Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

7 Add Functions
 7.1 Functions Installed by Add
 7.2 Add Method
 7.3 InstallAdd Function
 7.4 Enhancing the method name record
 7.5 Prepare functions
 7.6 Available Add functions

  7.6-1 AddAdditionForMorphisms

  7.6-2 AddAdditiveGenerators

  7.6-3 AddAdditiveInverseForMorphisms

  7.6-4 AddAstrictionToCoimage

  7.6-5 AddAstrictionToCoimageWithGivenCoimageObject

  7.6-6 AddBasisOfExternalHom

  7.6-7 AddCanonicalIdentificationFromCoimageToImageObject

  7.6-8 AddCanonicalIdentificationFromImageObjectToCoimage

  7.6-9 AddCoastrictionToImage

  7.6-10 AddCoastrictionToImageWithGivenImageObject

  7.6-11 AddCoefficientsOfMorphism

  7.6-12 AddCoequalizer

  7.6-13 AddCoequalizerFunctorial

  7.6-14 AddCoequalizerFunctorialWithGivenCoequalizers

  7.6-15 AddCoimageObject

  7.6-16 AddCoimageObjectFunctorial

  7.6-17 AddCoimageObjectFunctorialWithGivenCoimageObjects

  7.6-18 AddCoimageProjection

  7.6-19 AddCoimageProjectionWithGivenCoimageObject

  7.6-20 AddCokernelColift

  7.6-21 AddCokernelColiftWithGivenCokernelObject

  7.6-22 AddCokernelObject

  7.6-23 AddCokernelObjectFunctorial

  7.6-24 AddCokernelObjectFunctorialWithGivenCokernelObjects

  7.6-25 AddCokernelProjection

  7.6-26 AddCokernelProjectionWithGivenCokernelObject

  7.6-27 AddColift

  7.6-28 AddColiftAlongEpimorphism

  7.6-29 AddColiftOrFail

  7.6-30 AddComponentOfMorphismFromDirectSum

  7.6-31 AddComponentOfMorphismIntoDirectSum

  7.6-32 AddCoproduct

  7.6-33 AddCoproductFunctorial

  7.6-34 AddCoproductFunctorialWithGivenCoproducts

  7.6-35 AddDirectProduct

  7.6-36 AddDirectProductFunctorial

  7.6-37 AddDirectProductFunctorialWithGivenDirectProducts

  7.6-38 AddDirectSum

  7.6-39 AddDirectSumCodiagonalDifference

  7.6-40 AddDirectSumDiagonalDifference

  7.6-41 AddDirectSumFunctorial

  7.6-42 AddDirectSumFunctorialWithGivenDirectSums

  7.6-43 AddDirectSumProjectionInPushout

  7.6-44 AddDistinguishedObjectOfHomomorphismStructure

  7.6-45 AddEmbeddingOfEqualizer

  7.6-46 AddEmbeddingOfEqualizerWithGivenEqualizer

  7.6-47 AddEpimorphismFromProjectiveCoverObject

  7.6-48 AddEpimorphismFromProjectiveCoverObjectWithGivenProjectiveCoverObject

  7.6-49 AddEpimorphismFromSomeProjectiveObject

  7.6-50 AddEpimorphismFromSomeProjectiveObjectWithGivenSomeProjectiveObject

  7.6-51 AddEqualizer

  7.6-52 AddEqualizerFunctorial

  7.6-53 AddEqualizerFunctorialWithGivenEqualizers

  7.6-54 AddFiberProduct

  7.6-55 AddFiberProductEmbeddingInDirectSum

  7.6-56 AddFiberProductFunctorial

  7.6-57 AddFiberProductFunctorialWithGivenFiberProducts

  7.6-58 AddHomologyObject

  7.6-59 AddHomologyObjectFunctorialWithGivenHomologyObjects

  7.6-60 AddHomomorphismStructureOnMorphisms

  7.6-61 AddHomomorphismStructureOnMorphismsWithGivenObjects

  7.6-62 AddHomomorphismStructureOnObjects

  7.6-63 AddHorizontalPostCompose

  7.6-64 AddHorizontalPreCompose

  7.6-65 AddIdentityMorphism

  7.6-66 AddIdentityTwoCell

  7.6-67 AddImageEmbedding

  7.6-68 AddImageEmbeddingWithGivenImageObject

  7.6-69 AddImageObject

  7.6-70 AddImageObjectFunctorial

  7.6-71 AddImageObjectFunctorialWithGivenImageObjects

  7.6-72 AddIndecomposableInjectiveObjects

  7.6-73 AddIndecomposableProjectiveObjects

  7.6-74 AddInitialObject

  7.6-75 AddInitialObjectFunctorial

  7.6-76 AddInitialObjectFunctorialWithGivenInitialObjects

  7.6-77 AddInjectionOfCofactorOfCoproduct

  7.6-78 AddInjectionOfCofactorOfCoproductWithGivenCoproduct

  7.6-79 AddInjectionOfCofactorOfDirectSum

  7.6-80 AddInjectionOfCofactorOfDirectSumWithGivenDirectSum

  7.6-81 AddInjectionOfCofactorOfPushout

  7.6-82 AddInjectionOfCofactorOfPushoutWithGivenPushout

  7.6-83 AddInjectiveColift

  7.6-84 AddInjectiveDimension

  7.6-85 AddInjectiveEnvelopeObject

  7.6-86 AddInterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure

  7.6-87 AddInterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructureWithGivenObjects

  7.6-88 AddInterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism

  7.6-89 AddInverseForMorphisms

  7.6-90 AddInverseMorphismFromCoimageToImageWithGivenObjects

  7.6-91 AddIsAutomorphism

  7.6-92 AddIsBijectiveObject

  7.6-93 AddIsCodominating

  7.6-94 AddIsColiftable

  7.6-95 AddIsColiftableAlongEpimorphism

  7.6-96 AddIsCongruentForMorphisms

  7.6-97 AddIsDominating

  7.6-98 AddIsEndomorphism

  7.6-99 AddIsEpimorphism

  7.6-100 AddIsEqualAsFactorobjects

  7.6-101 AddIsEqualAsSubobjects

  7.6-102 AddIsEqualForCacheForMorphisms

  7.6-103 AddIsEqualForCacheForObjects

  7.6-104 AddIsEqualForMorphisms

  7.6-105 AddIsEqualForMorphismsOnMor

  7.6-106 AddIsEqualForObjects

  7.6-107 AddIsEqualToIdentityMorphism

  7.6-108 AddIsEqualToZeroMorphism

  7.6-109 AddIsHomSetInhabited

  7.6-110 AddIsIdempotent

  7.6-111 AddIsInitial

  7.6-112 AddIsInjective

  7.6-113 AddIsIsomorphism

  7.6-114 AddIsLiftable

  7.6-115 AddIsLiftableAlongMonomorphism

  7.6-116 AddIsMonomorphism

  7.6-117 AddIsOne

  7.6-118 AddIsProjective

  7.6-119 AddIsSplitEpimorphism

  7.6-120 AddIsSplitMonomorphism

  7.6-121 AddIsTerminal

  7.6-122 AddIsWellDefinedForMorphisms

  7.6-123 AddIsWellDefinedForObjects

  7.6-124 AddIsWellDefinedForTwoCells

  7.6-125 AddIsZeroForMorphisms

  7.6-126 AddIsZeroForObjects

  7.6-127 AddIsomorphismFromCoequalizerOfCoproductDiagramToPushout

  7.6-128 AddIsomorphismFromCoimageToCokernelOfKernel

  7.6-129 AddIsomorphismFromCokernelOfDiagonalDifferenceToPushout

  7.6-130 AddIsomorphismFromCokernelOfKernelToCoimage

  7.6-131 AddIsomorphismFromCoproductToDirectSum

  7.6-132 AddIsomorphismFromDirectProductToDirectSum

  7.6-133 AddIsomorphismFromDirectSumToCoproduct

  7.6-134 AddIsomorphismFromDirectSumToDirectProduct

  7.6-135 AddIsomorphismFromEqualizerOfDirectProductDiagramToFiberProduct

  7.6-136 AddIsomorphismFromFiberProductToEqualizerOfDirectProductDiagram

  7.6-137 AddIsomorphismFromFiberProductToKernelOfDiagonalDifference

  7.6-138 AddIsomorphismFromHomologyObjectToItsConstructionAsAnImageObject

  7.6-139 AddIsomorphismFromImageObjectToKernelOfCokernel

  7.6-140 AddIsomorphismFromInitialObjectToZeroObject

  7.6-141 AddIsomorphismFromItsConstructionAsAnImageObjectToHomologyObject

  7.6-142 AddIsomorphismFromKernelOfCokernelToImageObject

  7.6-143 AddIsomorphismFromKernelOfDiagonalDifferenceToFiberProduct

  7.6-144 AddIsomorphismFromPushoutToCoequalizerOfCoproductDiagram

  7.6-145 AddIsomorphismFromPushoutToCokernelOfDiagonalDifference

  7.6-146 AddIsomorphismFromTerminalObjectToZeroObject

  7.6-147 AddIsomorphismFromZeroObjectToInitialObject

  7.6-148 AddIsomorphismFromZeroObjectToTerminalObject

  7.6-149 AddKernelEmbedding

  7.6-150 AddKernelEmbeddingWithGivenKernelObject

  7.6-151 AddKernelLift

  7.6-152 AddKernelLiftWithGivenKernelObject

  7.6-153 AddKernelObject

  7.6-154 AddKernelObjectFunctorial

  7.6-155 AddKernelObjectFunctorialWithGivenKernelObjects

  7.6-156 AddLift

  7.6-157 AddLiftAlongMonomorphism

  7.6-158 AddLiftOrFail

  7.6-159 AddMereExistenceOfSolutionOfLinearSystemInAbCategory

  7.6-160 AddMonomorphismIntoInjectiveEnvelopeObject

  7.6-161 AddMonomorphismIntoInjectiveEnvelopeObjectWithGivenInjectiveEnvelopeObject

