Goto Chapter: Top 1 2 3 4 5 Bib Ind

### 5 Strongly regular graphs

In this chapter we give functions to investigate strongly regular graphs. In particular, we provide a collection of strongly regular graphs which can be a useful computational resource.

#### 5.1 Strongly regular graph parameter tuples

In this section, we give functions to investigate the parameters of a strongly regular graph. For the definition of feasible strongly regular graph parameters, see IsFeasibleSRGParameters (2.3-3).

##### 5.1-1 ComplementSRGParameters
 ‣ ComplementSRGParameters( parms ) ( function )

Returns: A list.

Given feasible strongly regular graph parameters parms, this function returns the complement parameters of parms.

Suppose $$\Gamma$$ is a strongly regular graph with parameters $$(v,k,a,b)$$. Then the complement of $$\Gamma$$ is a strongly regular graph with parameters $$(v,v-k-1,v-2-2k+b,v-2k+a)$$ (see [BCN89]). We define the complement parameters of the feasible strongly regular graph parameter tuple $$(v,k,a,b)$$ as the tuple $$(v,v-k-1,v-2-2k+b,v-2k+a)$$.


gap> ComplementSRGParameters([16,9,4,6]);
[ 16, 6, 2, 2 ]



##### 5.1-2 SRGToGlobalParameters
 ‣ SRGToGlobalParameters( parms ) ( function )

Returns: A list.

Given feasible strongly regular graph parameters parms, this function returns the global parameters of a graph with strongly regular graph parameters parms. For information on global parameters of a graph, see [Soi18].


gap> SRGToGlobalParameters([50,7,0,1]);
[ [ 0, 0, 7 ], [ 1, 0, 6 ], [ 1, 6, 0 ] ]



##### 5.1-3 GlobalToSRGParameters
 ‣ GlobalToSRGParameters( parms ) ( function )

Returns: A list.

Given the global parameters parms of a connected strongly regular graph, this function returns the strongly regular graph parameters of the graph. For information on global parameters of a graph, see [Soi18].


gap> parms:=GlobalParameters(JohnsonGraph(5,3));
[ [ 0, 0, 6 ], [ 1, 3, 2 ], [ 4, 2, 0 ] ]
gap> GlobalToSRGParameters(parms);
[ 10, 6, 3, 4 ]



##### 5.1-4 IsPrimitiveSRGParameters
 ‣ IsPrimitiveSRGParameters( [v, k, a, b] ) ( function )

Returns: true or false.

Given a list of integers of length 4, [v,k,a,b], this function returns true if $$(\textit{v,k,a,b})$$ is a feasible parameter tuple for a primitive strongly regular graph. Otherwise, this function returns false.

Let $$(v,k,a,b)$$ be feasible strongly regular parameters with complement parameters $$(v',k',a',b')$$. Then the parameter tuple $$(v,k,a,b)$$ is called primitive if $$b\not= 0$$ and $$b'\not= 0$$.

A strongly regular graph $$\Gamma$$ is called primitive if $$\Gamma$$ and its complement is connected. It is known that a non-primitive strongly regular graph is a union of cliques, or the complement of a union of cliques. From our definition, it follows that a strongly regular graph $$\Gamma$$ is primitive if and only if $$\Gamma$$ has primitive strongly regular graph parameters (see [BCN89]).


gap> IsFeasibleSRGParameters([8,6,4,6]);
true
gap> IsPrimitiveSRGParameters([8,6,4,6]);
false
gap> IsPrimitiveSRGParameters([10,6,3,4]);
true



##### 5.1-5 IsTypeISRGParameters
 ‣ IsTypeISRGParameters( [v, k, a, b] ) ( function )

Returns: true or false.

Given a list of integers of length 4, [v,k,a,b], this function returns true if $$(\textit{v,k,a,b})$$ is a feasible parameter tuple for a type I strongly regular graph. Otherwise, this function returns false.

