Goto Chapter: Top 1 2 3 4 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 


[CS06] Catino, F. and Spinelli, E., Lie nilpotent group algebras and upper Lie codimension subgroups, Comm. Algebra, 34 (10) (2006), 3859--3873.

[Du92] Du, X. K., The centers of a radical ring, Canad. Math. Bull., 35 (2) (1992), 174-179.

[HB82] Huppert, B. and Blackburn, N., Finite groups. II, Springer-Verlag, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 242, Berlin (1982), xiii+531 pages
(, AMD, 44).

[JPS96] Jespers, E., Parmenter, M. M. and Sehgal, S. K., Central units of integral group rings of nilpotent groups, Proc. Amer. Math. Soc., 124 (4) (1996), 1007--1012.

[LR86] Levin, F. and Rosenberger, G., Lie metabelian group rings, in Group and semigroup rings (Johannesburg, 1985), North-Holland, North-Holland Math. Stud., 126, Amsterdam (1986), 153--161.

[PPS73] Passi, I. B. S., Passman, D. S. and Sehgal, S. K., Lie solvable group rings, Canad. J. Math., 25 (1973), 748--757.

[Ros97] Rossmanith, R., Centre-by-metabelian group algebras, Ph.D. thesis, Friedrich-Schiller-Universit{\accent127a}t Jena (1997).

[Ros00] Rossmanith, R., Lie centre-by-metabelian group algebras in even characteristic. I, II, Israel J. Math., 115 (2000), 51--75, 77--99.

[Ros02] Rossmanith, R., Lie centre-by-metabelian group algebras over commutative rings, J. Algebra, 251 (2) (2002), 503--508.

[Sha91] Shalev, A., Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units, J. London Math. Soc. (2), 43 (1) (1991), 23--36.

[Sim94] Sims, C. C., Computation with finitely presented groups, Cambridge University Press, Encyclopedia of Mathematics and its Applications, 48, Cambridge (1994), xiii+604 pages.

[Wur93] Wursthorn, M., Isomorphisms of modular group algebras: an algorithm and its application to groups of order \(2\sp 6\), J. Symbolic Comput., 15 (2) (1993), 211--227.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 Bib Ind

generated by GAPDoc2HTML