  7.6-162 AddMonomorphismIntoSomeInjectiveObject

  7.6-163 AddMonomorphismIntoSomeInjectiveObjectWithGivenSomeInjectiveObject

  7.6-164 AddMorphismBetweenDirectSums

  7.6-165 AddMorphismBetweenDirectSumsWithGivenDirectSums

  7.6-166 AddMorphismConstructor

  7.6-167 AddMorphismDatum

  7.6-168 AddMorphismFromCoimageToImageWithGivenObjects

  7.6-169 AddMorphismFromEqualizerToSink

  7.6-170 AddMorphismFromEqualizerToSinkWithGivenEqualizer

  7.6-171 AddMorphismFromFiberProductToSink

  7.6-172 AddMorphismFromFiberProductToSinkWithGivenFiberProduct

  7.6-173 AddMorphismFromKernelObjectToSink

  7.6-174 AddMorphismFromKernelObjectToSinkWithGivenKernelObject

  7.6-175 AddMorphismFromSourceToCoequalizer

  7.6-176 AddMorphismFromSourceToCoequalizerWithGivenCoequalizer

  7.6-177 AddMorphismFromSourceToCokernelObject

  7.6-178 AddMorphismFromSourceToCokernelObjectWithGivenCokernelObject

  7.6-179 AddMorphismFromSourceToPushout

  7.6-180 AddMorphismFromSourceToPushoutWithGivenPushout

  7.6-181 AddMultiplyWithElementOfCommutativeRingForMorphisms

  7.6-182 AddObjectConstructor

  7.6-183 AddObjectDatum

  7.6-184 AddPostCompose

  7.6-185 AddPostComposeList

  7.6-186 AddPostInverseForMorphisms

  7.6-187 AddPreCompose

  7.6-188 AddPreComposeList

  7.6-189 AddPreInverseForMorphisms

  7.6-190 AddProjectionInFactorOfDirectProduct

  7.6-191 AddProjectionInFactorOfDirectProductWithGivenDirectProduct

  7.6-192 AddProjectionInFactorOfDirectSum

  7.6-193 AddProjectionInFactorOfDirectSumWithGivenDirectSum

  7.6-194 AddProjectionInFactorOfFiberProduct

  7.6-195 AddProjectionInFactorOfFiberProductWithGivenFiberProduct

  7.6-196 AddProjectionOntoCoequalizer

  7.6-197 AddProjectionOntoCoequalizerWithGivenCoequalizer

  7.6-198 AddProjectiveCoverObject

  7.6-199 AddProjectiveDimension

  7.6-200 AddProjectiveLift

  7.6-201 AddPushout

  7.6-202 AddPushoutFunctorial

  7.6-203 AddPushoutFunctorialWithGivenPushouts

  7.6-204 AddRandomMorphismByInteger

  7.6-205 AddRandomMorphismByList

  7.6-206 AddRandomMorphismWithFixedRangeByInteger

  7.6-207 AddRandomMorphismWithFixedRangeByList

  7.6-208 AddRandomMorphismWithFixedSourceAndRangeByInteger

  7.6-209 AddRandomMorphismWithFixedSourceAndRangeByList

  7.6-210 AddRandomMorphismWithFixedSourceByInteger

  7.6-211 AddRandomMorphismWithFixedSourceByList

  7.6-212 AddRandomObjectByInteger

  7.6-213 AddRandomObjectByList

  7.6-214 AddSimplifyEndo

  7.6-215 AddSimplifyEndo_IsoFromInputObject

  7.6-216 AddSimplifyEndo_IsoToInputObject

  7.6-217 AddSimplifyMorphism

  7.6-218 AddSimplifyObject

  7.6-219 AddSimplifyObject_IsoFromInputObject

  7.6-220 AddSimplifyObject_IsoToInputObject

  7.6-221 AddSimplifyRange

  7.6-222 AddSimplifyRange_IsoFromInputObject

  7.6-223 AddSimplifyRange_IsoToInputObject

  7.6-224 AddSimplifySource

  7.6-225 AddSimplifySourceAndRange

  7.6-226 AddSimplifySourceAndRange_IsoFromInputRange

  7.6-227 AddSimplifySourceAndRange_IsoFromInputSource

  7.6-228 AddSimplifySourceAndRange_IsoToInputRange

  7.6-229 AddSimplifySourceAndRange_IsoToInputSource

  7.6-230 AddSimplifySource_IsoFromInputObject

  7.6-231 AddSimplifySource_IsoToInputObject

  7.6-232 AddSolveLinearSystemInAbCategory

  7.6-233 AddSolveLinearSystemInAbCategoryOrFail

  7.6-234 AddSomeInjectiveObject

  7.6-235 AddSomeProjectiveObject

  7.6-236 AddSomeReductionBySplitEpiSummand

  7.6-237 AddSomeReductionBySplitEpiSummand_MorphismFromInputRange

  7.6-238 AddSomeReductionBySplitEpiSummand_MorphismToInputRange

  7.6-239 AddSubtractionForMorphisms

  7.6-240 AddSumOfMorphisms

  7.6-241 AddTerminalObject

  7.6-242 AddTerminalObjectFunctorial

  7.6-243 AddTerminalObjectFunctorialWithGivenTerminalObjects

  7.6-244 AddUniversalMorphismFromCoequalizer

  7.6-245 AddUniversalMorphismFromCoequalizerWithGivenCoequalizer

  7.6-246 AddUniversalMorphismFromCoproduct

  7.6-247 AddUniversalMorphismFromCoproductWithGivenCoproduct

  7.6-248 AddUniversalMorphismFromDirectSum

  7.6-249 AddUniversalMorphismFromDirectSumWithGivenDirectSum

  7.6-250 AddUniversalMorphismFromImage

  7.6-251 AddUniversalMorphismFromImageWithGivenImageObject

  7.6-252 AddUniversalMorphismFromInitialObject

  7.6-253 AddUniversalMorphismFromInitialObjectWithGivenInitialObject

  7.6-254 AddUniversalMorphismFromPushout

  7.6-255 AddUniversalMorphismFromPushoutWithGivenPushout

  7.6-256 AddUniversalMorphismFromZeroObject

  7.6-257 AddUniversalMorphismFromZeroObjectWithGivenZeroObject

  7.6-258 AddUniversalMorphismIntoCoimage

  7.6-259 AddUniversalMorphismIntoCoimageWithGivenCoimageObject

  7.6-260 AddUniversalMorphismIntoDirectProduct

  7.6-261 AddUniversalMorphismIntoDirectProductWithGivenDirectProduct

  7.6-262 AddUniversalMorphismIntoDirectSum

  7.6-263 AddUniversalMorphismIntoDirectSumWithGivenDirectSum

  7.6-264 AddUniversalMorphismIntoEqualizer

  7.6-265 AddUniversalMorphismIntoEqualizerWithGivenEqualizer

  7.6-266 AddUniversalMorphismIntoFiberProduct

  7.6-267 AddUniversalMorphismIntoFiberProductWithGivenFiberProduct

  7.6-268 AddUniversalMorphismIntoTerminalObject

  7.6-269 AddUniversalMorphismIntoTerminalObjectWithGivenTerminalObject

  7.6-270 AddUniversalMorphismIntoZeroObject

  7.6-271 AddUniversalMorphismIntoZeroObjectWithGivenZeroObject

  7.6-272 AddVerticalPostCompose

  7.6-273 AddVerticalPreCompose

  7.6-274 AddZeroMorphism

  7.6-275 AddZeroObject

  7.6-276 AddZeroObjectFunctorial

  7.6-277 AddZeroObjectFunctorialWithGivenZeroObjects

7 Add Functions

This section describes the overall structure of Add-functions and the functions installed by them.

7.1 Functions Installed by Add

Add functions have the following syntax:

DeclareOperation( "AddSomeFunc",
                  [ IsCapCategory, IsList, IsInt ] );

The first argument is the category to which some function (e.g. KernelObject) is added, the second is a list containing pairs of functions and additional filters for the arguments, (e.g. if one argument is a morphism, an additional filter could be IsMomomorphism). The third is an optional weight which will then be the weight for SomeFunc (default value: 100). This is described later. If only one function is to be installed, the list can be replaced by the function. CAP installs the given function(s) as methods for SomeFunc (resp. SomeFuncOp if SomeFunc is not an operation).

All installed methods follow the following steps, described below:

Every other part, except from function, does only depend on the name SomeFunc. We now explain the steps in detail.

7.2 Add Method

Except from installing a new method for the name SomeFunc, an Add method does slightly more. Every Add method has the same structure. The steps in the Add method are as follows:

After calling an add method, the corresponding operation is available in the category. Also, some derivations, which are triggered by the setting of the primitive value, might be available.

7.3 InstallAdd Function

Almost all Add methods in the CAP kernel are installed by the CapInternalInstallAdd operation. The definition of this function is as follows:

DeclareOperation( "CapInternalInstallAdd",
                  [ IsRecord ] );

The record can have the following components, most of which can be set in the method name record, used as described:

    [
        "object",
        "object_or_fail",
        "morphism",
        "morphism_or_fail",
        "twocell",
        "object_in_range_category_of_homomorphism_structure",
        "morphism_in_range_category_of_homomorphism_structure",
        "bool",
        "other_object",
        "other_morphism",
        "list_of_objects",
        "list_of_morphisms",
        "list_of_morphisms_or_fail",
        "object_datum",
        "morphism_datum",
        "nonneg_integer_or_infinity",
    ]

Using all those entries, the operation CapInternalInstallAdd installs add methods as described above. It first provides plausibility checks for all the entries described, then installs the Add method in 4 ways, with list or functions as second argument, and with an optional third parameter for the weight.

7.3-1 CapInternalInstallAdd
‣ CapInternalInstallAdd( record )( function )

See 7.3.

7.4 Enhancing the method name record

The function CAP_INTERNAL_ENHANCE_NAME_RECORD can be applied to a method name record to make the following enhancements:

7.5 Prepare functions

7.5-1 CAPOperationPrepareFunction
‣ CAPOperationPrepareFunction( prepare_function, category, func )( function )

Returns: a function

Given a non-CAP-conform function for any of the categorical operations, i.e., a function that computes the direct sum of two objects instead of a list of objects, this function wraps the function with a wrapper function to fit in the CAP context. For the mentioned binary direct sum one can call this function with "BinaryDirectSumToDirectSum" as prepare_function, the category, and the binary direct sum function. The function then returns a function that can be used for the direct sum categorical operation.

Note that func is not handled by the CAP caching mechanism and that the use of prepare functions is incompatible with WithGiven operations. Thus, one has to ensure manually that the equality and typing specifications are fulfilled.

7.5-2 CAPAddPrepareFunction
‣ CAPAddPrepareFunction( prepare_function, name, doc_string[, precondition_list] )( function )

Adds a prepare function to the list of CAP's prepare functions. The first argument is the prepare function itself. It should always be a function that takes a category and a function and returns a function. The argument name is the name of the prepare function, which is used in CAPOperationPrepareFunction. The argument doc_string should be a short string describing the functions. The optional argument precondition_list can describe preconditions for the prepare function to work, i.e., if the category does need to have PreCompose computable. This information is also recovered automatically from the prepare function itself, so the precondition_list is only necessary if the function needed is not explicitly used in the prepare function, e.g., if you use + instead of AdditionForMorphisms.

7.5-3 ListCAPPrepareFunctions
‣ ListCAPPrepareFunctions( arg )( function )

Lists all prepare functions.

7.6 Available Add functions

7.6-1 AddAdditionForMorphisms
‣ AddAdditionForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation AdditionForMorphisms. F: ( a, b ) \mapsto \mathtt{AdditionForMorphisms}(a, b).

7.6-2 AddAdditiveGenerators
‣ AddAdditiveGenerators( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation AdditiveGenerators. F: ( ) \mapsto \mathtt{AdditiveGenerators}().

7.6-3 AddAdditiveInverseForMorphisms
‣ AddAdditiveInverseForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation AdditiveInverseForMorphisms. F: ( a ) \mapsto \mathtt{AdditiveInverseForMorphisms}(a).

7.6-4 AddAstrictionToCoimage
‣ AddAstrictionToCoimage( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation AstrictionToCoimage. F: ( alpha ) \mapsto \mathtt{AstrictionToCoimage}(alpha).

7.6-5 AddAstrictionToCoimageWithGivenCoimageObject
‣ AddAstrictionToCoimageWithGivenCoimageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation AstrictionToCoimageWithGivenCoimageObject. F: ( alpha, C ) \mapsto \mathtt{AstrictionToCoimageWithGivenCoimageObject}(alpha, C).

7.6-6 AddBasisOfExternalHom
‣ AddBasisOfExternalHom( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation BasisOfExternalHom. F: ( arg2, arg3 ) \mapsto \mathtt{BasisOfExternalHom}(arg2, arg3).

7.6-7 AddCanonicalIdentificationFromCoimageToImageObject
‣ AddCanonicalIdentificationFromCoimageToImageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CanonicalIdentificationFromCoimageToImageObject. F: ( alpha ) \mapsto \mathtt{CanonicalIdentificationFromCoimageToImageObject}(alpha).

7.6-8 AddCanonicalIdentificationFromImageObjectToCoimage
‣ AddCanonicalIdentificationFromImageObjectToCoimage( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CanonicalIdentificationFromImageObjectToCoimage. F: ( alpha ) \mapsto \mathtt{CanonicalIdentificationFromImageObjectToCoimage}(alpha).

7.6-9 AddCoastrictionToImage
‣ AddCoastrictionToImage( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoastrictionToImage. F: ( alpha ) \mapsto \mathtt{CoastrictionToImage}(alpha).