A feasible strongly regular parameter tuple $$(v,k,a,b)$$ is of type I (or a conference graph) if there exists a positive integer $$t$$ such that $$v=4t+1,k=2t,a=t-1,b=t$$.

There are two types of strongly regular graphs, called type I and type II (see [BCN89]). Let $$\Gamma$$ be a strongly regular graph with parameters $$(v,k,a,b)$$. Then $$\Gamma$$ is of type I if and only if $$(v,k,a,b)$$ is of type I.


gap> IsTypeISRGParameters([5,2,0,1]);
true
gap> IsTypeISRGParameters([9,4,1,2]);
true
gap> IsTypeISRGParameters([10,3,0,1]);
false



##### 5.1-6 IsTypeIISRGParameters
 ‣ IsTypeIISRGParameters( [v, k, a, b] ) ( function )

Returns: true or false.

Given a list of integers of length 4, [v,k,a,b], this function returns true if $$(\textit{v,k,a,b})$$ is a feasible parameter tuple for a type II strongly regular graph. Otherwise, this function returns false.

A feasible strongly regular parameter tuple $$(v,k,a,b)$$ is of type II if the polynomial $$x^{2}-(a-b)x+b-k$$ has integer zeros.

There are two types of strongly regular graphs, called type I and type II (see [BCN89]). Let $$\Gamma$$ be a strongly regular graph with parameters $$(v,k,a,b)$$. Then $$\Gamma$$ is of type II if and only if all of its eigenvalues are integer. The eigenvalues of $$\Gamma$$ are $$k$$ and the zeros of the polynomial $$x^{2}-(a-b)x+b-k$$ (see [BCN89]). From our definition, it follows that $$\Gamma$$ is of type II if and only if $$(v,k,a,b)$$ is of type II.


gap> IsTypeIISRGParameters([5,2,0,1]);
false
gap> IsTypeIISRGParameters([9,4,1,2]);
true
gap> IsTypeIISRGParameters([10,3,0,1]);
true



##### 5.1-7 KreinParameters
 ‣ KreinParameters( [v, k, a, b] ) ( operation )

Returns: A list.

Given feasible strongly regular graph parameters [v, k, a, b], this function returns a list of (non-trivial) Krein parameters of a strongly regular graph with parameters $$(\textit{v,k,a,b})$$.

If the eigenvalues of a strongly regular graph are integer, the object returned is a list of integers. If the eigenvalues are irrational, the object returned will be a list of cyclotomic numbers.

Let $$\Gamma$$ be a strongly regular graph with parameters $$(v,k,a,b)$$ and eigenvalues $$k\geq r > s$$. Then the Krein parameters of $$\Gamma$$ are the numbers

$K_{1}=(k+r)(s+1)^{2} - (r+1)(k+r+2rs),$

$K_{2}=(k+s)(r+1)^{2} - (s+1)(k+s+2rs).$

For information on the Krein parameters of strongly regular graphs, see [BCN89].


gap> KreinParameters([10,6,3,4]);
[ 1, 16 ]
gap> KreinParameters([13,6,2,3]);
[ -14*E(13)-12*E(13)^2-14*E(13)^3-14*E(13)^4-12*E(13)^5-12*E(13)^6-12*E(13)^7
-12*E(13)^8-14*E(13)^9-14*E(13)^10-12*E(13)^11-14*E(13)^12,
-12*E(13)-14*E(13)^2-12*E(13)^3-12*E(13)^4-14*E(13)^5-14*E(13)^6-14*E(13)^7
-14*E(13)^8-12*E(13)^9-12*E(13)^10-14*E(13)^11-12*E(13)^12 ]



##### 5.1-8 IsKreinConditionsSatisfied
 ‣ IsKreinConditionsSatisfied( [v, k, a, b] ) ( operation )

Returns: true or false.

Given feasible strongly regular graph parameters [v, k, a, b], this function returns true if the parameters satisfy the Krein conditions. Otherwise, this function returns false.

