , followed by the construction of the character table
of the factor group mod 〈(z,z)〉.

However, we use a faster method that builds up the table from scratch, using the appropriate
component tables as ingredients (for example, the generic character tables of S̃k and Ãl). In this way
we can easily build up a suitable list of class parameters that are needed to determine the class fusion
in the construction of type "Symmetric".

Example

gap> 2AA:= SpinSymCharacterTableOfMaximalYoungSubgroup(8,5,"Alternating");
CharacterTable( "2.(Alt(8)xAlt(5))" )
gap> SpinSymCharacterTableOfMaximalYoungSubgroup(8,5,"AlternatingSymmetric");
CharacterTable( "2.(Alt(8)xSym(5))" )
gap> SpinSymCharacterTableOfMaximalYoungSubgroup(8,5,"SymmetricAlternating");
CharacterTable( "2.(Sym(8)xAlt(5))" )
gap> 2SS:= SpinSymCharacterTableOfMaximalYoungSubgroup(8,5,"Symmetric");
CharacterTable( "2.(Sym(8)xSym(5))" )

2.4.2 SpinSymBrauerTableOfMaximalYoungSubgroup

. SpinSymBrauerTableOfMaximalYoungSubgroup(ordtbl, p) (function)

Returns: the p -modular character table of the ordinary character table ordtbl returned by the
function SpinSymCharacterTableOfMaximalYoungSubgroup (2.4.1).
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If the rational prime p is odd, then the construction of the irreducible Brauer characters is really
the same as in the ordinary case but it depends on the p -modular tables of of ordtbl ’s ‘ingredients’.
If some Brauer table that is necessary for the construction is not available then fail is returned.

Alternatively, the mod-operator may be used.
For p = 2 the Brauer table is essentially constructed as a direct product by standard GAP methods

written by Thomas Breuer.
We call a character table returned by SpinSymCharacterTableOfMaximalYoungSubgroup

(2.4.1) or SpinSymBrauerTableOfMaximalYoungSubgroup (2.4.2) a SpinSym table too. It has lists
of class and character parameters whose format is explained in [2, Sections 5.2, 5.3].

Example

gap> SpinSymBrauerTableOfMaximalYoungSubgroup(2AA,3);
BrauerTable( "2.(Alt(8)xAlt(5))", 3 )
gap> 2SS mod 5;
BrauerTable( "2.(Sym(8)xSym(5))", 5 )
gap> ct:= 2SS mod 2;
BrauerTable( "2.(Sym(8)xSym(5))", 2 )
gap> ct1:= CharacterTable("Sym(8)") mod 2;;
gap> ct2:= CharacterTable("Sym(5)") mod 2;;
gap> Irr(ct1*ct2) = Irr(ct);
true

2.5 Class Fusions

The following functions determine class fusion maps between SpinSym tables by means of their class
parameters. Such ‘default’ class fusion maps allow to induce characters from various subgroups of S̃n

or Ãn consistently.

2.5.1 SpinSymClassFusion

. SpinSymClassFusion(ctSource, ctDest) (function)

Returns: a fusion map from the SpinSym table ctSource to the SpinSym table ctDest . This
map is stored if there is no other fusion map from ctSource to ctDest stored yet.

The possible input tables are expected to be either ordinary or p-modular SpinSym tables of the
following pairs of groups

Source → Dest
Ãn S̃n

S̃k S̃n

Ãk Ãn

S̃n−2 Ãn

S̃k,l S̃k+l
S̃k ◦ Ãl S̃k,l
Ãk ◦ S̃l S̃k,l

Ãk,l S̃k ◦ Ãl
Ãk,l Ãk ◦ S̃l
Ãk,l Ãk+l
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The appropriate function (see the descriptions below) is called to determine the fusion map fus. If
GetFusionMap(ctSource, ctDest) fails, then fus is stored by calling StoreFusion(ctSource,
fus, ctDest).