7.6-10 AddCoastrictionToImageWithGivenImageObject
‣ AddCoastrictionToImageWithGivenImageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoastrictionToImageWithGivenImageObject. F: ( alpha, I ) \mapsto \mathtt{CoastrictionToImageWithGivenImageObject}(alpha, I).

7.6-11 AddCoefficientsOfMorphism
‣ AddCoefficientsOfMorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoefficientsOfMorphism. F: ( arg2 ) \mapsto \mathtt{CoefficientsOfMorphism}(arg2).

7.6-12 AddCoequalizer
‣ AddCoequalizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation Coequalizer. F: ( arg2, arg3 ) \mapsto \mathtt{Coequalizer}(arg2, arg3).

7.6-13 AddCoequalizerFunctorial
‣ AddCoequalizerFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoequalizerFunctorial. F: ( morphisms, mu, morphismsp ) \mapsto \mathtt{CoequalizerFunctorial}(morphisms, mu, morphismsp).

7.6-14 AddCoequalizerFunctorialWithGivenCoequalizers
‣ AddCoequalizerFunctorialWithGivenCoequalizers( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoequalizerFunctorialWithGivenCoequalizers. F: ( P, morphisms, mu, morphismsp, Pp ) \mapsto \mathtt{CoequalizerFunctorialWithGivenCoequalizers}(P, morphisms, mu, morphismsp, Pp).

7.6-15 AddCoimageObject
‣ AddCoimageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoimageObject. F: ( arg2 ) \mapsto \mathtt{CoimageObject}(arg2).

7.6-16 AddCoimageObjectFunctorial
‣ AddCoimageObjectFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoimageObjectFunctorial. F: ( alpha, mu, alphap ) \mapsto \mathtt{CoimageObjectFunctorial}(alpha, mu, alphap).

7.6-17 AddCoimageObjectFunctorialWithGivenCoimageObjects
‣ AddCoimageObjectFunctorialWithGivenCoimageObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoimageObjectFunctorialWithGivenCoimageObjects. F: ( C, alpha, mu, alphap, Cp ) \mapsto \mathtt{CoimageObjectFunctorialWithGivenCoimageObjects}(C, alpha, mu, alphap, Cp).

7.6-18 AddCoimageProjection
‣ AddCoimageProjection( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoimageProjection. F: ( alpha ) \mapsto \mathtt{CoimageProjection}(alpha).

7.6-19 AddCoimageProjectionWithGivenCoimageObject
‣ AddCoimageProjectionWithGivenCoimageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoimageProjectionWithGivenCoimageObject. F: ( alpha, C ) \mapsto \mathtt{CoimageProjectionWithGivenCoimageObject}(alpha, C).

7.6-20 AddCokernelColift
‣ AddCokernelColift( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CokernelColift. F: ( alpha, T, tau ) \mapsto \mathtt{CokernelColift}(alpha, T, tau).

7.6-21 AddCokernelColiftWithGivenCokernelObject
‣ AddCokernelColiftWithGivenCokernelObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CokernelColiftWithGivenCokernelObject. F: ( alpha, T, tau, P ) \mapsto \mathtt{CokernelColiftWithGivenCokernelObject}(alpha, T, tau, P).

7.6-22 AddCokernelObject
‣ AddCokernelObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CokernelObject. F: ( arg2 ) \mapsto \mathtt{CokernelObject}(arg2).

7.6-23 AddCokernelObjectFunctorial
‣ AddCokernelObjectFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CokernelObjectFunctorial. F: ( alpha, mu, alphap ) \mapsto \mathtt{CokernelObjectFunctorial}(alpha, mu, alphap).

7.6-24 AddCokernelObjectFunctorialWithGivenCokernelObjects
‣ AddCokernelObjectFunctorialWithGivenCokernelObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CokernelObjectFunctorialWithGivenCokernelObjects. F: ( P, alpha, mu, alphap, Pp ) \mapsto \mathtt{CokernelObjectFunctorialWithGivenCokernelObjects}(P, alpha, mu, alphap, Pp).

7.6-25 AddCokernelProjection
‣ AddCokernelProjection( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CokernelProjection. F: ( alpha ) \mapsto \mathtt{CokernelProjection}(alpha).

7.6-26 AddCokernelProjectionWithGivenCokernelObject
‣ AddCokernelProjectionWithGivenCokernelObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CokernelProjectionWithGivenCokernelObject. F: ( alpha, P ) \mapsto \mathtt{CokernelProjectionWithGivenCokernelObject}(alpha, P).

7.6-27 AddColift
‣ AddColift( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation Colift. F: ( alpha, beta ) \mapsto \mathtt{Colift}(alpha, beta).

7.6-28 AddColiftAlongEpimorphism
‣ AddColiftAlongEpimorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ColiftAlongEpimorphism. F: ( epsilon, tau ) \mapsto \mathtt{ColiftAlongEpimorphism}(epsilon, tau).

7.6-29 AddColiftOrFail
‣ AddColiftOrFail( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ColiftOrFail. F: ( alpha, beta ) \mapsto \mathtt{ColiftOrFail}(alpha, beta).

7.6-30 AddComponentOfMorphismFromDirectSum
‣ AddComponentOfMorphismFromDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ComponentOfMorphismFromDirectSum. F: ( alpha, S, i ) \mapsto \mathtt{ComponentOfMorphismFromDirectSum}(alpha, S, i).

7.6-31 AddComponentOfMorphismIntoDirectSum
‣ AddComponentOfMorphismIntoDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ComponentOfMorphismIntoDirectSum. F: ( alpha, S, i ) \mapsto \mathtt{ComponentOfMorphismIntoDirectSum}(alpha, S, i).

7.6-32 AddCoproduct
‣ AddCoproduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation Coproduct. F: ( arg2 ) \mapsto \mathtt{Coproduct}(arg2).

7.6-33 AddCoproductFunctorial
‣ AddCoproductFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoproductFunctorial. F: ( objects, L, objectsp ) \mapsto \mathtt{CoproductFunctorial}(objects, L, objectsp).

7.6-34 AddCoproductFunctorialWithGivenCoproducts
‣ AddCoproductFunctorialWithGivenCoproducts( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation CoproductFunctorialWithGivenCoproducts. F: ( P, objects, L, objectsp, Pp ) \mapsto \mathtt{CoproductFunctorialWithGivenCoproducts}(P, objects, L, objectsp, Pp).

7.6-35 AddDirectProduct
‣ AddDirectProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DirectProduct. F: ( arg2 ) \mapsto \mathtt{DirectProduct}(arg2).

7.6-36 AddDirectProductFunctorial
‣ AddDirectProductFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DirectProductFunctorial. F: ( objects, L, objectsp ) \mapsto \mathtt{DirectProductFunctorial}(objects, L, objectsp).

7.6-37 AddDirectProductFunctorialWithGivenDirectProducts
‣ AddDirectProductFunctorialWithGivenDirectProducts( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DirectProductFunctorialWithGivenDirectProducts. F: ( P, objects, L, objectsp, Pp ) \mapsto \mathtt{DirectProductFunctorialWithGivenDirectProducts}(P, objects, L, objectsp, Pp).

7.6-38 AddDirectSum
‣ AddDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DirectSum. F: ( arg2 ) \mapsto \mathtt{DirectSum}(arg2).

7.6-39 AddDirectSumCodiagonalDifference
‣ AddDirectSumCodiagonalDifference( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DirectSumCodiagonalDifference. F: ( D ) \mapsto \mathtt{DirectSumCodiagonalDifference}(D).

7.6-40 AddDirectSumDiagonalDifference
‣ AddDirectSumDiagonalDifference( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DirectSumDiagonalDifference. F: ( D ) \mapsto \mathtt{DirectSumDiagonalDifference}(D).

7.6-41 AddDirectSumFunctorial
‣ AddDirectSumFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DirectSumFunctorial. F: ( objects, L, objectsp ) \mapsto \mathtt{DirectSumFunctorial}(objects, L, objectsp).

7.6-42 AddDirectSumFunctorialWithGivenDirectSums
‣ AddDirectSumFunctorialWithGivenDirectSums( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DirectSumFunctorialWithGivenDirectSums. F: ( P, objects, L, objectsp, Pp ) \mapsto \mathtt{DirectSumFunctorialWithGivenDirectSums}(P, objects, L, objectsp, Pp).

7.6-43 AddDirectSumProjectionInPushout
‣ AddDirectSumProjectionInPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DirectSumProjectionInPushout. F: ( D ) \mapsto \mathtt{DirectSumProjectionInPushout}(D).

7.6-44 AddDistinguishedObjectOfHomomorphismStructure
‣ AddDistinguishedObjectOfHomomorphismStructure( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation DistinguishedObjectOfHomomorphismStructure. F: ( ) \mapsto \mathtt{DistinguishedObjectOfHomomorphismStructure}().

7.6-45 AddEmbeddingOfEqualizer
‣ AddEmbeddingOfEqualizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation EmbeddingOfEqualizer. F: ( Y, morphisms ) \mapsto \mathtt{EmbeddingOfEqualizer}(Y, morphisms).

7.6-46 AddEmbeddingOfEqualizerWithGivenEqualizer
‣ AddEmbeddingOfEqualizerWithGivenEqualizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation EmbeddingOfEqualizerWithGivenEqualizer. F: ( Y, morphisms, P ) \mapsto \mathtt{EmbeddingOfEqualizerWithGivenEqualizer}(Y, morphisms, P).

7.6-47 AddEpimorphismFromProjectiveCoverObject
‣ AddEpimorphismFromProjectiveCoverObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation EpimorphismFromProjectiveCoverObject. F: ( A ) \mapsto \mathtt{EpimorphismFromProjectiveCoverObject}(A).

7.6-48 AddEpimorphismFromProjectiveCoverObjectWithGivenProjectiveCoverObject
‣ AddEpimorphismFromProjectiveCoverObjectWithGivenProjectiveCoverObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation EpimorphismFromProjectiveCoverObjectWithGivenProjectiveCoverObject. F: ( A, P ) \mapsto \mathtt{EpimorphismFromProjectiveCoverObjectWithGivenProjectiveCoverObject}(A, P).

7.6-49 AddEpimorphismFromSomeProjectiveObject
‣ AddEpimorphismFromSomeProjectiveObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation EpimorphismFromSomeProjectiveObject. F: ( A ) \mapsto \mathtt{EpimorphismFromSomeProjectiveObject}(A).

7.6-50 AddEpimorphismFromSomeProjectiveObjectWithGivenSomeProjectiveObject
‣ AddEpimorphismFromSomeProjectiveObjectWithGivenSomeProjectiveObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation EpimorphismFromSomeProjectiveObjectWithGivenSomeProjectiveObject. F: ( A, P ) \mapsto \mathtt{EpimorphismFromSomeProjectiveObjectWithGivenSomeProjectiveObject}(A, P).

7.6-51 AddEqualizer
‣ AddEqualizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation Equalizer. F: ( arg2, arg3 ) \mapsto \mathtt{Equalizer}(arg2, arg3).

7.6-52 AddEqualizerFunctorial
‣ AddEqualizerFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation EqualizerFunctorial. F: ( morphisms, mu, morphismsp ) \mapsto \mathtt{EqualizerFunctorial}(morphisms, mu, morphismsp).

7.6-53 AddEqualizerFunctorialWithGivenEqualizers
‣ AddEqualizerFunctorialWithGivenEqualizers( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation EqualizerFunctorialWithGivenEqualizers. F: ( P, morphisms, mu, morphismsp, Pp ) \mapsto \mathtt{EqualizerFunctorialWithGivenEqualizers}(P, morphisms, mu, morphismsp, Pp).

7.6-54 AddFiberProduct
‣ AddFiberProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation FiberProduct. F: ( arg2 ) \mapsto \mathtt{FiberProduct}(arg2).