Let $$\Gamma$$ be a strongly regular graph with parameters $$(v,k,a,b)$$ and Krein parameters $$K_{1},K_{2}$$ (see KreinParameters (5.1-7). The Krein conditions of $$\Gamma$$ are the inequalities

$K_{1}\geq 0, K_{2}\geq 0.$

It is known that any strongly regular graph must have parameters that satisfy the Krein conditions. For information on the Krein conditions of strongly regular graphs, see [BCN89].


gap> IsKreinConditionsSatisfied([28,9,0,4]);
false
gap> IsKreinConditionsSatisfied([13,6,2,3]);
true
gap> IsKreinConditionsSatisfied([10,6,3,4]);
true



##### 5.1-9 IsAbsoluteBoundSatisfied
 ‣ IsAbsoluteBoundSatisfied( [v, k, a, b] ) ( function )

Returns: true or false.

Given primitive strongly regular graph parameters [v, k, a, b], this function returns true if the parameters satisfy the absolute bound. Otherwise, this function returns false.

Let $$\Gamma$$ be a primitive strongly regular graph with parameters $$(v,k,a,b)$$ and eigenvalues $$k\geq r > s$$, with multiplicities $$1,f,g$$. The absolute bound for the number of vertices of $$\Gamma$$ is

$v\leq f(f+3)/2, v\leq g(g+3)/2.$

For information on the absolute bound of strongly regular graphs, see [BCN89].


gap> IsAbsoluteBoundSatisfied([13,6,3,4]);
false
gap> IsAbsoluteBoundSatisfied([50,21,4,12]);
false
gap> IsAbsoluteBoundSatisfied([50,21,8,9]);
true



#### 5.2 Small strongly regular graphs

In this section, we give functions to access and use the library of strongly regular graphs currently stored in this package. The information on small strongly regular graphs in this section is based on the tables of Andries Brouwer [Bro18a].

##### 5.2-1 AGT_Brouwer_Parameters_MAX
 ‣ AGT_Brouwer_Parameters_MAX ( global variable )

This variable stores the largest value $$v$$ for which the current package contains information about the parameters of all strongly regular graphs with at most $$v$$ vertices. This information is stored in the list AGT_Brouwer_Parameters (5.2-2).

##### 5.2-2 AGT_Brouwer_Parameters
 ‣ AGT_Brouwer_Parameters ( global variable )

This variable stores information about the feasible strongly regular graph parameters found in Brouwer [Bro18a] and the available strongly regular graphs. AGT_Brouwer_Parameters is a list, each element of which is a list of length $$4$$. For an element [parms,status,stored,num], each entry denotes the following;

parms

A feasible strongly regular graph parameter tuple [v,k,a,b], where v is less than AGT_Brouwer_Parameters_MAX (5.2-1).

status

the status of the known strongly regular graphs with parameters parms. This entry is

• $$0$$ if there exists a strongly regular graph with parameters parms, and all such graphs have been enumerated,

• $$1$$ if there exists a strongly regular graph with parameters parms, but all such graphs have not been enumerated,

• $$2$$ if it is not known if a strongly regular graph with parameters parms exists,

• $$3$$ if it has been proven that no strongly regular graph with parameters parms exists.

stored

the number of non-isomoprhic strongly regular graphs with parameters parms that are available in the current package.

num

the number of non-isomorphic strongly regular graphs with parameters parms that exist. If this has not been determined, the value of num is set to -1.


gap> AGT_Brouwer_Parameters;
[ [ 36, 20, 10, 12 ], 0, 32548, 32548 ]
gap> AGT_Brouwer_Parameters;
[ [ 37, 18, 8, 9 ], 1, 6760, -1 ]
gap> AGT_Brouwer_Parameters;
[ [ 765, 176, 28, 44 ], 2, 0, -1 ]
gap> AGT_Brouwer_Parameters;
[ [ 1293, 646, 322, 323 ], 3, 0, 0 ]



##### 5.2-3 IsSRGAvailable
 ‣ IsSRGAvailable( parms ) ( function )

Returns: true or false.

