Goto Chapter: Top 1 2 3 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

References

[Car98] Carter, R. W., Representations of simple Lie algebras: modern variations on a classical theme, in Algebraic groups and their representations (Cambridge, 1997), Kluwer Acad. Publ., Dordrecht (1998), 151--173.

[Com06] Committee, E., A note on the paper: ``A survey of the work of George Lusztig'' by R. W. Carter [Nagoya Math. J. \bf 182 (2006), 1--45], Nagoya Math. J., 183 (2006), i--ii.

[Gra01] Graaf, W. A. d., Computing with quantized enveloping algebras: PBW-type bases, highest-weight modules, R-matrices, J. Symbolic Comput., 32 (5) (2001), 475--490.

[Gra02] Graaf, W. A. d., Constructing canonical bases of quantized enveloping algebras, Experimental Mathematics, 11 (2) (2002), 161--170.

[Hum90] Humphreys, J. E., Reflection groups and Coxeter groups, Cambridge University Press, Cambridge (1990).

[Jan96] Jantzen, J. C., Lectures on Quantum Groups, American Mathematical Society, Graduate Studies in Mathematics, 6 (1996).

[Kas96] Kashiwara, M., Similarity of crystal bases, in Lie algebras and their representations (Seoul, 1995), Amer. Math. Soc., Providence, RI (1996), 177--186.

[Lit94] Littelmann, P., A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math., 116 (1-3) (1994), 329--346.

[Lit95] Littelmann, P., Paths and root operators in representation theory, Ann. of Math. (2), 142 (3) (1995), 499--525.

[Lit98] Littelmann, P., Cones, crystals, and patterns, Transform. Groups, 3 (2) (1998), 145--179.

[LN01] L\"{u}beck, F. and Neunh\"{o}ffer, M., GAPDoc, a GAP documentation meta-package (2001).

[Lus90] Lusztig, G., Quantum groups at roots of 1, Geom. Dedicata, 35 (1-3) (1990), 89--113.

[Lus92] Lusztig, G., Introduction to quantized enveloping algebras, in New developments in Lie theory and their applications (C\'ordoba, 1989), Birkh\"auser Boston, Boston, MA (1992), 49--65.

[Lus93] Lusztig, G., Introduction to quantum groups, Birkh\"auser Boston Inc., Boston, MA (1993).

[Lus96] Lusztig, G., Braid group action and canonical bases, Adv. Math., 122 (2) (1996), 237--261.

[Lus0a] Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3 (2) (1990a), 447--498.

[Ros91] Rosso, M., Repr\'esentations des groupes quantiques, Ast\'erisque (201-203) (1991), Exp.\ No.\ 744, 443--483 (1992)
(S\'eminaire Bourbaki, Vol.\ 1990/91).

[Ste01] Stembridge, J. R., Computational aspects of root systems, Coxeter groups, and Weyl characters, in Interaction of combinatorics and representation theory, Math. Soc. Japan, MSJ Mem., 11, Tokyo (2001), 1--38.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 Bib Ind

generated by GAPDoc2HTML