7.6-55 AddFiberProductEmbeddingInDirectSum
‣ AddFiberProductEmbeddingInDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation FiberProductEmbeddingInDirectSum. F: ( D ) \mapsto \mathtt{FiberProductEmbeddingInDirectSum}(D).

7.6-56 AddFiberProductFunctorial
‣ AddFiberProductFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation FiberProductFunctorial. F: ( morphisms, L, morphismsp ) \mapsto \mathtt{FiberProductFunctorial}(morphisms, L, morphismsp).

7.6-57 AddFiberProductFunctorialWithGivenFiberProducts
‣ AddFiberProductFunctorialWithGivenFiberProducts( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation FiberProductFunctorialWithGivenFiberProducts. F: ( P, morphisms, L, morphismsp, Pp ) \mapsto \mathtt{FiberProductFunctorialWithGivenFiberProducts}(P, morphisms, L, morphismsp, Pp).

7.6-58 AddHomologyObject
‣ AddHomologyObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation HomologyObject. F: ( alpha, beta ) \mapsto \mathtt{HomologyObject}(alpha, beta).

7.6-59 AddHomologyObjectFunctorialWithGivenHomologyObjects
‣ AddHomologyObjectFunctorialWithGivenHomologyObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation HomologyObjectFunctorialWithGivenHomologyObjects. F: ( H_1, L, H_2 ) \mapsto \mathtt{HomologyObjectFunctorialWithGivenHomologyObjects}(H_1, L, H_2).

7.6-60 AddHomomorphismStructureOnMorphisms
‣ AddHomomorphismStructureOnMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation HomomorphismStructureOnMorphisms. F: ( alpha, beta ) \mapsto \mathtt{HomomorphismStructureOnMorphisms}(alpha, beta).

7.6-61 AddHomomorphismStructureOnMorphismsWithGivenObjects
‣ AddHomomorphismStructureOnMorphismsWithGivenObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation HomomorphismStructureOnMorphismsWithGivenObjects. F: ( source, alpha, beta, range ) \mapsto \mathtt{HomomorphismStructureOnMorphismsWithGivenObjects}(source, alpha, beta, range).

7.6-62 AddHomomorphismStructureOnObjects
‣ AddHomomorphismStructureOnObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation HomomorphismStructureOnObjects. F: ( arg2, arg3 ) \mapsto \mathtt{HomomorphismStructureOnObjects}(arg2, arg3).

7.6-63 AddHorizontalPostCompose
‣ AddHorizontalPostCompose( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation HorizontalPostCompose. F: ( arg2, arg3 ) \mapsto \mathtt{HorizontalPostCompose}(arg2, arg3).

7.6-64 AddHorizontalPreCompose
‣ AddHorizontalPreCompose( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation HorizontalPreCompose. F: ( arg2, arg3 ) \mapsto \mathtt{HorizontalPreCompose}(arg2, arg3).

7.6-65 AddIdentityMorphism
‣ AddIdentityMorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IdentityMorphism. F: ( a ) \mapsto \mathtt{IdentityMorphism}(a).

7.6-66 AddIdentityTwoCell
‣ AddIdentityTwoCell( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IdentityTwoCell. F: ( arg2 ) \mapsto \mathtt{IdentityTwoCell}(arg2).

7.6-67 AddImageEmbedding
‣ AddImageEmbedding( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ImageEmbedding. F: ( alpha ) \mapsto \mathtt{ImageEmbedding}(alpha).

7.6-68 AddImageEmbeddingWithGivenImageObject
‣ AddImageEmbeddingWithGivenImageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ImageEmbeddingWithGivenImageObject. F: ( alpha, I ) \mapsto \mathtt{ImageEmbeddingWithGivenImageObject}(alpha, I).

7.6-69 AddImageObject
‣ AddImageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ImageObject. F: ( arg2 ) \mapsto \mathtt{ImageObject}(arg2).

7.6-70 AddImageObjectFunctorial
‣ AddImageObjectFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ImageObjectFunctorial. F: ( alpha, nu, alphap ) \mapsto \mathtt{ImageObjectFunctorial}(alpha, nu, alphap).

7.6-71 AddImageObjectFunctorialWithGivenImageObjects
‣ AddImageObjectFunctorialWithGivenImageObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ImageObjectFunctorialWithGivenImageObjects. F: ( I, alpha, nu, alphap, Ip ) \mapsto \mathtt{ImageObjectFunctorialWithGivenImageObjects}(I, alpha, nu, alphap, Ip).

7.6-72 AddIndecomposableInjectiveObjects
‣ AddIndecomposableInjectiveObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IndecomposableInjectiveObjects. F: ( ) \mapsto \mathtt{IndecomposableInjectiveObjects}().

7.6-73 AddIndecomposableProjectiveObjects
‣ AddIndecomposableProjectiveObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IndecomposableProjectiveObjects. F: ( ) \mapsto \mathtt{IndecomposableProjectiveObjects}().

7.6-74 AddInitialObject
‣ AddInitialObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InitialObject. F: ( ) \mapsto \mathtt{InitialObject}().

7.6-75 AddInitialObjectFunctorial
‣ AddInitialObjectFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InitialObjectFunctorial. F: ( ) \mapsto \mathtt{InitialObjectFunctorial}().

7.6-76 AddInitialObjectFunctorialWithGivenInitialObjects
‣ AddInitialObjectFunctorialWithGivenInitialObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InitialObjectFunctorialWithGivenInitialObjects. F: ( P, Pp ) \mapsto \mathtt{InitialObjectFunctorialWithGivenInitialObjects}(P, Pp).

7.6-77 AddInjectionOfCofactorOfCoproduct
‣ AddInjectionOfCofactorOfCoproduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InjectionOfCofactorOfCoproduct. F: ( objects, k ) \mapsto \mathtt{InjectionOfCofactorOfCoproduct}(objects, k).

7.6-78 AddInjectionOfCofactorOfCoproductWithGivenCoproduct
‣ AddInjectionOfCofactorOfCoproductWithGivenCoproduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InjectionOfCofactorOfCoproductWithGivenCoproduct. F: ( objects, k, P ) \mapsto \mathtt{InjectionOfCofactorOfCoproductWithGivenCoproduct}(objects, k, P).

7.6-79 AddInjectionOfCofactorOfDirectSum
‣ AddInjectionOfCofactorOfDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InjectionOfCofactorOfDirectSum. F: ( objects, k ) \mapsto \mathtt{InjectionOfCofactorOfDirectSum}(objects, k).

7.6-80 AddInjectionOfCofactorOfDirectSumWithGivenDirectSum
‣ AddInjectionOfCofactorOfDirectSumWithGivenDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InjectionOfCofactorOfDirectSumWithGivenDirectSum. F: ( objects, k, P ) \mapsto \mathtt{InjectionOfCofactorOfDirectSumWithGivenDirectSum}(objects, k, P).

7.6-81 AddInjectionOfCofactorOfPushout
‣ AddInjectionOfCofactorOfPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InjectionOfCofactorOfPushout. F: ( morphisms, k ) \mapsto \mathtt{InjectionOfCofactorOfPushout}(morphisms, k).

7.6-82 AddInjectionOfCofactorOfPushoutWithGivenPushout
‣ AddInjectionOfCofactorOfPushoutWithGivenPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InjectionOfCofactorOfPushoutWithGivenPushout. F: ( morphisms, k, P ) \mapsto \mathtt{InjectionOfCofactorOfPushoutWithGivenPushout}(morphisms, k, P).

7.6-83 AddInjectiveColift
‣ AddInjectiveColift( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InjectiveColift. F: ( alpha, beta ) \mapsto \mathtt{InjectiveColift}(alpha, beta).

7.6-84 AddInjectiveDimension
‣ AddInjectiveDimension( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InjectiveDimension. F: ( arg2 ) \mapsto \mathtt{InjectiveDimension}(arg2).

7.6-85 AddInjectiveEnvelopeObject
‣ AddInjectiveEnvelopeObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InjectiveEnvelopeObject. F: ( arg2 ) \mapsto \mathtt{InjectiveEnvelopeObject}(arg2).

7.6-86 AddInterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure
‣ AddInterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure. F: ( alpha ) \mapsto \mathtt{InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure}(alpha).

7.6-87 AddInterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructureWithGivenObjects
‣ AddInterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructureWithGivenObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructureWithGivenObjects. F: ( source, alpha, range ) \mapsto \mathtt{InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructureWithGivenObjects}(source, alpha, range).

7.6-88 AddInterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism
‣ AddInterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism. F: ( source, range, alpha ) \mapsto \mathtt{InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism}(source, range, alpha).

7.6-89 AddInverseForMorphisms
‣ AddInverseForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InverseForMorphisms. F: ( alpha ) \mapsto \mathtt{InverseForMorphisms}(alpha).

7.6-90 AddInverseMorphismFromCoimageToImageWithGivenObjects
‣ AddInverseMorphismFromCoimageToImageWithGivenObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation InverseMorphismFromCoimageToImageWithGivenObjects. F: ( C, alpha, I ) \mapsto \mathtt{InverseMorphismFromCoimageToImageWithGivenObjects}(C, alpha, I).

7.6-91 AddIsAutomorphism
‣ AddIsAutomorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsAutomorphism. F: ( arg2 ) \mapsto \mathtt{IsAutomorphism}(arg2).

7.6-92 AddIsBijectiveObject
‣ AddIsBijectiveObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsBijectiveObject. F: ( arg2 ) \mapsto \mathtt{IsBijectiveObject}(arg2).

7.6-93 AddIsCodominating
‣ AddIsCodominating( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsCodominating. F: ( arg2, arg3 ) \mapsto \mathtt{IsCodominating}(arg2, arg3).

7.6-94 AddIsColiftable
‣ AddIsColiftable( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsColiftable. F: ( arg2, arg3 ) \mapsto \mathtt{IsColiftable}(arg2, arg3).

7.6-95 AddIsColiftableAlongEpimorphism
‣ AddIsColiftableAlongEpimorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsColiftableAlongEpimorphism. F: ( arg2, arg3 ) \mapsto \mathtt{IsColiftableAlongEpimorphism}(arg2, arg3).

7.6-96 AddIsCongruentForMorphisms
‣ AddIsCongruentForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsCongruentForMorphisms. F: ( arg2, arg3 ) \mapsto \mathtt{IsCongruentForMorphisms}(arg2, arg3).

7.6-97 AddIsDominating
‣ AddIsDominating( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsDominating. F: ( arg2, arg3 ) \mapsto \mathtt{IsDominating}(arg2, arg3).

7.6-98 AddIsEndomorphism
‣ AddIsEndomorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEndomorphism. F: ( arg2 ) \mapsto \mathtt{IsEndomorphism}(arg2).

7.6-99 AddIsEpimorphism
‣ AddIsEpimorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEpimorphism. F: ( arg2 ) \mapsto \mathtt{IsEpimorphism}(arg2).

7.6-100 AddIsEqualAsFactorobjects
‣ AddIsEqualAsFactorobjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEqualAsFactorobjects. F: ( arg2, arg3 ) \mapsto \mathtt{IsEqualAsFactorobjects}(arg2, arg3).

7.6-101 AddIsEqualAsSubobjects
‣ AddIsEqualAsSubobjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEqualAsSubobjects. F: ( arg2, arg3 ) \mapsto \mathtt{IsEqualAsSubobjects}(arg2, arg3).

7.6-102 AddIsEqualForCacheForMorphisms
‣ AddIsEqualForCacheForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEqualForCacheForMorphisms. F: ( arg2, arg3 ) \mapsto \mathtt{IsEqualForCacheForMorphisms}(arg2, arg3).