Given feasible strongly regular graph parameters parms, this function returns true if there is a strongly regular graph with parameters parms stored in this package. If parms is a feasible parameter tuple but there is no strongly regular graphs with parameters parms available, the function returns false.


gap> IsSRGAvailable([28,12,6,4]);
true
gap> IsSRGAvailable([28,9,0,4]);
false



##### 5.2-4 SRGLibraryInfo
 ‣ SRGLibraryInfo( parms ) ( function )

Returns: A list.

Given feasible strongly regular graph parameters parms, with first parameter v at most AGT_Brouwer_Parameters_MAX (5.2-1), this function returns the element of AGT_Brouwer_Parameters (5.2-2) corresponding to parms.


gap> SRGLibraryInfo([37,18,8,9]);
[ [ 37, 18, 8, 9 ], 1, 6760, -1 ]
gap> SRGLibraryInfo([36,15,6,6]);
[ [ 36, 15, 6, 6 ], 0, 32548, 32548 ]



##### 5.2-5 SRG
 ‣ SRG( parms, n ) ( function )

Returns: A record or fail.

Given feasible strongly regular graph parameters parms and positive integer n, this function returns the nth strongly regular graph with parameters parms available in this package. If there there is no nth strongly regular graph with parameters parms available, the function returns fail.


gap> SRG([16,6,2,2],1);
rec( adjacencies := [ [ 2, 3, 4, 5, 6, 7 ] ],
group := <permutation group with 6 generators>, isGraph := true,
names := [ 1 .. 16 ], order := 16, representatives := [ 1 ],
schreierVector := [ -1, 6, 4, 3, 5, 5, 5, 6, 6, 6, 4, 4, 4, 3, 3, 3 ] )
gap> SRG([16,6,2,2],2);
rec( adjacencies := [ [ 2, 3, 4, 5, 6, 7 ] ], group := Group([ (3,4)(5,6)(8,9)
(11,14)(12,13)(15,16), (2,3)(4,5)(6,7)(9,11)(10,12)(14,15), (1,2)(5,8)(6,9)
(7,10)(11,12)(13,14) ]), isGraph := true, names := [ 1 .. 16 ],
order := 16, representatives := [ 1 ],
schreierVector := [ -1, 3, 2, 1, 2, 1, 2, 3, 3, 3, 2, 2, 1, 1, 2, 1 ] )
gap> SRG([28,9,0,4],1);
fail



##### 5.2-6 NrSRGs
 ‣ NrSRGs( parms ) ( function )

Returns: An integer.

Given feasible strongly regular graph parameters parms, this function returns the number of pairwise non-isomorphic strongly regular graphs with parameters parms currently stored in this package.


gap> NrSRGs([36,15,6,6]);
32548
gap> NrSRGs([28,9,0,4]);
0



##### 5.2-7 OneSRG
 ‣ OneSRG( parms ) ( function )

Returns: A record or fail.

Given feasible strongly regular graph parameters parms, this function returns one strongly regular graph with parameters parms. If there there is no strongly regular graph with parameters parms available, the function returns fail.


gap> OneSRG([16,9,4,6]);
rec( adjacencies := [ [ 8, 9, 10, 11, 12, 13, 14, 15, 16 ] ],
group := Group([ (6,7)(9,10)(12,13)(15,16), (5,6)(8,9)(11,12)(14,15), (2,5)
(3,6)(4,7)(9,11)(10,14)(13,15), (1,2)(5,8)(6,9)(7,10) ]), isGraph := true,
names := [ 1 .. 16 ], order := 16, representatives := [ 1 ],
schreierVector := [ -1, 4, 3, 3, 3, 2, 1, 4, 4, 4, 3, 2, 1, 3, 2, 1 ] )
gap> OneSRG([28,9,0,4]);
fail



##### 5.2-8 AllSRGs
 ‣ AllSRGs( parms ) ( function )

Returns: A list.