Example

gap> ctD:= CharacterTable("2.Sym(18)");;
gap> ctS:= SpinSymCharacterTableOfMaximalYoungSubgroup(10,8,"Symmetric");;
gap> GetFusionMap(ctS,ctD);
fail
gap> SpinSymClassFusion(ctS,ctD);;
#I SpinSymClassFusion: stored fusion map from 2.(Sym(10)xSym(8)) to 2.Sym(18)
gap> GetFusionMap(ctS,ctD) <> fail;
true

2.5.2 SpinSymClassFusion2Ain2S

. SpinSymClassFusion2Ain2S(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of Ãn and S̃n.
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of Ãn and S̃n, respectively, a corresponding class fusion map is determined. See [2, (5.4.1)].

2.5.3 SpinSymClassFusion2Sin2S

. SpinSymClassFusion2Sin2S(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of S̃k and S̃n for k ≤ n.
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of S̃k and S̃n for k ≤ n, respectively, a corresponding class fusion map is determined. See [2,
(5.4.2)].

Example

gap> ctD:= CharacterTable("2.Sym(18)");;
gap> ctS:= CharacterTable("2.Sym(6)");;
gap> cclD:= ClassParameters(ctD);;
gap> cclS:= ClassParameters(ctS);;
gap> fus:= SpinSymClassFusion2Sin2S(cclS,cclD);;
gap> StoreFusion(ctS,fus,ctD);

2.5.4 SpinSymClassFusion2Ain2A

. SpinSymClassFusion2Ain2A(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of Ãk and Ãn for k ≤ n.
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of Ãk and Ãn for k ≤ n, respectively, a corresponding class fusion map is determined. See [2,
(5.4.3)].
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2.5.5 SpinSymClassFusion2Sin2A

. SpinSymClassFusion2Sin2A(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of S̃n−2 and Ãn.
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of S̃n−2 and Ãn, respectively, a corresponding class fusion map with respect to the embedding
of 〈t1tn−2, . . . , tn−3tn−1〉 ∼= S̃n−2 in Ãn is determined. See [2, (5.4.4)].

2.5.6 SpinSymClassFusion2SSin2S

. SpinSymClassFusion2SSin2S(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of S̃k,l and S̃k+l .
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of S̃k,l and S̃k+l , respectively, a corresponding class fusion map is determined by means of [2,
(5.1.6)].

Example

gap> ctD:= CharacterTable("2.Sym(18)");;
gap> ctS:= SpinSymCharacterTableOfMaximalYoungSubgroup(10,8,"Symmetric");;
gap> cclD:= ClassParameters(ctD);;
gap> cclS:= ClassParameters(ctS);;
gap> fus:= SpinSymClassFusion2SSin2S(cclS,cclD);;
gap> StoreFusion(ctS,fus,ctD);

2.5.7 SpinSymClassFusion2SAin2SS

. SpinSymClassFusion2SAin2SS(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of S̃k ◦ Ãl and S̃k,l .
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of S̃k◦Ãl and S̃k,l , respectively, a corresponding class fusion map is determined. See [2, (5.4.6)].

2.5.8 SpinSymClassFusion2ASin2SS

. SpinSymClassFusion2ASin2SS(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of Ãk ◦ S̃l and S̃k,l .
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of Ãk ◦ S̃l and S̃k,l , respectively, a corresponding class fusion map is determined analogously to
[2, (5.4.6)].

2.5.9 SpinSymClassFusion2AAin2SA

. SpinSymClassFusion2AAin2SA(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of Ãk,l and S̃k ◦ Ãl .
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of Ãk,l and S̃k◦Ãl , respectively, a corresponding class fusion map is determined. See [2, (5.4.7)].
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2.5.10 SpinSymClassFusion2AAin2AS

. SpinSymClassFusion2AAin2AS(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of Ãk,l and Ãk ◦ S̃l .
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of Ãk,l and Ãk ◦ S̃l , respectively, a corresponding class fusion map is determined analogously to
[2, (5.4.7)].

2.5.11 SpinSymClassFusion2AAin2A

. SpinSymClassFusion2AAin2A(cclSource, cclDest) (function)

Returns: a fusion map between the SpinSym tables of Ãk,l and Ãk+l .
Given lists of class parameters cclSource and cclDest of (ordinary or p-modular) SpinSym

tables of Ãk,l and Ãk+l , respectively, a corresponding class fusion map is determined. See [2, (5.4.8)].
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