7.6-103 AddIsEqualForCacheForObjects
‣ AddIsEqualForCacheForObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEqualForCacheForObjects. F: ( arg2, arg3 ) \mapsto \mathtt{IsEqualForCacheForObjects}(arg2, arg3).

7.6-104 AddIsEqualForMorphisms
‣ AddIsEqualForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEqualForMorphisms. F: ( arg2, arg3 ) \mapsto \mathtt{IsEqualForMorphisms}(arg2, arg3).

7.6-105 AddIsEqualForMorphismsOnMor
‣ AddIsEqualForMorphismsOnMor( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEqualForMorphismsOnMor. F: ( arg2, arg3 ) \mapsto \mathtt{IsEqualForMorphismsOnMor}(arg2, arg3).

7.6-106 AddIsEqualForObjects
‣ AddIsEqualForObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEqualForObjects. F: ( arg2, arg3 ) \mapsto \mathtt{IsEqualForObjects}(arg2, arg3).

7.6-107 AddIsEqualToIdentityMorphism
‣ AddIsEqualToIdentityMorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEqualToIdentityMorphism. F: ( arg2 ) \mapsto \mathtt{IsEqualToIdentityMorphism}(arg2).

7.6-108 AddIsEqualToZeroMorphism
‣ AddIsEqualToZeroMorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsEqualToZeroMorphism. F: ( arg2 ) \mapsto \mathtt{IsEqualToZeroMorphism}(arg2).

7.6-109 AddIsHomSetInhabited
‣ AddIsHomSetInhabited( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsHomSetInhabited. F: ( arg2, arg3 ) \mapsto \mathtt{IsHomSetInhabited}(arg2, arg3).

7.6-110 AddIsIdempotent
‣ AddIsIdempotent( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsIdempotent. F: ( arg2 ) \mapsto \mathtt{IsIdempotent}(arg2).

7.6-111 AddIsInitial
‣ AddIsInitial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsInitial. F: ( arg2 ) \mapsto \mathtt{IsInitial}(arg2).

7.6-112 AddIsInjective
‣ AddIsInjective( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsInjective. F: ( arg2 ) \mapsto \mathtt{IsInjective}(arg2).

7.6-113 AddIsIsomorphism
‣ AddIsIsomorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsIsomorphism. F: ( arg2 ) \mapsto \mathtt{IsIsomorphism}(arg2).

7.6-114 AddIsLiftable
‣ AddIsLiftable( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsLiftable. F: ( arg2, arg3 ) \mapsto \mathtt{IsLiftable}(arg2, arg3).

7.6-115 AddIsLiftableAlongMonomorphism
‣ AddIsLiftableAlongMonomorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsLiftableAlongMonomorphism. F: ( arg2, arg3 ) \mapsto \mathtt{IsLiftableAlongMonomorphism}(arg2, arg3).

7.6-116 AddIsMonomorphism
‣ AddIsMonomorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsMonomorphism. F: ( arg2 ) \mapsto \mathtt{IsMonomorphism}(arg2).

7.6-117 AddIsOne
‣ AddIsOne( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsOne. F: ( arg2 ) \mapsto \mathtt{IsOne}(arg2).

7.6-118 AddIsProjective
‣ AddIsProjective( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsProjective. F: ( arg2 ) \mapsto \mathtt{IsProjective}(arg2).

7.6-119 AddIsSplitEpimorphism
‣ AddIsSplitEpimorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsSplitEpimorphism. F: ( arg2 ) \mapsto \mathtt{IsSplitEpimorphism}(arg2).

7.6-120 AddIsSplitMonomorphism
‣ AddIsSplitMonomorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsSplitMonomorphism. F: ( arg2 ) \mapsto \mathtt{IsSplitMonomorphism}(arg2).

7.6-121 AddIsTerminal
‣ AddIsTerminal( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsTerminal. F: ( arg2 ) \mapsto \mathtt{IsTerminal}(arg2).

7.6-122 AddIsWellDefinedForMorphisms
‣ AddIsWellDefinedForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsWellDefinedForMorphisms. F: ( arg2 ) \mapsto \mathtt{IsWellDefinedForMorphisms}(arg2).

7.6-123 AddIsWellDefinedForObjects
‣ AddIsWellDefinedForObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsWellDefinedForObjects. F: ( arg2 ) \mapsto \mathtt{IsWellDefinedForObjects}(arg2).

7.6-124 AddIsWellDefinedForTwoCells
‣ AddIsWellDefinedForTwoCells( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsWellDefinedForTwoCells. F: ( arg2 ) \mapsto \mathtt{IsWellDefinedForTwoCells}(arg2).

7.6-125 AddIsZeroForMorphisms
‣ AddIsZeroForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsZeroForMorphisms. F: ( arg2 ) \mapsto \mathtt{IsZeroForMorphisms}(arg2).

7.6-126 AddIsZeroForObjects
‣ AddIsZeroForObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsZeroForObjects. F: ( arg2 ) \mapsto \mathtt{IsZeroForObjects}(arg2).

7.6-127 AddIsomorphismFromCoequalizerOfCoproductDiagramToPushout
‣ AddIsomorphismFromCoequalizerOfCoproductDiagramToPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromCoequalizerOfCoproductDiagramToPushout. F: ( D ) \mapsto \mathtt{IsomorphismFromCoequalizerOfCoproductDiagramToPushout}(D).

7.6-128 AddIsomorphismFromCoimageToCokernelOfKernel
‣ AddIsomorphismFromCoimageToCokernelOfKernel( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromCoimageToCokernelOfKernel. F: ( alpha ) \mapsto \mathtt{IsomorphismFromCoimageToCokernelOfKernel}(alpha).

7.6-129 AddIsomorphismFromCokernelOfDiagonalDifferenceToPushout
‣ AddIsomorphismFromCokernelOfDiagonalDifferenceToPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromCokernelOfDiagonalDifferenceToPushout. F: ( D ) \mapsto \mathtt{IsomorphismFromCokernelOfDiagonalDifferenceToPushout}(D).

7.6-130 AddIsomorphismFromCokernelOfKernelToCoimage
‣ AddIsomorphismFromCokernelOfKernelToCoimage( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromCokernelOfKernelToCoimage. F: ( alpha ) \mapsto \mathtt{IsomorphismFromCokernelOfKernelToCoimage}(alpha).

7.6-131 AddIsomorphismFromCoproductToDirectSum
‣ AddIsomorphismFromCoproductToDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromCoproductToDirectSum. F: ( D ) \mapsto \mathtt{IsomorphismFromCoproductToDirectSum}(D).

7.6-132 AddIsomorphismFromDirectProductToDirectSum
‣ AddIsomorphismFromDirectProductToDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromDirectProductToDirectSum. F: ( D ) \mapsto \mathtt{IsomorphismFromDirectProductToDirectSum}(D).

7.6-133 AddIsomorphismFromDirectSumToCoproduct
‣ AddIsomorphismFromDirectSumToCoproduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromDirectSumToCoproduct. F: ( D ) \mapsto \mathtt{IsomorphismFromDirectSumToCoproduct}(D).

7.6-134 AddIsomorphismFromDirectSumToDirectProduct
‣ AddIsomorphismFromDirectSumToDirectProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromDirectSumToDirectProduct. F: ( D ) \mapsto \mathtt{IsomorphismFromDirectSumToDirectProduct}(D).

7.6-135 AddIsomorphismFromEqualizerOfDirectProductDiagramToFiberProduct
‣ AddIsomorphismFromEqualizerOfDirectProductDiagramToFiberProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromEqualizerOfDirectProductDiagramToFiberProduct. F: ( D ) \mapsto \mathtt{IsomorphismFromEqualizerOfDirectProductDiagramToFiberProduct}(D).

7.6-136 AddIsomorphismFromFiberProductToEqualizerOfDirectProductDiagram
‣ AddIsomorphismFromFiberProductToEqualizerOfDirectProductDiagram( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromFiberProductToEqualizerOfDirectProductDiagram. F: ( D ) \mapsto \mathtt{IsomorphismFromFiberProductToEqualizerOfDirectProductDiagram}(D).

7.6-137 AddIsomorphismFromFiberProductToKernelOfDiagonalDifference
‣ AddIsomorphismFromFiberProductToKernelOfDiagonalDifference( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromFiberProductToKernelOfDiagonalDifference. F: ( D ) \mapsto \mathtt{IsomorphismFromFiberProductToKernelOfDiagonalDifference}(D).

7.6-138 AddIsomorphismFromHomologyObjectToItsConstructionAsAnImageObject
‣ AddIsomorphismFromHomologyObjectToItsConstructionAsAnImageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromHomologyObjectToItsConstructionAsAnImageObject. F: ( alpha, beta ) \mapsto \mathtt{IsomorphismFromHomologyObjectToItsConstructionAsAnImageObject}(alpha, beta).

7.6-139 AddIsomorphismFromImageObjectToKernelOfCokernel
‣ AddIsomorphismFromImageObjectToKernelOfCokernel( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromImageObjectToKernelOfCokernel. F: ( alpha ) \mapsto \mathtt{IsomorphismFromImageObjectToKernelOfCokernel}(alpha).

7.6-140 AddIsomorphismFromInitialObjectToZeroObject
‣ AddIsomorphismFromInitialObjectToZeroObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromInitialObjectToZeroObject. F: ( ) \mapsto \mathtt{IsomorphismFromInitialObjectToZeroObject}().

7.6-141 AddIsomorphismFromItsConstructionAsAnImageObjectToHomologyObject
‣ AddIsomorphismFromItsConstructionAsAnImageObjectToHomologyObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromItsConstructionAsAnImageObjectToHomologyObject. F: ( alpha, beta ) \mapsto \mathtt{IsomorphismFromItsConstructionAsAnImageObjectToHomologyObject}(alpha, beta).

7.6-142 AddIsomorphismFromKernelOfCokernelToImageObject
‣ AddIsomorphismFromKernelOfCokernelToImageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromKernelOfCokernelToImageObject. F: ( alpha ) \mapsto \mathtt{IsomorphismFromKernelOfCokernelToImageObject}(alpha).

7.6-143 AddIsomorphismFromKernelOfDiagonalDifferenceToFiberProduct
‣ AddIsomorphismFromKernelOfDiagonalDifferenceToFiberProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct. F: ( D ) \mapsto \mathtt{IsomorphismFromKernelOfDiagonalDifferenceToFiberProduct}(D).

7.6-144 AddIsomorphismFromPushoutToCoequalizerOfCoproductDiagram
‣ AddIsomorphismFromPushoutToCoequalizerOfCoproductDiagram( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromPushoutToCoequalizerOfCoproductDiagram. F: ( D ) \mapsto \mathtt{IsomorphismFromPushoutToCoequalizerOfCoproductDiagram}(D).

7.6-145 AddIsomorphismFromPushoutToCokernelOfDiagonalDifference
‣ AddIsomorphismFromPushoutToCokernelOfDiagonalDifference( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromPushoutToCokernelOfDiagonalDifference. F: ( D ) \mapsto \mathtt{IsomorphismFromPushoutToCokernelOfDiagonalDifference}(D).

7.6-146 AddIsomorphismFromTerminalObjectToZeroObject
‣ AddIsomorphismFromTerminalObjectToZeroObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromTerminalObjectToZeroObject. F: ( ) \mapsto \mathtt{IsomorphismFromTerminalObjectToZeroObject}().

7.6-147 AddIsomorphismFromZeroObjectToInitialObject
‣ AddIsomorphismFromZeroObjectToInitialObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromZeroObjectToInitialObject. F: ( ) \mapsto \mathtt{IsomorphismFromZeroObjectToInitialObject}().

7.6-148 AddIsomorphismFromZeroObjectToTerminalObject
‣ AddIsomorphismFromZeroObjectToTerminalObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation IsomorphismFromZeroObjectToTerminalObject. F: ( ) \mapsto \mathtt{IsomorphismFromZeroObjectToTerminalObject}().