Given feasible strongly regular graph parameters parms, this function returns a list of all pairwise non-isomorphic strongly regular graphs with parameters parms available in this package.


gap> AllSRGs([16,6,2,2]);
[ rec( adjacencies := [ [ 2, 3, 4, 5, 6, 7 ] ],
group := <permutation group with 6 generators>, isGraph := true,
names := [ 1 .. 16 ], order := 16, representatives := [ 1 ],
schreierVector := [ -1, 6, 4, 3, 5, 5, 5, 6, 6, 6, 4, 4, 4, 3, 3, 3 ] ),
rec( adjacencies := [ [ 2, 3, 4, 5, 6, 7 ] ], group := Group([ (3,4)(5,6)
(8,9)(11,14)(12,13)(15,16), (2,3)(4,5)(6,7)(9,11)(10,12)(14,15), (1,2)
(5,8)(6,9)(7,10)(11,12)(13,14) ]), isGraph := true,
names := [ 1 .. 16 ], order := 16, representatives := [ 1 ],
schreierVector := [ -1, 3, 2, 1, 2, 1, 2, 3, 3, 3, 2, 2, 1, 1, 2, 1 ] )]



##### 5.2-9 SRGIterator
 ‣ SRGIterator( parms ) ( function )

Returns: An iterator.

Given feasible strongly regular graph parameters parms, this function returns an iterator of all pairwise non-isomorphic strongly regular graph with parameters parms that are stored in this package.


gap> SRGIterator([16,6,2,2]);
<iterator>



##### 5.2-10 SmallFeasibleSRGParameterTuples
 ‣ SmallFeasibleSRGParameterTuples( v ) ( function )

Returns: A list.

Given an integer v, this function returns a list of all feasible parameter tuples with at most v vertices, according to the list of Brouwer [Bro18a]. The list contains parameter tuples with first parameter at most AGT_Brouwer_Parameters_MAX (5.2-1).


gap> SmallFeasibleSRGParameterTuples(16);
[ [ 5, 2, 0, 1 ], [ 9, 4, 1, 2 ], [ 10, 3, 0, 1 ], [ 10, 6, 3, 4 ],
[ 13, 6, 2, 3 ], [ 15, 6, 1, 3 ], [ 15, 8, 4, 4 ], [ 16, 5, 0, 2 ],
[ 16, 10, 6, 6 ], [ 16, 6, 2, 2 ], [ 16, 9, 4, 6 ] ]



##### 5.2-11 IsEnumeratedSRGParameterTuple
 ‣ IsEnumeratedSRGParameterTuple( parms ) ( function )

Returns: true or false.

Given feasible strongly regular graph parameters parms with first parameter v at most AGT_Brouwer_Parameters_MAX (5.2-1), this function returns true if the strongly regular graphs with parameters parms have been enumerated, according to the list of Brouwer [Bro18a]. Otherwise, this function returns false.


gap> IsEnumeratedSRGParameterTuple([37,18,8,9]);
false
gap> IsEnumeratedSRGParameterTuple([56,10,0,2]);
true



##### 5.2-12 IsKnownSRGParameterTuple
 ‣ IsKnownSRGParameterTuple( parms ) ( function )

Returns: true or false.

Given feasible strongly regular graph parameters parms with first parameter v at most AGT_Brouwer_Parameters_MAX (5.2-1), this function returns true if it is known that there exists a strongly regular graph with parameters parms, according to the list of Brouwer [Bro18a]. Otherwise, this function returns false.


gap> IsKnownSRGParameterTuple([64,28,12,12]);
true
gap> IsKnownSRGParameterTuple([64,30,18,10]);
false
gap> IsKnownSRGParameterTuple([65,32,15,16]);
false



##### 5.2-13 IsAllSRGsStored
 ‣ IsAllSRGsStored( parms ) ( function )

Returns: true or false.

