Version 1.34
August 2022
The QPA-team
Email: oyvind.solberg@ntnu.no
Homepage: https://folk.ntnu.no/oyvinso/QPA/
Address:
Department of Mathematical Sciences
NTNU
N-7491 Trondheim
Norway
The GAP4 deposited package QPA extends the GAP functionality for computations with finite dimensional quotients of path algebras. QPA has data structures for quivers, quotients of path algebras, representations of quivers with relations and complexes of modules. Basic operations on representations of quivers are implemented as well as contructing minimal projective resolutions of modules (using using linear algebra). A not necessarily minimal projective resolution constructed by using Groebner basis theory and a paper by Green-Solberg-Zacharia, "Minimal projective resolutions", has been implemented. A goal is to have a test for finite representation type. This work has started, but there is a long way left. Part of this work is to implement/port the functionality and data structures that was available in CREP.
© 2011-2021 by The QPA-team.
QPA is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. For details, see the FSF’s own site (https://www.gnu.org/licenses/gpl.html).
If you obtained QPA, we would be grateful for a short notification sent to one of members of the QPA-team. If you publish a result which was partially obtained with the usage of QPA, please cite it in the following form:
The QPA-team, QPA - Quivers, path algebras and representations, Version 1.34; 2021 (https://folk.ntnu.no/oyvinso/QPA/)
The system design of QPA was initiated by Edward L. Green, Lenwood S. Heath, and Craig A. Struble. It was continued and completed by Randall Cone and Edward Green. We would like to thank the following people for their contributions:
Chain complexes | Kristin Krogh Arnesen and Øystein Skartsæterhagen |
Degeneration order for modules in finite type | Andrzej Mroz |
GBNP interface (for Groebner bases) | Randall Cone |
Homomorphisms of modules | Øyvind Solberg and Anette Wraalsen |
Koszul duals | Stephen Corwin |
Matrix representations of path algebras | Øyvind Solberg and George Yuhasz |
Opposite algebra and tensor products of algebras | Øystein Skartsæterhagen |
Predefined classes of algebras | Andrzej Mroz and Øyvind Solberg |
Projective resolutions (using Groebnar basis) | Randall Cone and Øyvind Solberg |
Projective resolutions (using linear algebra) | Øyvind Solberg |
Quickstart | Kristin Krogh Arnesen |
Quivers, path algebras | Gerard Brunick |
The bounded derived category | Kristin Krogh Arnesen and Øystein Skartsæterhagen |
Unitforms | Øyvind Solberg |
7.2-1 \= (maps)
7.2-2 \+ (maps)
7.2-3 \* (maps)
10.2-6 \^
generated by GAPDoc2HTML