7.6-149 AddKernelEmbedding
‣ AddKernelEmbedding( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation KernelEmbedding. F: ( alpha ) \mapsto \mathtt{KernelEmbedding}(alpha).

7.6-150 AddKernelEmbeddingWithGivenKernelObject
‣ AddKernelEmbeddingWithGivenKernelObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation KernelEmbeddingWithGivenKernelObject. F: ( alpha, P ) \mapsto \mathtt{KernelEmbeddingWithGivenKernelObject}(alpha, P).

7.6-151 AddKernelLift
‣ AddKernelLift( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation KernelLift. F: ( alpha, T, tau ) \mapsto \mathtt{KernelLift}(alpha, T, tau).

7.6-152 AddKernelLiftWithGivenKernelObject
‣ AddKernelLiftWithGivenKernelObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation KernelLiftWithGivenKernelObject. F: ( alpha, T, tau, P ) \mapsto \mathtt{KernelLiftWithGivenKernelObject}(alpha, T, tau, P).

7.6-153 AddKernelObject
‣ AddKernelObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation KernelObject. F: ( arg2 ) \mapsto \mathtt{KernelObject}(arg2).

7.6-154 AddKernelObjectFunctorial
‣ AddKernelObjectFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation KernelObjectFunctorial. F: ( alpha, mu, alphap ) \mapsto \mathtt{KernelObjectFunctorial}(alpha, mu, alphap).

7.6-155 AddKernelObjectFunctorialWithGivenKernelObjects
‣ AddKernelObjectFunctorialWithGivenKernelObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation KernelObjectFunctorialWithGivenKernelObjects. F: ( P, alpha, mu, alphap, Pp ) \mapsto \mathtt{KernelObjectFunctorialWithGivenKernelObjects}(P, alpha, mu, alphap, Pp).

7.6-156 AddLift
‣ AddLift( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation Lift. F: ( alpha, beta ) \mapsto \mathtt{Lift}(alpha, beta).

7.6-157 AddLiftAlongMonomorphism
‣ AddLiftAlongMonomorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation LiftAlongMonomorphism. F: ( iota, tau ) \mapsto \mathtt{LiftAlongMonomorphism}(iota, tau).

7.6-158 AddLiftOrFail
‣ AddLiftOrFail( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation LiftOrFail. F: ( alpha, beta ) \mapsto \mathtt{LiftOrFail}(alpha, beta).

7.6-159 AddMereExistenceOfSolutionOfLinearSystemInAbCategory
‣ AddMereExistenceOfSolutionOfLinearSystemInAbCategory( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MereExistenceOfSolutionOfLinearSystemInAbCategory. F: ( arg2, arg3, arg4 ) \mapsto \mathtt{MereExistenceOfSolutionOfLinearSystemInAbCategory}(arg2, arg3, arg4).

7.6-160 AddMonomorphismIntoInjectiveEnvelopeObject
‣ AddMonomorphismIntoInjectiveEnvelopeObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MonomorphismIntoInjectiveEnvelopeObject. F: ( A ) \mapsto \mathtt{MonomorphismIntoInjectiveEnvelopeObject}(A).

7.6-161 AddMonomorphismIntoInjectiveEnvelopeObjectWithGivenInjectiveEnvelopeObject
‣ AddMonomorphismIntoInjectiveEnvelopeObjectWithGivenInjectiveEnvelopeObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MonomorphismIntoInjectiveEnvelopeObjectWithGivenInjectiveEnvelopeObject. F: ( A, I ) \mapsto \mathtt{MonomorphismIntoInjectiveEnvelopeObjectWithGivenInjectiveEnvelopeObject}(A, I).

7.6-162 AddMonomorphismIntoSomeInjectiveObject
‣ AddMonomorphismIntoSomeInjectiveObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MonomorphismIntoSomeInjectiveObject. F: ( A ) \mapsto \mathtt{MonomorphismIntoSomeInjectiveObject}(A).

7.6-163 AddMonomorphismIntoSomeInjectiveObjectWithGivenSomeInjectiveObject
‣ AddMonomorphismIntoSomeInjectiveObjectWithGivenSomeInjectiveObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MonomorphismIntoSomeInjectiveObjectWithGivenSomeInjectiveObject. F: ( A, I ) \mapsto \mathtt{MonomorphismIntoSomeInjectiveObjectWithGivenSomeInjectiveObject}(A, I).

7.6-164 AddMorphismBetweenDirectSums
‣ AddMorphismBetweenDirectSums( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismBetweenDirectSums. F: ( source_diagram, mat, range_diagram ) \mapsto \mathtt{MorphismBetweenDirectSums}(source_diagram, mat, range_diagram).

7.6-165 AddMorphismBetweenDirectSumsWithGivenDirectSums
‣ AddMorphismBetweenDirectSumsWithGivenDirectSums( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismBetweenDirectSumsWithGivenDirectSums. F: ( S, source_diagram, mat, range_diagram, T ) \mapsto \mathtt{MorphismBetweenDirectSumsWithGivenDirectSums}(S, source_diagram, mat, range_diagram, T).

7.6-166 AddMorphismConstructor
‣ AddMorphismConstructor( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismConstructor. F: ( arg2, arg3, arg4 ) \mapsto \mathtt{MorphismConstructor}(arg2, arg3, arg4).

7.6-167 AddMorphismDatum
‣ AddMorphismDatum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismDatum. F: ( arg2 ) \mapsto \mathtt{MorphismDatum}(arg2).

7.6-168 AddMorphismFromCoimageToImageWithGivenObjects
‣ AddMorphismFromCoimageToImageWithGivenObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromCoimageToImageWithGivenObjects. F: ( C, alpha, I ) \mapsto \mathtt{MorphismFromCoimageToImageWithGivenObjects}(C, alpha, I).

7.6-169 AddMorphismFromEqualizerToSink
‣ AddMorphismFromEqualizerToSink( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromEqualizerToSink. F: ( Y, morphisms ) \mapsto \mathtt{MorphismFromEqualizerToSink}(Y, morphisms).

7.6-170 AddMorphismFromEqualizerToSinkWithGivenEqualizer
‣ AddMorphismFromEqualizerToSinkWithGivenEqualizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromEqualizerToSinkWithGivenEqualizer. F: ( Y, morphisms, P ) \mapsto \mathtt{MorphismFromEqualizerToSinkWithGivenEqualizer}(Y, morphisms, P).

7.6-171 AddMorphismFromFiberProductToSink
‣ AddMorphismFromFiberProductToSink( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromFiberProductToSink. F: ( morphisms ) \mapsto \mathtt{MorphismFromFiberProductToSink}(morphisms).

7.6-172 AddMorphismFromFiberProductToSinkWithGivenFiberProduct
‣ AddMorphismFromFiberProductToSinkWithGivenFiberProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromFiberProductToSinkWithGivenFiberProduct. F: ( morphisms, P ) \mapsto \mathtt{MorphismFromFiberProductToSinkWithGivenFiberProduct}(morphisms, P).

7.6-173 AddMorphismFromKernelObjectToSink
‣ AddMorphismFromKernelObjectToSink( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromKernelObjectToSink. F: ( alpha ) \mapsto \mathtt{MorphismFromKernelObjectToSink}(alpha).

7.6-174 AddMorphismFromKernelObjectToSinkWithGivenKernelObject
‣ AddMorphismFromKernelObjectToSinkWithGivenKernelObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromKernelObjectToSinkWithGivenKernelObject. F: ( alpha, P ) \mapsto \mathtt{MorphismFromKernelObjectToSinkWithGivenKernelObject}(alpha, P).

7.6-175 AddMorphismFromSourceToCoequalizer
‣ AddMorphismFromSourceToCoequalizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromSourceToCoequalizer. F: ( Y, morphisms ) \mapsto \mathtt{MorphismFromSourceToCoequalizer}(Y, morphisms).

7.6-176 AddMorphismFromSourceToCoequalizerWithGivenCoequalizer
‣ AddMorphismFromSourceToCoequalizerWithGivenCoequalizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromSourceToCoequalizerWithGivenCoequalizer. F: ( Y, morphisms, P ) \mapsto \mathtt{MorphismFromSourceToCoequalizerWithGivenCoequalizer}(Y, morphisms, P).

7.6-177 AddMorphismFromSourceToCokernelObject
‣ AddMorphismFromSourceToCokernelObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromSourceToCokernelObject. F: ( alpha ) \mapsto \mathtt{MorphismFromSourceToCokernelObject}(alpha).

7.6-178 AddMorphismFromSourceToCokernelObjectWithGivenCokernelObject
‣ AddMorphismFromSourceToCokernelObjectWithGivenCokernelObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromSourceToCokernelObjectWithGivenCokernelObject. F: ( alpha, P ) \mapsto \mathtt{MorphismFromSourceToCokernelObjectWithGivenCokernelObject}(alpha, P).

7.6-179 AddMorphismFromSourceToPushout
‣ AddMorphismFromSourceToPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromSourceToPushout. F: ( morphisms ) \mapsto \mathtt{MorphismFromSourceToPushout}(morphisms).

7.6-180 AddMorphismFromSourceToPushoutWithGivenPushout
‣ AddMorphismFromSourceToPushoutWithGivenPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MorphismFromSourceToPushoutWithGivenPushout. F: ( morphisms, P ) \mapsto \mathtt{MorphismFromSourceToPushoutWithGivenPushout}(morphisms, P).

7.6-181 AddMultiplyWithElementOfCommutativeRingForMorphisms
‣ AddMultiplyWithElementOfCommutativeRingForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation MultiplyWithElementOfCommutativeRingForMorphisms. F: ( r, a ) \mapsto \mathtt{MultiplyWithElementOfCommutativeRingForMorphisms}(r, a).

7.6-182 AddObjectConstructor
‣ AddObjectConstructor( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ObjectConstructor. F: ( arg2 ) \mapsto \mathtt{ObjectConstructor}(arg2).

7.6-183 AddObjectDatum
‣ AddObjectDatum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ObjectDatum. F: ( arg2 ) \mapsto \mathtt{ObjectDatum}(arg2).

7.6-184 AddPostCompose
‣ AddPostCompose( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation PostCompose. F: ( beta, alpha ) \mapsto \mathtt{PostCompose}(beta, alpha).

7.6-185 AddPostComposeList
‣ AddPostComposeList( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation PostComposeList. F: ( list_of_morphisms ) \mapsto \mathtt{PostComposeList}(list_of_morphisms).

7.6-186 AddPostInverseForMorphisms
‣ AddPostInverseForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation PostInverseForMorphisms. F: ( alpha ) \mapsto \mathtt{PostInverseForMorphisms}(alpha).

7.6-187 AddPreCompose
‣ AddPreCompose( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation PreCompose. F: ( alpha, beta ) \mapsto \mathtt{PreCompose}(alpha, beta).

7.6-188 AddPreComposeList
‣ AddPreComposeList( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation PreComposeList. F: ( list_of_morphisms ) \mapsto \mathtt{PreComposeList}(list_of_morphisms).

7.6-189 AddPreInverseForMorphisms
‣ AddPreInverseForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation PreInverseForMorphisms. F: ( alpha ) \mapsto \mathtt{PreInverseForMorphisms}(alpha).

7.6-190 AddProjectionInFactorOfDirectProduct
‣ AddProjectionInFactorOfDirectProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectionInFactorOfDirectProduct. F: ( objects, k ) \mapsto \mathtt{ProjectionInFactorOfDirectProduct}(objects, k).

7.6-191 AddProjectionInFactorOfDirectProductWithGivenDirectProduct
‣ AddProjectionInFactorOfDirectProductWithGivenDirectProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectionInFactorOfDirectProductWithGivenDirectProduct. F: ( objects, k, P ) \mapsto \mathtt{ProjectionInFactorOfDirectProductWithGivenDirectProduct}(objects, k, P).