Given feasible strongly regular graph parameters parms with first parameter v at most AGT_Brouwer_Parameters_MAX (5.2-1), this function returns true if all pairwise non-isomorphic strongly regular graphs with parameters parms are stored in the package. Otherwise, this function returns false.


gap> IsAllSRGsStored([37,18,8,9]);
false
gap> IsAllSRGsStored([36,15,6,6]);
true



#### 5.3 Strongly regular graph constructors

In this section, we give functions to construct certain graphs, most of which are strongly regular graphs.

##### 5.3-1 DisjointUnionOfCliques
 ‣ DisjointUnionOfCliques( n1, n2, ... ) ( function )

Returns: A record.

Given positive integers n1, n2,..., this function returns the graph consisting of the disjoint union of cliques with orders n1, n2,....


gap> DisjointUnionOfCliques(3,5,7);
rec( adjacencies := [ [ 2, 3 ], [ 5, 6, 7, 8 ], [ 10, 11, 12, 13, 14, 15 ] ],
autGroup := <permutation group with 12 generators>,
group := <permutation group with 12 generators>, isGraph := true,
isSimple := true, order := 15, representatives := [ 1, 4, 9 ],
schreierVector := [ -1, 12, 11, -2, 10, 9, 8, 7, -3, 6, 5, 4, 3, 2, 1 ] )



##### 5.3-2 CompleteMultipartiteGraph
 ‣ CompleteMultipartiteGraph( n1, n2, ... ) ( function )

Returns: A record.

Given positive integers n1, n2,..., this function returns the complete multipartite graph with parts of orders n1, n2,....

Let $$n_{1},n_{2},\dots,n_{t}$$ be positive integers. Then the complete multipartite graph, $$K_{n_{1},n_{2},\dots,n_{t}}$$, has vertex set that can be partitioned into $$t$$ disjoint sets $$X_{1},X_{2},\dots,X_{t}$$ of sizes $$n_{1},n_{2},\dots,n_{t}$$ such that distinct vertices are adjacent if and only if they belong to different $$X_{i}$$.


gap> CompleteMultipartiteGraph(4,2,1);
rec( adjacencies := [ [ 5, 6, 7 ], [ 1, 2, 3, 4, 7 ], [ 1, 2, 3, 4, 5, 6 ] ],
autGroup := Group([ (5,6), (3,4), (2,3), (1,2) ]), group := Group([ (5,6),
(3,4), (2,3), (1,2) ]), isGraph := true, isSimple := true, order := 7,
representatives := [ 1, 5, 7 ],
schreierVector := [ -1, 4, 3, 2, -2, 1, -3 ] )



##### 5.3-3 TriangularGraph
 ‣ TriangularGraph( n ) ( function )

Returns: A record.

Given an integer n, where $$\textit{n}\geq 3$$, this function returns the triangular graph on n points.

Let $$n$$ be an integer, where $$n\geq 3$$. The triangular graph , $$T(n)$$, has vertex set consisting of the subsets of $$\{1,2,...,n\}$$ of size $$2$$, and two distinct vertices $$A,B$$ are joined by an edge precisely when $$|A\cap B|=1$$.

The graph $$T(n)$$ is strongly regular with parameters $$({n \choose 2},2(n-2),n-2,4)$$. For $$n\not= 8$$, $$T(n)$$ is the unique strongly regular graph with its parameters. There are four pairwise non-isomomorphic strongly regular graphs that have the same parameters as $$T(8)$$, which are the triangular graph $$T(8)$$ and the Chang graphs (see [Con58] and [Cha59]).