7.6-192 AddProjectionInFactorOfDirectSum
‣ AddProjectionInFactorOfDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectionInFactorOfDirectSum. F: ( objects, k ) \mapsto \mathtt{ProjectionInFactorOfDirectSum}(objects, k).

7.6-193 AddProjectionInFactorOfDirectSumWithGivenDirectSum
‣ AddProjectionInFactorOfDirectSumWithGivenDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectionInFactorOfDirectSumWithGivenDirectSum. F: ( objects, k, P ) \mapsto \mathtt{ProjectionInFactorOfDirectSumWithGivenDirectSum}(objects, k, P).

7.6-194 AddProjectionInFactorOfFiberProduct
‣ AddProjectionInFactorOfFiberProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectionInFactorOfFiberProduct. F: ( morphisms, k ) \mapsto \mathtt{ProjectionInFactorOfFiberProduct}(morphisms, k).

7.6-195 AddProjectionInFactorOfFiberProductWithGivenFiberProduct
‣ AddProjectionInFactorOfFiberProductWithGivenFiberProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectionInFactorOfFiberProductWithGivenFiberProduct. F: ( morphisms, k, P ) \mapsto \mathtt{ProjectionInFactorOfFiberProductWithGivenFiberProduct}(morphisms, k, P).

7.6-196 AddProjectionOntoCoequalizer
‣ AddProjectionOntoCoequalizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectionOntoCoequalizer. F: ( Y, morphisms ) \mapsto \mathtt{ProjectionOntoCoequalizer}(Y, morphisms).

7.6-197 AddProjectionOntoCoequalizerWithGivenCoequalizer
‣ AddProjectionOntoCoequalizerWithGivenCoequalizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectionOntoCoequalizerWithGivenCoequalizer. F: ( Y, morphisms, P ) \mapsto \mathtt{ProjectionOntoCoequalizerWithGivenCoequalizer}(Y, morphisms, P).

7.6-198 AddProjectiveCoverObject
‣ AddProjectiveCoverObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectiveCoverObject. F: ( arg2 ) \mapsto \mathtt{ProjectiveCoverObject}(arg2).

7.6-199 AddProjectiveDimension
‣ AddProjectiveDimension( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectiveDimension. F: ( arg2 ) \mapsto \mathtt{ProjectiveDimension}(arg2).

7.6-200 AddProjectiveLift
‣ AddProjectiveLift( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ProjectiveLift. F: ( alpha, beta ) \mapsto \mathtt{ProjectiveLift}(alpha, beta).

7.6-201 AddPushout
‣ AddPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation Pushout. F: ( arg2 ) \mapsto \mathtt{Pushout}(arg2).

7.6-202 AddPushoutFunctorial
‣ AddPushoutFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation PushoutFunctorial. F: ( morphisms, L, morphismsp ) \mapsto \mathtt{PushoutFunctorial}(morphisms, L, morphismsp).

7.6-203 AddPushoutFunctorialWithGivenPushouts
‣ AddPushoutFunctorialWithGivenPushouts( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation PushoutFunctorialWithGivenPushouts. F: ( P, morphisms, L, morphismsp, Pp ) \mapsto \mathtt{PushoutFunctorialWithGivenPushouts}(P, morphisms, L, morphismsp, Pp).

7.6-204 AddRandomMorphismByInteger
‣ AddRandomMorphismByInteger( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomMorphismByInteger. F: ( n ) \mapsto \mathtt{RandomMorphismByInteger}(n).

7.6-205 AddRandomMorphismByList
‣ AddRandomMorphismByList( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomMorphismByList. F: ( L ) \mapsto \mathtt{RandomMorphismByList}(L).

7.6-206 AddRandomMorphismWithFixedRangeByInteger
‣ AddRandomMorphismWithFixedRangeByInteger( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomMorphismWithFixedRangeByInteger. F: ( B, n ) \mapsto \mathtt{RandomMorphismWithFixedRangeByInteger}(B, n).

7.6-207 AddRandomMorphismWithFixedRangeByList
‣ AddRandomMorphismWithFixedRangeByList( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomMorphismWithFixedRangeByList. F: ( B, L ) \mapsto \mathtt{RandomMorphismWithFixedRangeByList}(B, L).

7.6-208 AddRandomMorphismWithFixedSourceAndRangeByInteger
‣ AddRandomMorphismWithFixedSourceAndRangeByInteger( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomMorphismWithFixedSourceAndRangeByInteger. F: ( A, B, n ) \mapsto \mathtt{RandomMorphismWithFixedSourceAndRangeByInteger}(A, B, n).

7.6-209 AddRandomMorphismWithFixedSourceAndRangeByList
‣ AddRandomMorphismWithFixedSourceAndRangeByList( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomMorphismWithFixedSourceAndRangeByList. F: ( A, B, L ) \mapsto \mathtt{RandomMorphismWithFixedSourceAndRangeByList}(A, B, L).

7.6-210 AddRandomMorphismWithFixedSourceByInteger
‣ AddRandomMorphismWithFixedSourceByInteger( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomMorphismWithFixedSourceByInteger. F: ( A, n ) \mapsto \mathtt{RandomMorphismWithFixedSourceByInteger}(A, n).

7.6-211 AddRandomMorphismWithFixedSourceByList
‣ AddRandomMorphismWithFixedSourceByList( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomMorphismWithFixedSourceByList. F: ( A, L ) \mapsto \mathtt{RandomMorphismWithFixedSourceByList}(A, L).

7.6-212 AddRandomObjectByInteger
‣ AddRandomObjectByInteger( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomObjectByInteger. F: ( n ) \mapsto \mathtt{RandomObjectByInteger}(n).

7.6-213 AddRandomObjectByList
‣ AddRandomObjectByList( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation RandomObjectByList. F: ( L ) \mapsto \mathtt{RandomObjectByList}(L).

7.6-214 AddSimplifyEndo
‣ AddSimplifyEndo( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyEndo. F: ( mor, n ) \mapsto \mathtt{SimplifyEndo}(mor, n).

7.6-215 AddSimplifyEndo_IsoFromInputObject
‣ AddSimplifyEndo_IsoFromInputObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyEndo_IsoFromInputObject. F: ( mor, n ) \mapsto \mathtt{SimplifyEndo_IsoFromInputObject}(mor, n).

7.6-216 AddSimplifyEndo_IsoToInputObject
‣ AddSimplifyEndo_IsoToInputObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyEndo_IsoToInputObject. F: ( mor, n ) \mapsto \mathtt{SimplifyEndo_IsoToInputObject}(mor, n).

7.6-217 AddSimplifyMorphism
‣ AddSimplifyMorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyMorphism. F: ( mor, n ) \mapsto \mathtt{SimplifyMorphism}(mor, n).

7.6-218 AddSimplifyObject
‣ AddSimplifyObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyObject. F: ( A, n ) \mapsto \mathtt{SimplifyObject}(A, n).

7.6-219 AddSimplifyObject_IsoFromInputObject
‣ AddSimplifyObject_IsoFromInputObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyObject_IsoFromInputObject. F: ( A, n ) \mapsto \mathtt{SimplifyObject_IsoFromInputObject}(A, n).

7.6-220 AddSimplifyObject_IsoToInputObject
‣ AddSimplifyObject_IsoToInputObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyObject_IsoToInputObject. F: ( A, n ) \mapsto \mathtt{SimplifyObject_IsoToInputObject}(A, n).

7.6-221 AddSimplifyRange
‣ AddSimplifyRange( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyRange. F: ( mor, n ) \mapsto \mathtt{SimplifyRange}(mor, n).

7.6-222 AddSimplifyRange_IsoFromInputObject
‣ AddSimplifyRange_IsoFromInputObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyRange_IsoFromInputObject. F: ( mor, n ) \mapsto \mathtt{SimplifyRange_IsoFromInputObject}(mor, n).

7.6-223 AddSimplifyRange_IsoToInputObject
‣ AddSimplifyRange_IsoToInputObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifyRange_IsoToInputObject. F: ( mor, n ) \mapsto \mathtt{SimplifyRange_IsoToInputObject}(mor, n).

7.6-224 AddSimplifySource
‣ AddSimplifySource( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifySource. F: ( mor, n ) \mapsto \mathtt{SimplifySource}(mor, n).

7.6-225 AddSimplifySourceAndRange
‣ AddSimplifySourceAndRange( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifySourceAndRange. F: ( mor, n ) \mapsto \mathtt{SimplifySourceAndRange}(mor, n).

7.6-226 AddSimplifySourceAndRange_IsoFromInputRange
‣ AddSimplifySourceAndRange_IsoFromInputRange( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifySourceAndRange_IsoFromInputRange. F: ( mor, n ) \mapsto \mathtt{SimplifySourceAndRange_IsoFromInputRange}(mor, n).

7.6-227 AddSimplifySourceAndRange_IsoFromInputSource
‣ AddSimplifySourceAndRange_IsoFromInputSource( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifySourceAndRange_IsoFromInputSource. F: ( mor, n ) \mapsto \mathtt{SimplifySourceAndRange_IsoFromInputSource}(mor, n).

7.6-228 AddSimplifySourceAndRange_IsoToInputRange
‣ AddSimplifySourceAndRange_IsoToInputRange( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifySourceAndRange_IsoToInputRange. F: ( mor, n ) \mapsto \mathtt{SimplifySourceAndRange_IsoToInputRange}(mor, n).

7.6-229 AddSimplifySourceAndRange_IsoToInputSource
‣ AddSimplifySourceAndRange_IsoToInputSource( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifySourceAndRange_IsoToInputSource. F: ( mor, n ) \mapsto \mathtt{SimplifySourceAndRange_IsoToInputSource}(mor, n).

7.6-230 AddSimplifySource_IsoFromInputObject
‣ AddSimplifySource_IsoFromInputObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifySource_IsoFromInputObject. F: ( mor, n ) \mapsto \mathtt{SimplifySource_IsoFromInputObject}(mor, n).

7.6-231 AddSimplifySource_IsoToInputObject
‣ AddSimplifySource_IsoToInputObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SimplifySource_IsoToInputObject. F: ( mor, n ) \mapsto \mathtt{SimplifySource_IsoToInputObject}(mor, n).

7.6-232 AddSolveLinearSystemInAbCategory
‣ AddSolveLinearSystemInAbCategory( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SolveLinearSystemInAbCategory. F: ( arg2, arg3, arg4 ) \mapsto \mathtt{SolveLinearSystemInAbCategory}(arg2, arg3, arg4).

7.6-233 AddSolveLinearSystemInAbCategoryOrFail
‣ AddSolveLinearSystemInAbCategoryOrFail( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SolveLinearSystemInAbCategoryOrFail. F: ( arg2, arg3, arg4 ) \mapsto \mathtt{SolveLinearSystemInAbCategoryOrFail}(arg2, arg3, arg4).

7.6-234 AddSomeInjectiveObject
‣ AddSomeInjectiveObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SomeInjectiveObject. F: ( arg2 ) \mapsto \mathtt{SomeInjectiveObject}(arg2).

7.6-235 AddSomeProjectiveObject
‣ AddSomeProjectiveObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SomeProjectiveObject. F: ( arg2 ) \mapsto \mathtt{SomeProjectiveObject}(arg2).

7.6-236 AddSomeReductionBySplitEpiSummand
‣ AddSomeReductionBySplitEpiSummand( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SomeReductionBySplitEpiSummand. F: ( alpha ) \mapsto \mathtt{SomeReductionBySplitEpiSummand}(alpha).

7.6-237 AddSomeReductionBySplitEpiSummand_MorphismFromInputRange
‣ AddSomeReductionBySplitEpiSummand_MorphismFromInputRange( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SomeReductionBySplitEpiSummand_MorphismFromInputRange. F: ( alpha ) \mapsto \mathtt{SomeReductionBySplitEpiSummand_MorphismFromInputRange}(alpha).

7.6-238 AddSomeReductionBySplitEpiSummand_MorphismToInputRange
‣ AddSomeReductionBySplitEpiSummand_MorphismToInputRange( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SomeReductionBySplitEpiSummand_MorphismToInputRange. F: ( alpha ) \mapsto \mathtt{SomeReductionBySplitEpiSummand_MorphismToInputRange}(alpha).

7.6-239 AddSubtractionForMorphisms
‣ AddSubtractionForMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SubtractionForMorphisms. F: ( a, b ) \mapsto \mathtt{SubtractionForMorphisms}(a, b).

7.6-240 AddSumOfMorphisms
‣ AddSumOfMorphisms( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation SumOfMorphisms. F: ( source, list_of_morphisms, range ) \mapsto \mathtt{SumOfMorphisms}(source, list_of_morphisms, range).

7.6-241 AddTerminalObject
‣ AddTerminalObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation TerminalObject. F: ( ) \mapsto \mathtt{TerminalObject}().

7.6-242 AddTerminalObjectFunctorial
‣ AddTerminalObjectFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation TerminalObjectFunctorial. F: ( ) \mapsto \mathtt{TerminalObjectFunctorial}().

7.6-243 AddTerminalObjectFunctorialWithGivenTerminalObjects
‣ AddTerminalObjectFunctorialWithGivenTerminalObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation TerminalObjectFunctorialWithGivenTerminalObjects. F: ( P, Pp ) \mapsto \mathtt{TerminalObjectFunctorialWithGivenTerminalObjects}(P, Pp).

7.6-244 AddUniversalMorphismFromCoequalizer
‣ AddUniversalMorphismFromCoequalizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromCoequalizer. F: ( Y, morphisms, T, tau ) \mapsto \mathtt{UniversalMorphismFromCoequalizer}(Y, morphisms, T, tau).

7.6-245 AddUniversalMorphismFromCoequalizerWithGivenCoequalizer
‣ AddUniversalMorphismFromCoequalizerWithGivenCoequalizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromCoequalizerWithGivenCoequalizer. F: ( Y, morphisms, T, tau, P ) \mapsto \mathtt{UniversalMorphismFromCoequalizerWithGivenCoequalizer}(Y, morphisms, T, tau, P).

7.6-246 AddUniversalMorphismFromCoproduct
‣ AddUniversalMorphismFromCoproduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromCoproduct. F: ( objects, T, tau ) \mapsto \mathtt{UniversalMorphismFromCoproduct}(objects, T, tau).

7.6-247 AddUniversalMorphismFromCoproductWithGivenCoproduct
‣ AddUniversalMorphismFromCoproductWithGivenCoproduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromCoproductWithGivenCoproduct. F: ( objects, T, tau, P ) \mapsto \mathtt{UniversalMorphismFromCoproductWithGivenCoproduct}(objects, T, tau, P).

7.6-248 AddUniversalMorphismFromDirectSum
‣ AddUniversalMorphismFromDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromDirectSum. F: ( objects, T, tau ) \mapsto \mathtt{UniversalMorphismFromDirectSum}(objects, T, tau).

7.6-249 AddUniversalMorphismFromDirectSumWithGivenDirectSum
‣ AddUniversalMorphismFromDirectSumWithGivenDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromDirectSumWithGivenDirectSum. F: ( objects, T, tau, P ) \mapsto \mathtt{UniversalMorphismFromDirectSumWithGivenDirectSum}(objects, T, tau, P).

7.6-250 AddUniversalMorphismFromImage
‣ AddUniversalMorphismFromImage( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromImage. F: ( alpha, tau ) \mapsto \mathtt{UniversalMorphismFromImage}(alpha, tau).

7.6-251 AddUniversalMorphismFromImageWithGivenImageObject
‣ AddUniversalMorphismFromImageWithGivenImageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromImageWithGivenImageObject. F: ( alpha, tau, I ) \mapsto \mathtt{UniversalMorphismFromImageWithGivenImageObject}(alpha, tau, I).

7.6-252 AddUniversalMorphismFromInitialObject
‣ AddUniversalMorphismFromInitialObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromInitialObject. F: ( T ) \mapsto \mathtt{UniversalMorphismFromInitialObject}(T).

7.6-253 AddUniversalMorphismFromInitialObjectWithGivenInitialObject
‣ AddUniversalMorphismFromInitialObjectWithGivenInitialObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromInitialObjectWithGivenInitialObject. F: ( T, P ) \mapsto \mathtt{UniversalMorphismFromInitialObjectWithGivenInitialObject}(T, P).

7.6-254 AddUniversalMorphismFromPushout
‣ AddUniversalMorphismFromPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromPushout. F: ( morphisms, T, tau ) \mapsto \mathtt{UniversalMorphismFromPushout}(morphisms, T, tau).

7.6-255 AddUniversalMorphismFromPushoutWithGivenPushout
‣ AddUniversalMorphismFromPushoutWithGivenPushout( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromPushoutWithGivenPushout. F: ( morphisms, T, tau, P ) \mapsto \mathtt{UniversalMorphismFromPushoutWithGivenPushout}(morphisms, T, tau, P).

7.6-256 AddUniversalMorphismFromZeroObject
‣ AddUniversalMorphismFromZeroObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromZeroObject. F: ( T ) \mapsto \mathtt{UniversalMorphismFromZeroObject}(T).

7.6-257 AddUniversalMorphismFromZeroObjectWithGivenZeroObject
‣ AddUniversalMorphismFromZeroObjectWithGivenZeroObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismFromZeroObjectWithGivenZeroObject. F: ( T, P ) \mapsto \mathtt{UniversalMorphismFromZeroObjectWithGivenZeroObject}(T, P).

7.6-258 AddUniversalMorphismIntoCoimage
‣ AddUniversalMorphismIntoCoimage( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoCoimage. F: ( alpha, tau ) \mapsto \mathtt{UniversalMorphismIntoCoimage}(alpha, tau).

7.6-259 AddUniversalMorphismIntoCoimageWithGivenCoimageObject
‣ AddUniversalMorphismIntoCoimageWithGivenCoimageObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoCoimageWithGivenCoimageObject. F: ( alpha, tau, C ) \mapsto \mathtt{UniversalMorphismIntoCoimageWithGivenCoimageObject}(alpha, tau, C).

7.6-260 AddUniversalMorphismIntoDirectProduct
‣ AddUniversalMorphismIntoDirectProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoDirectProduct. F: ( objects, T, tau ) \mapsto \mathtt{UniversalMorphismIntoDirectProduct}(objects, T, tau).

7.6-261 AddUniversalMorphismIntoDirectProductWithGivenDirectProduct
‣ AddUniversalMorphismIntoDirectProductWithGivenDirectProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoDirectProductWithGivenDirectProduct. F: ( objects, T, tau, P ) \mapsto \mathtt{UniversalMorphismIntoDirectProductWithGivenDirectProduct}(objects, T, tau, P).

7.6-262 AddUniversalMorphismIntoDirectSum
‣ AddUniversalMorphismIntoDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoDirectSum. F: ( objects, T, tau ) \mapsto \mathtt{UniversalMorphismIntoDirectSum}(objects, T, tau).

7.6-263 AddUniversalMorphismIntoDirectSumWithGivenDirectSum
‣ AddUniversalMorphismIntoDirectSumWithGivenDirectSum( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoDirectSumWithGivenDirectSum. F: ( objects, T, tau, P ) \mapsto \mathtt{UniversalMorphismIntoDirectSumWithGivenDirectSum}(objects, T, tau, P).

7.6-264 AddUniversalMorphismIntoEqualizer
‣ AddUniversalMorphismIntoEqualizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoEqualizer. F: ( Y, morphisms, T, tau ) \mapsto \mathtt{UniversalMorphismIntoEqualizer}(Y, morphisms, T, tau).

7.6-265 AddUniversalMorphismIntoEqualizerWithGivenEqualizer
‣ AddUniversalMorphismIntoEqualizerWithGivenEqualizer( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoEqualizerWithGivenEqualizer. F: ( Y, morphisms, T, tau, P ) \mapsto \mathtt{UniversalMorphismIntoEqualizerWithGivenEqualizer}(Y, morphisms, T, tau, P).

7.6-266 AddUniversalMorphismIntoFiberProduct
‣ AddUniversalMorphismIntoFiberProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoFiberProduct. F: ( morphisms, T, tau ) \mapsto \mathtt{UniversalMorphismIntoFiberProduct}(morphisms, T, tau).

7.6-267 AddUniversalMorphismIntoFiberProductWithGivenFiberProduct
‣ AddUniversalMorphismIntoFiberProductWithGivenFiberProduct( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoFiberProductWithGivenFiberProduct. F: ( morphisms, T, tau, P ) \mapsto \mathtt{UniversalMorphismIntoFiberProductWithGivenFiberProduct}(morphisms, T, tau, P).

7.6-268 AddUniversalMorphismIntoTerminalObject
‣ AddUniversalMorphismIntoTerminalObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoTerminalObject. F: ( T ) \mapsto \mathtt{UniversalMorphismIntoTerminalObject}(T).

7.6-269 AddUniversalMorphismIntoTerminalObjectWithGivenTerminalObject
‣ AddUniversalMorphismIntoTerminalObjectWithGivenTerminalObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoTerminalObjectWithGivenTerminalObject. F: ( T, P ) \mapsto \mathtt{UniversalMorphismIntoTerminalObjectWithGivenTerminalObject}(T, P).

7.6-270 AddUniversalMorphismIntoZeroObject
‣ AddUniversalMorphismIntoZeroObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoZeroObject. F: ( T ) \mapsto \mathtt{UniversalMorphismIntoZeroObject}(T).

7.6-271 AddUniversalMorphismIntoZeroObjectWithGivenZeroObject
‣ AddUniversalMorphismIntoZeroObjectWithGivenZeroObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation UniversalMorphismIntoZeroObjectWithGivenZeroObject. F: ( T, P ) \mapsto \mathtt{UniversalMorphismIntoZeroObjectWithGivenZeroObject}(T, P).

7.6-272 AddVerticalPostCompose
‣ AddVerticalPostCompose( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation VerticalPostCompose. F: ( arg2, arg3 ) \mapsto \mathtt{VerticalPostCompose}(arg2, arg3).

7.6-273 AddVerticalPreCompose
‣ AddVerticalPreCompose( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation VerticalPreCompose. F: ( arg2, arg3 ) \mapsto \mathtt{VerticalPreCompose}(arg2, arg3).

7.6-274 AddZeroMorphism
‣ AddZeroMorphism( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ZeroMorphism. F: ( a, b ) \mapsto \mathtt{ZeroMorphism}(a, b).

7.6-275 AddZeroObject
‣ AddZeroObject( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ZeroObject. F: ( ) \mapsto \mathtt{ZeroObject}().

7.6-276 AddZeroObjectFunctorial
‣ AddZeroObjectFunctorial( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ZeroObjectFunctorial. F: ( ) \mapsto \mathtt{ZeroObjectFunctorial}().

7.6-277 AddZeroObjectFunctorialWithGivenZeroObjects
‣ AddZeroObjectFunctorialWithGivenZeroObjects( C, F )( operation )

Returns: nothing

The arguments are a category C and a function F. This operation adds the given function F to the category for the basic operation ZeroObjectFunctorialWithGivenZeroObjects. F: ( P, Pp ) \mapsto \mathtt{ZeroObjectFunctorialWithGivenZeroObjects}(P, Pp).

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ind

generated by GAPDoc2HTML