gap> TriangularGraph(7);
rec( adjacencies := [ [ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ] ],
group := Group([ (1,7,12,16,19,21,6)(2,8,13,17,20,5,11)(3,9,14,18,4,10,15),
(2,7)(3,8)(4,9)(5,10)(6,11) ]), isGraph := true, isSimple := true,
names := [ [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 5 ], [ 1, 6 ], [ 1, 7 ],
[ 2, 3 ], [ 2, 4 ], [ 2, 5 ], [ 2, 6 ], [ 2, 7 ], [ 3, 4 ], [ 3, 5 ],
[ 3, 6 ], [ 3, 7 ], [ 4, 5 ], [ 4, 6 ], [ 4, 7 ], [ 5, 6 ], [ 5, 7 ],
[ 6, 7 ] ], order := 21, representatives := [ 1 ],
schreierVector := [ -1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1 ] )



##### 5.3-4 SquareLatticeGraph
 ‣ SquareLatticeGraph( n ) ( function )

Returns: A record.

Given an integer n, where $$\textit{n}\geq 2$$, this function returns the square lattice graph on $$n^{2}$$ points.

Let $$n$$ be an integer, where $$n\geq 2$$. The square lattice graph, $$L_{2}(n)$$, has vertex set $$\{1,2,...,n\}\times\{1,2,...,n\}$$, and two distinct vertices are joined by an edge precisely when they have the same value at one coordinate.

The graph $$L_{2}(n)$$ is strongly regular with parameters $$(n^{2},2(n-1),n-2,2)$$. For $$n\not= 4$$, $$L_{2}(n)$$ is the unique strongly regular graph with its parameters. There are two pairwise non-isomomorphic strongly regular graphs that have the same parameters as $$L_{2}(4)$$, which are the square lattice graph graph $$L_{2}(4)$$ and the Shrikhande graph (see [Shr59]).


gap> SquareLatticeGraph(6);
rec( adjacencies := [ [ 2, 3, 4, 5, 6, 7, 13, 19, 25, 31 ] ],
group := <permutation group with 5 generators>, isGraph := true,
names := [ [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 4 ], [ 1, 5 ], [ 1, 6 ],
[ 2, 1 ], [ 2, 2 ], [ 2, 3 ], [ 2, 4 ], [ 2, 5 ], [ 2, 6 ], [ 3, 1 ],
[ 3, 2 ], [ 3, 3 ], [ 3, 4 ], [ 3, 5 ], [ 3, 6 ], [ 4, 1 ], [ 4, 2 ],
[ 4, 3 ], [ 4, 4 ], [ 4, 5 ], [ 4, 6 ], [ 5, 1 ], [ 5, 2 ], [ 5, 3 ],
[ 5, 4 ], [ 5, 5 ], [ 5, 6 ], [ 6, 1 ], [ 6, 2 ], [ 6, 3 ], [ 6, 4 ],
[ 6, 5 ], [ 6, 6 ] ], order := 36, representatives := [ 1 ],
schreierVector := [ -1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3,
1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3 ] )



##### 5.3-5 HoffmanSingletonGraph
 ‣ HoffmanSingletonGraph( ) ( function )

Returns: A record.

This function returns the Hoffman-Singleton graph.

The Hoffman-Singleton graph is the unique strongly regular graph with parameters $$(50,7,0,1)$$. For more information on this graph, see [Bro18b].


gap> gamma:=HoffmanSingletonGraph();;



##### 5.3-6 HigmanSimsGraph
 ‣ HigmanSimsGraph( ) ( function )

Returns: A record.

This function returns the Higman-Sims graph.

The Higman-Sims graph is the unique strongly regular graph with parameters $$(100,22,0,6)$$. For more information on this graph, see [Bro18b].


gap> gamma:=HigmanSimsGraph();;



##### 5.3-7 SimsGerwitzGraph
 ‣ SimsGerwitzGraph( ) ( function )

Returns: A record.

This function returns the Sims-Gerwitz graph.

The Sims-Gerwitz graph is the unique strongly regular graph with parameters $$(56,10,0,2)$$. For more information on this graph, see [Bro18b].


gap> gamma:=SimsGerwitzGraph();;


Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML