*
(for bipartitions) 3.4 *
(for PBRs) 4.4 *
(for matrices over a semiring) 5.2 *
(for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 <
(for bipartitions) 3.4 <
(for PBRs) 4.4 <
(for matrices over a semiring) 5.2 <
(for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 =
(for bipartitions) 3.4 =
(for PBRs) 4.4 =
(for matrices over a semiring) 5.2 =
(for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 \<
, for Green's classes 10.3-1 \in
5.3-3 ^
(for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 AnnularJonesMonoid
7.3-5 AntiIsomorphismDualFpMonoid
6.5-9 AntiIsomorphismDualFpSemigroup
6.5-9 AntiIsomorphismDualSemigroup
8.2-4 ApsisMonoid
7.3-11 AsBipartition
3.3-1 AsBlockBijection
3.3-2 AsBooleanMat
5.3-2 AsCongruenceByWangPair
13.8-3 AsInverseSemigroupCongruenceByKernelTrace
13.7-3 AsList
5.1-10 AsListCanonical
11.1-1 AsMatrix
, for a filter and a matrix 5.1-6 AsMonoid
6.5-4 AsMutableList
5.1-10 AsPartialPerm
, for a bipartition 3.3-4 AsPBR
4.3-1 AsPermutation
, for a bipartition 3.3-5 AsSemigroup
6.5-3 AsSemigroupCongruenceByGeneratingPairs
13.6-6 AsSemigroupHomomorphismByFunction
, for a semigroup homomorphism by images 14.1-6 AsSemigroupHomomorphismByImages
, for a semigroup homomorphism by function 14.1-5 AsSemigroupIsomorphismByFunction
, for a semigroup homomorphism by images 14.2-11 AsTransformation
, for a bipartition 3.3-3 AutomorphismGroup
, for a semigroup 14.2-7 Bipartition
3.2-1 BipartitionByIntRep
3.2-2 Bitranslation
, for IsBitranslationsSemigroup, IsLeftTranslation, IsRightTranslation 18.1-6 BlistNumber
5.3-7 BLOCKS_NC
3.6-2 BooleanMat
5.3-1 BooleanMatNumber
5.3-6 BrandtSemigroup
7.8-6 BrauerMonoid
7.3-2 CanonicalBlocks
3.5-18 CanonicalBooleanMat
5.3-8 CanonicalForm
, for a free inverse semigroup element 7.11-6 CanonicalMultiplicationTable
14.2-3 CanonicalMultiplicationTablePerm
14.2-4 CanonicalReesMatrixSemigroup
14.3-6 CanonicalReesZeroMatrixSemigroup
14.3-6 CanonicalTransformation
11.11-9 CanUseFroidurePin
6.1-4 CanUseGapFroidurePin
6.1-4 CanUseLibsemigroupsFroidurePin
6.1-4 CatalanMonoid
7.1-1 CayleyDigraphOfCongruences
, for a semigroup 13.4-6 CayleyDigraphOfLeftCongruences
, for a semigroup 13.4-6 CayleyDigraphOfRightCongruences
, for a semigroup 13.4-6 CharacterTableOfInverseSemigroup
11.14-10 ClosureInverseMonoid
6.4-1 ClosureInverseSemigroup
6.4-1 ClosureMonoid
6.4-1 ClosureSemigroup
6.4-1 CodomainOfBipartition
3.5-11 ComponentRepsOfPartialPermSemigroup
11.12-1 ComponentRepsOfTransformationSemigroup
11.11-1 ComponentsOfPartialPermSemigroup
11.12-2 ComponentsOfTransformationSemigroup
11.11-2 CompositionMapping2
, for IsRMSIsoByTriple 14.3-4 CongruenceByWangPair
13.8-2 CongruencesOfPoset
13.4-8 CongruencesOfSemigroup
, for a semigroup 13.4-1 ContentOfFreeBandElement
7.9-7 ContentOfFreeBandElementCollection
7.9-7 CrossedApsisMonoid
7.3-11 CyclesOfPartialPerm
11.12-3 CyclesOfPartialPermSemigroup
11.12-4 CyclesOfTransformationSemigroup
11.11-3 DClass
10.1-2 DClasses
10.1-4 DClassNC
10.1-3 DClassOfHClass
10.1-1 DClassOfLClass
10.1-1 DClassOfRClass
10.1-1 DClassReps
10.1-5 DegreeOfBipartition
3.5-1 DegreeOfBipartitionCollection
3.5-1 DegreeOfBipartitionSemigroup
3.8-5 DegreeOfBlocks
3.6-5 DegreeOfPBR
4.5-2 DegreeOfPBRCollection
4.5-2 DegreeOfPBRSemigroup
4.6-2 DigraphOfAction
, for a transformation semigroup, list, and action 11.11-4 DigraphOfActionOnPoints
, for a transformation semigroup 11.11-5 DimensionOfMatrixOverSemiring
5.1-3 DimensionOfMatrixOverSemiringCollection
5.1-4 DirectProduct
8.1-1 DirectProductOp
8.1-1 DomainOfBipartition
3.5-10 DotLeftCayleyDigraph
16.1-4 DotRightCayleyDigraph
16.1-4 DotSemilatticeOfIdempotents
16.1-3 DotString
16.1-1 DualSemigroup
8.2-1 DualSymmetricInverseMonoid
7.3-7 DualSymmetricInverseSemigroup
7.3-7 ElementOfFpMonoid
15.2-3 ElementOfFpSemigroup
15.2-2 ELM_LIST
(for Rees (0-)matrix semigroup isomorphisms by triples) 14.3-7 ELM_LIST
, for IsRMSIsoByTriple 14.3-3 EmbeddingFpMonoid
6.5-10 EmptyPBR
4.2-3 EndomorphismMonoid
, for a digraph 7.1-6 EndomorphismsPartition
7.1-2 Enumerate
11.1-3 EnumeratorCanonical
11.1-1 EqualInFreeBand
7.9-8 EquivalenceRelationCanonicalLookup
, for an equivalence relation over a finite semigroup 13.3-6 EquivalenceRelationCanonicalPartition
13.3-7 EquivalenceRelationLookup
, for an equivalence relation over a finite semigroup 13.3-5 EUnitaryInverseCover
11.14-11 EvaluateWord
11.5-1 ExtRepOfObj
, for a bipartition 3.5-3 FactorisableDualSymmetricInverseMonoid
7.3-8 Factorization
11.5-2 FixedPointsOfTransformationSemigroup
, for a transformation semigroup 11.11-6 FpTietzeIsomorphism
15.8-4 FreeBand
, for a given rank 7.9-1 FreeInverseSemigroup
, for a given rank 7.11-1 FreeMonoidAndAssignGeneratorVars
15.2-4 FreeSemigroupAndAssignGeneratorVars
15.2-4 FullBooleanMatMonoid
7.6-1 FullMatrixMonoid
7.5-1 FullPBRMonoid
7.4-1 FullTropicalMaxPlusMonoid
7.7-1 FullTropicalMinPlusMonoid
7.7-2 GeneralLinearMonoid
7.5-1 GeneratingCongruencesOfJoinSemilattice
13.4-12 GeneratingCongruencesOfLattice
13.8-4 Generators
11.6-1 GeneratorsOfSemigroupIdeal
9.2-1 GeneratorsOfStzPresentation
15.3-3 GeneratorsSmallest
, for a semigroup 11.6-5 GLM
7.5-1 GossipMonoid
7.6-5 GraphInverseSemigroup
7.10-1 GraphOfGraphInverseSemigroup
7.10-5 GreensDClasses
10.1-4 GreensDClassOfElement
10.1-2 GreensDClassOfElementNC
10.1-3 GreensHClasses
10.1-4 GreensHClassOfElement
10.1-2 GreensHClassOfElementNC
10.1-3 GreensJClasses
10.1-4 GreensLClasses
10.1-4 GreensLClassOfElement
10.1-2 GreensLClassOfElementNC
10.1-3 GreensRClasses
10.1-4 GreensRClassOfElement
10.1-2 GreensRClassOfElementNC
10.1-3 GroupHClass
10.4-1 GroupOfUnits
11.8-1 HallMonoid
7.6-4 HClass
10.1-2 HClasses
10.1-4 HClassNC
10.1-3 HClassReps
10.1-5 HomomorphismsOfStrongSemilatticeOfSemigroups
8.3-7 Ideals
, for a semigroup 9.1-2 IdempotentGeneratedSubsemigroup
11.9-3 Idempotents
11.9-1 IdentityBipartition
3.2-3 IdentityPBR
4.2-4 ImagesElm
, for IsRMSIsoByTriple 14.3-5 ImageSetOfTranslation
, for IsSemigroupTranslation 18.1-16 ImagesRepresentative
, for IsRMSIsoByTriple 14.3-5 IndecomposableElements
11.6-6 IndexOfVertexOfGraphInverseSemigroup
7.10-9 IndexPeriodOfSemigroupElement
11.4-1 InfoSemigroups
2.5-1 InjectionNormalizedPrincipalFactor
10.4-7 InjectionPrincipalFactor
10.4-7 InnerLeftTranslations
, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-13 InnerRightTranslations
, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-13 InnerTranslationalHull
, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-14 Integers
5.1-8 IntRepOfBipartition
3.5-4 InverseMonoidByGenerators
6.2-1 InverseOp
5.6-1 InverseSemigroupByGenerators
6.2-1 InverseSemigroupCongruenceByKernelTrace
13.7-2 InverseSubsemigroupByProperty
6.4-3 IrredundantGeneratingSubset
11.6-3 IsActingSemigroup
6.1-2 IsAntiSymmetricBooleanMat
5.3-13 IsAperiodicSemigroup
12.1-19 IsBand
12.1-1 IsBipartition
3.1-1 IsBipartitionCollColl
3.1-2 IsBipartitionCollection
3.1-2 IsBipartitionMonoid
3.8-1 IsBipartitionPBR
4.5-8 IsBipartitionSemigroup
3.8-1 IsBitranslation
, for IsAssociativeElement and IsMultiplicativeElementWithOne 18.1-2 IsBitranslationCollection
18.1-3 IsBlockBijection
3.5-16 IsBlockBijectionMonoid
3.8-2 IsBlockBijectionPBR
4.5-8 IsBlockBijectionSemigroup
3.8-2 IsBlockGroup
12.1-2 IsBlocks
3.6-1 IsBooleanMat
5.1-8 IsBooleanMatCollColl
5.1-9 IsBooleanMatCollection
5.1-9 IsBooleanMatMonoid
5.7-2 IsBooleanMatSemigroup
5.7-1 IsBrandtSemigroup
12.2-2 IsCayleyDigraphOfCongruences
13.4-4 IsCliffordSemigroup
12.2-1 IsColTrimBooleanMat
5.3-9 IsCombinatorialSemigroup
12.1-19 IsCommutativeSemigroup
12.1-3 IsCompletelyRegularSemigroup
12.1-4 IsCompletelySimpleSemigroup
12.1-22 IsCongruenceByWangPair
13.8-1 IsCongruenceClass
13.3-1 IsCongruenceFreeSemigroup
12.1-5 IsCongruencePoset
13.4-4 IsConnectedTransformationSemigroup
, for a transformation semigroup 11.11-10 IsDTrivial
12.1-19 IsDualSemigroupElement
8.2-3 IsDualSemigroupRep
8.2-2 IsDualTransBipartition
3.5-13 IsDualTransformationPBR
4.5-10 IsEmptyPBR
4.5-5 IsEnumerated
11.1-4 IsEquivalenceBooleanMat
5.3-16 IsEUnitaryInverseSemigroup
12.2-3 IsFactorisableInverseMonoid
12.2-6 IsFinite
5.7-3 IsFInverseMonoid
12.2-5 IsFInverseSemigroup
12.2-4 IsFreeBand
, for a given semigroup 7.9-3 IsFreeBandCategory
7.9-2 IsFreeBandElement
7.9-4 IsFreeBandElementCollection
7.9-5 IsFreeBandSubsemigroup
7.9-6 IsFreeInverseSemigroup
7.11-3 IsFreeInverseSemigroupCategory
7.11-2 IsFreeInverseSemigroupElement
7.11-4 IsFreeInverseSemigroupElementCollection
7.11-5 IsFullMatrixMonoid
7.5-3 IsGeneralLinearMonoid
7.5-3 IsGraphInverseSemigroup
7.10-4 IsGraphInverseSemigroupElement
7.10-4 IsGraphInverseSemigroupElementCollection
7.10-6 IsGraphInverseSubsemigroup
7.10-7 IsGreensClassNC
10.3-3 IsGreensDGreaterThanFunc
10.1-12 IsGroupAsSemigroup
12.1-7 IsHTrivial
12.1-19 IsIdempotentGenerated
12.1-8 IsIdentityPBR
4.5-6 IsIntegerMatrixMonoid
5.7-2 IsIntegerMatrixSemigroup
5.7-1 IsInverseSemigroupCongruenceByKernelTrace
13.7-1 IsInverseSemigroupCongruenceClassByKernelTrace
13.7-6 IsIsomorphicSemigroup
14.2-1 IsJoinIrreducible
12.2-7 IsLeftCongruenceClass
13.3-2 IsLeftSemigroupCongruence
13.1-2 IsLeftSimple
12.1-9 IsLeftTranslation
, for IsSemigroupTranslation 18.1-1 IsLeftTranslationCollection
18.1-3 IsLeftZeroSemigroup
12.1-10 IsLinkedTriple
13.6-5 IsLTrivial
12.1-19 IsMajorantlyClosed
12.2-8 IsMatrixOverFiniteField
5.1-8 IsMatrixOverFiniteFieldCollColl
5.1-9 IsMatrixOverFiniteFieldCollection
5.1-9 IsMatrixOverFiniteFieldMonoid
5.7-2 IsMatrixOverFiniteFieldSemigroup
5.7-1 IsMatrixOverSemiring
5.1-1 IsMatrixOverSemiringCollColl
5.1-2 IsMatrixOverSemiringCollection
5.1-2 IsMatrixOverSemiringMonoid
5.7-2 IsMatrixOverSemiringSemigroup
5.7-1 IsMaximalSubsemigroup
11.10-3 IsMaxPlusMatrix
5.1-8 IsMaxPlusMatrixCollColl
5.1-9 IsMaxPlusMatrixCollection
5.1-9 IsMaxPlusMatrixMonoid
5.7-2 IsMaxPlusMatrixSemigroup
5.7-1 IsMcAlisterTripleSemigroup
8.4-1 IsMcAlisterTripleSemigroupElement
8.4-7 IsMinPlusMatrix
5.1-8 IsMinPlusMatrixCollColl
5.1-9 IsMinPlusMatrixCollection
5.1-9 IsMinPlusMatrixMonoid
5.7-2 IsMinPlusMatrixSemigroup
5.7-1 IsMonogenicInverseMonoid
12.2-10 IsMonogenicInverseSemigroup
12.2-9 IsMonogenicMonoid
12.1-12 IsMonogenicSemigroup
12.1-11 IsMonoidAsSemigroup
12.1-13 IsMTSE
8.4-7 IsNTPMatrix
5.1-8 IsNTPMatrixCollColl
5.1-9 IsNTPMatrixCollection
5.1-9 IsNTPMatrixMonoid
5.7-2 IsNTPMatrixSemigroup
5.7-1 IsomorphismMonoid
6.5-2 IsomorphismPermGroup
6.5-5 IsomorphismReesMatrixSemigroup
, for a D-class 10.4-7 IsomorphismReesMatrixSemigroupOverPermGroup
6.5-8 IsomorphismReesZeroMatrixSemigroup
6.5-8 IsomorphismReesZeroMatrixSemigroupOverPermGroup
6.5-8 IsomorphismSemigroup
6.5-1 IsomorphismSemigroups
14.2-6 IsOntoBooleanMat
5.3-14 IsOrthodoxSemigroup
12.1-14 IsPartialOrderBooleanMat
5.3-15 IsPartialPermBipartition
3.5-15 IsPartialPermBipartitionMonoid
3.8-3 IsPartialPermBipartitionSemigroup
3.8-3 IsPartialPermPBR
4.5-11 IsPBR
4.1-1 IsPBRCollColl
4.1-2 IsPBRCollection
4.1-2 IsPBRMonoid
4.6-1 IsPBRSemigroup
4.6-1 IsPermBipartition
3.5-14 IsPermBipartitionGroup
3.8-4 IsPermPBR
4.5-12 IsRectangularBand
12.1-15 IsRectangularGroup
12.1-16 IsReesCongruenceClass
13.9-2 IsReflexiveBooleanMat
5.3-11 IsRegularGreensClass
10.3-2 IsRegularSemigroup
12.1-17 IsRightCongruenceClass
13.3-3 IsRightSemigroupCongruence
13.1-3 IsRightSimple
12.1-9 IsRightTranslation
, for IsSemigroupTranslation 18.1-1 IsRightTranslationCollection
18.1-3 IsRightZeroSemigroup
12.1-18 IsRMSCongruenceByLinkedTriple
13.6-1 IsRMSCongruenceClassByLinkedTriple
13.6-3 IsRMSIsoByTriple
14.3-1 IsRowTrimBooleanMat
5.3-9 IsRTrivial
12.1-19 IsRZMSCongruenceByLinkedTriple
13.6-1 IsRZMSCongruenceClassByLinkedTriple
13.6-3 IsRZMSIsoByTriple
14.3-1 IsSelfDualSemigroup
12.1-29 IsSemiband
12.1-8 IsSemigroupCongruence
13.1-1 IsSemigroupHomomorphismByFunction
14.1-4 IsSemigroupHomomorphismByImages
14.1-3 IsSemigroupIsomorphismByFunction
14.2-10 IsSemigroupTranslation
, for IsAssociativeElement and IsMultiplicativeElementWithOne 18.1-1 IsSemigroupTranslationCollection
18.1-3 IsSemigroupWithAdjoinedZero
12.1-20 IsSemilattice
12.1-21 IsSimpleSemigroup
12.1-22 IsSSSE
8.3-3 IsStrongSemilatticeOfSemigroups
8.3-4 IsStzPresentation
15.3-2 IsSubrelation
13.5-1 IsSubsemigroupOfFpMonoid
15.2-5 IsSuperrelation
13.5-2 IsSurjectiveSemigroup
12.1-6 IsSymmetricBooleanMat
5.3-10 IsSynchronizingSemigroup
, for a transformation semigroup 12.1-23 IsTorsion
5.7-4 IsTotalBooleanMat
5.3-14 IsTransBipartition
3.5-12 IsTransformationBooleanMat
5.3-17 IsTransformationPBR
4.5-9 IsTransitive
, for a transformation semigroup and a pos int 11.11-7 IsTransitiveBooleanMat
5.3-12 IsTrimBooleanMat
5.3-9 IsTropicalMatrix
5.1-8 IsTropicalMatrixCollection
5.1-9 IsTropicalMatrixMonoid
5.7-2 IsTropicalMatrixSemigroup
5.7-1 IsTropicalMaxPlusMatrix
5.1-8 IsTropicalMaxPlusMatrixCollColl
5.1-9 IsTropicalMaxPlusMatrixCollection
5.1-9 IsTropicalMaxPlusMatrixMonoid
5.7-2 IsTropicalMaxPlusMatrixSemigroup
5.7-1 IsTropicalMinPlusMatrix
5.1-8 IsTropicalMinPlusMatrixCollColl
5.1-9 IsTropicalMinPlusMatrixCollection
5.1-9 IsTropicalMinPlusMatrixMonoid
5.7-2 IsTropicalMinPlusMatrixSemigroup
5.7-1 IsUniformBlockBijection
3.5-17 IsUnitRegularMonoid
12.1-24 IsUniversalPBR
4.5-7 IsUniversalSemigroupCongruence
13.10-1 IsUniversalSemigroupCongruenceClass
13.10-2 IsVertex
, for a graph inverse semigroup element 7.10-3 IsZeroGroup
12.1-25 IsZeroRectangularBand
12.1-26 IsZeroSemigroup
12.1-27 IsZeroSimpleSemigroup
12.1-28 IteratorCanonical
11.1-1 IteratorFromGeneratorsFile
17.1-3 IteratorFromMultiplicationTableFile
17.2-3 IteratorOfDClasses
10.2-2 IteratorOfDClassReps
10.2-1 IteratorOfHClassReps
10.2-1 IteratorOfLClassReps
10.2-1 IteratorOfLeftCongruences
, for a semigroup 13.4-15 IteratorOfRClasses
10.2-2 IteratorOfRightCongruences
, for a semigroup 13.4-15 JClasses
10.1-4 JoinIrreducibleDClasses
11.14-2 JoinLeftSemigroupCongruences
13.5-4 JoinRightSemigroupCongruences
13.5-4 JoinSemigroupCongruences
13.5-4 JoinSemilatticeOfCongruences
13.4-11 JonesMonoid
7.3-3 KernelOfSemigroupCongruence
13.7-4 KernelOfSemigroupHomomorphism
14.1-7 LargestElementSemigroup
11.11-8 LatticeOfCongruences
, for a semigroup 13.4-5 LatticeOfLeftCongruences
, for a semigroup 13.4-5 LatticeOfRightCongruences
, for a semigroup 13.4-5 LClass
10.1-2 LClasses
10.1-4 LClassNC
10.1-3 LClassOfHClass
10.1-1 LClassReps
10.1-5 LeftBlocks
3.5-6 LeftCayleyDigraph
11.2-1 LeftCongruencesOfSemigroup
, for a semigroup 13.4-1 LeftGreensMultiplier
10.5-1 LeftInverse
, for a matrix over finite field 5.4-2 LeftOne
, for a bipartition 3.2-4 LeftPartOfBitranslation
18.1-4 LeftProjection
3.2-4 LeftSemigroupCongruence
13.2-2 LeftTranslation
, for IsLeftTranslationsSemigroup, IsGeneralMapping 18.1-5 LeftTranslations
, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-10 LeftTranslationsSemigroupOfFamily
, for IsFamily 18.1-8 LeftZeroSemigroup
7.8-5 Length
15.3-6 LengthOfLongestDClassChain
10.1-11 MajorantClosure
11.14-3 Matrix
, for a filter and a matrix 5.1-5 MaximalDClasses
10.1-7 MaximalLClasses
10.1-7 MaximalRClasses
10.1-7 MaximalSubsemigroups
, for a finite semigroup 11.10-1 McAlisterTripleSemigroup
8.4-2 McAlisterTripleSemigroupAction
8.4-6 McAlisterTripleSemigroupElement
8.4-8 McAlisterTripleSemigroupGroup
8.4-3 McAlisterTripleSemigroupPartialOrder
8.4-4 McAlisterTripleSemigroupSemilattice
8.4-5 MeetLeftSemigroupCongruences
13.5-3 MeetRightSemigroupCongruences
13.5-3 MeetSemigroupCongruences
13.5-3 MinimalCongruences
, for a congruence poset 13.4-13 MinimalCongruencesOfSemigroup
, for a semigroup 13.4-2 MinimalDClass
10.1-6 MinimalFactorization
11.5-3 MinimalFaithfulTransformationDegree
14.2-13 MinimalIdeal
11.7-1 MinimalIdealGeneratingSet
9.2-2 MinimalInverseMonoidGeneratingSet
11.6-4 MinimalInverseSemigroupGeneratingSet
11.6-4 MinimalLeftCongruencesOfSemigroup
, for a semigroup 13.4-2 MinimalMonoidGeneratingSet
11.6-4 MinimalRightCongruencesOfSemigroup
, for a semigroup 13.4-2 MinimalSemigroupGeneratingSet
11.6-4 MinimalWord
, for free inverse semigroup element 7.11-7 MinimumGroupCongruence
13.7-7 Minorants
11.14-4 ModularPartitionMonoid
7.3-10 MonogenicSemigroup
7.8-2 MotzkinMonoid
7.3-6 MTSE
8.4-8 MultiplicativeNeutralElement
, for an H-class 10.4-5 MultiplicativeZero
11.7-3 MunnSemigroup
7.2-1 NambooripadLeqRegularSemigroup
11.15-1 NambooripadPartialOrder
11.15-2 NaturalLeqBlockBijection
3.4-3 NaturalLeqInverseSemigroup
11.14-1 NaturalLeqPartialPermBipartition
3.4-2 NonTrivialEquivalenceClasses
13.3-4 NonTrivialFactorization
11.5-4 NormalizedPrincipalFactor
10.4-8 NormalizeSemigroup
5.7-5 NrBitranslations
, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-12 NrBlocks
, for a bipartition 3.5-9 NrDClasses
10.1-9 NrHClasses
10.1-9 NrIdempotents
11.9-2 NrLClasses
10.1-9 NrLeftBlocks
3.5-7 NrLeftTranslations
, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-12 NrMaximalSubsemigroups
11.10-2 NrRClasses
10.1-9 NrRegularDClasses
10.1-8 NrRightBlocks
3.5-8 NrRightTranslations
, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-12 NrTransverseBlocks
, for a bipartition 3.5-2 NumberBlist
5.3-7 NumberBooleanMat
5.3-6 NumberOfLeftCongruences
, for a semigroup 13.4-14 NumberOfRightCongruences
, for a semigroup 13.4-14 NumberPBR
4.5-4 OnBlist
5.3-4 OnLeftBlocks
3.7-2 OnLeftCongruenceClasses
13.3-8 OnMultiplicationTable
14.2-5 OnRightBlocks
3.7-1 OnRightCongruenceClasses
13.3-9 Order
5.5-3 OrderAntiEndomorphisms
7.1-5 OrderEndomorphisms
, monoid of order preserving transformations 7.1-5 ParseRelations
15.2-1 PartialBrauerMonoid
7.3-2 PartialDualSymmetricInverseMonoid
7.3-7 PartialJonesMonoid
7.3-4 PartialOrderAntiEndomorphisms
7.1-5 PartialOrderEndomorphisms
7.1-5 PartialOrderOfDClasses
10.1-10 PartialOrderOfLClasses
10.1-10 PartialOrderOfRClasses
10.1-10 PartialPermLeqBipartition
3.4-1 PartialTransformationMonoid
7.1-3 PartialUniformBlockBijectionMonoid
7.3-8 PartitionMonoid
7.3-1 PBR
4.2-1 PBRNumber
4.5-4 PeriodNTPMatrix
5.1-12 PermLeftQuoBipartition
3.4-4 PlanarModularPartitionMonoid
7.3-10 PlanarPartitionMonoid
7.3-9 PlanarUniformBlockBijectionMonoid
7.3-8 PODI
, monoid of order preserving or reversing partial perms 7.2-3 POI
, monoid of order preserving partial perms 7.2-3 POPI
, monoid of orientation preserving partial perms 7.2-3 PORI
, monoid of orientation preserving or reversing partial perms 7.2-3 PosetOfCongruences
13.4-10 PosetOfPrincipalCongruences
, for a semigroup 13.4-7 PosetOfPrincipalLeftCongruences
, for a semigroup 13.4-7 PosetOfPrincipalRightCongruences
, for a semigroup 13.4-7 PositionCanonical
11.1-2 PrimitiveIdempotents
11.14-5 PrincipalCongruencesOfSemigroup
, for a semigroup 13.4-3 PrincipalFactor
10.4-8 PrincipalLeftCongruencesOfSemigroup
, for a semigroup 13.4-3 PrincipalRightCongruencesOfSemigroup
, for a semigroup 13.4-3 ProjectionFromBlocks
3.6-6 RadialEigenvector
5.6-2 Random
, for a semigroup 11.3-1 RandomBipartition
3.2-7 RandomBlockBijection
3.2-7 RandomInverseMonoid
6.6-1 RandomInverseSemigroup
6.6-1 RandomMatrix
, for a filter and a matrix 5.1-7 RandomMonoid
6.6-1 RandomPBR
4.2-2 RandomSemigroup
6.6-1 RandomWord
, for two integers 15.1-2 Range
, for a graph inverse semigroup element 7.10-2 RankOfBipartition
3.5-2 RankOfBlocks
3.6-4 RClass
10.1-2 RClasses
10.1-4 RClassNC
10.1-3 RClassOfHClass
10.1-1 RClassReps
10.1-5 ReadGenerators
17.1-1 ReadMultiplicationTable
17.2-1 RectangularBand
7.8-3 ReflexiveBooleanMatMonoid
7.6-3 RegularBooleanMatMonoid
7.6-2 RegularDClasses
10.1-8 RelationsOfStzPresentation
15.3-4 RepresentativeOfMinimalDClass
11.7-2 RepresentativeOfMinimalIdeal
11.7-2 RightBlocks
3.5-5 RightCayleyDigraph
11.2-1 RightCongruencesOfSemigroup
, for a semigroup 13.4-1 RightCosetsOfInverseSemigroup
11.14-6 RightGreensMultiplier
10.5-1 RightInverse
, for a matrix over finite field 5.4-2 RightOne
, for a bipartition 3.2-5 RightPartOfBitranslation
18.1-4 RightProjection
3.2-5 RightSemigroupCongruence
13.2-3 RightTranslation
, for IsRightTranslationsSemigroup, IsGeneralMapping 18.1-5 RightTranslations
, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-10 RightTranslationsSemigroupOfFamily
, for IsFamily 18.1-8 RightZeroSemigroup
7.8-5 RMSCongruenceByLinkedTriple
13.6-2 RMSCongruenceClassByLinkedTriple
13.6-4 RMSIsoByTriple
14.3-2 RMSNormalization
6.5-7 RookMonoid
7.2-2 RookPartitionMonoid
7.3-1 RowSpaceBasis
, for a matrix over finite field 5.4-1 RowSpaceTransformation
, for a matrix over finite field 5.4-1 RowSpaceTransformationInv
, for a matrix over finite field 5.4-1 RZMSCongruenceByLinkedTriple
13.6-2 RZMSCongruenceClassByLinkedTriple
13.6-4 RZMSConnectedComponents
11.13-2 RZMSDigraph
11.13-1 RZMSIsoByTriple
14.3-2 RZMSNormalization
6.5-6 SameMinorantsSubgroup
11.14-7 SchutzenbergerGroup
10.4-2 SemigroupCongruence
13.2-1 SemigroupHomomorphismByFunction
14.1-2 SemigroupHomomorphismByFunctionNC
14.1-2 SemigroupHomomorphismByImages
, for a semigroup and two lists 14.1-1 SemigroupIdeal
9.1-1 SemigroupIdealOfReesCongruence
13.9-1 SemigroupIsomorphismByFunction
14.2-9 SemigroupIsomorphismByFunctionNC
14.2-9 SemigroupIsomorphismByImages
, for a semigroup and two list 14.2-8 SEMIGROUPS.DefaultOptionsRec
6.3-1 SemigroupsOfStrongSemilatticeOfSemigroups
8.3-6 SemigroupsTestAll
2.4-4 SemigroupsTestExtreme
2.4-3 SemigroupsTestInstall
2.4-1 SemigroupsTestStandard
2.4-2 SemilatticeOfStrongSemilatticeOfSemigroups
8.3-5 SimplifiedFpSemigroup
15.8-2 SimplifyFpSemigroup
15.8-1 SingularApsisMonoid
7.3-11 SingularBrauerMonoid
7.3-2 SingularCrossedApsisMonoid
7.3-11 SingularDualSymmetricInverseMonoid
7.3-7 SingularFactorisableDualSymmetricInverseMonoid
7.3-8 SingularJonesMonoid
7.3-3 SingularModularPartitionMonoid
7.3-10 SingularOrderEndomorphisms
7.1-5 SingularPartitionMonoid
7.3-1 SingularPlanarModularPartitionMonoid
7.3-10 SingularPlanarPartitionMonoid
7.3-9 SingularPlanarUniformBlockBijectionMonoid
7.3-8 SingularTransformationMonoid
7.1-4 SingularTransformationSemigroup
7.1-4 SingularUniformBlockBijectionMonoid
7.3-8 SLM
7.5-2 SmallerDegreePartialPermRepresentation
11.14-8 SmallerDegreeTransformationRepresentation
14.2-12 SmallestElementSemigroup
11.11-8 SmallestIdempotentPower
11.4-2 SmallestMultiplicationTable
14.2-2 SmallGeneratingSet
11.6-2 SmallInverseMonoidGeneratingSet
11.6-2 SmallInverseSemigroupGeneratingSet
11.6-2 SmallMonoidGeneratingSet
11.6-2 SmallSemigroupGeneratingSet
11.6-2 Source
, for a graph inverse semigroup element 7.10-2 SpecialLinearMonoid
7.5-2 SpectralRadius
5.6-3 SSSE
8.3-2 StandardiseWord
15.1-3 StandardizeWord
15.1-3 Star
, for a bipartition 3.2-6 StarOp
, for a bipartition 3.2-6 StringToWord
, for a string 15.1-4 StrongSemilatticeOfSemigroups
8.3-1 StructureDescription
, for an H-class 10.4-6 StructureDescriptionMaximalSubgroups
10.4-4 StructureDescriptionSchutzenbergerGroups
10.4-3 StzAddGenerator
15.5-3 StzAddRelation
15.5-1 StzIsomorphism
15.6-3 StzPresentation
15.3-1 StzPrintGenerators
15.4-3 StzPrintPresentation
15.4-4 StzPrintRelation
15.4-2 StzPrintRelations
15.4-1 StzRemoveGenerator
15.5-4 StzRemoveRelation
15.5-2 StzSimplifyOnce
15.7-1 StzSimplifyPresentation
15.7-2 StzSubstituteRelation
15.5-5 SubsemigroupByProperty
, for a semigroup and function 6.4-2 Successors
5.3-5 SupersemigroupOfIdeal
9.2-3 TemperleyLiebMonoid
7.3-3 TexString
16.2-1 ThresholdNTPMatrix
5.1-12 ThresholdTropicalMatrix
5.1-11 TietzeBackwardMap
15.6-2 TietzeForwardMap
15.6-1 TikzLeftCayleyDigraph
16.3-2 TikzRightCayleyDigraph
16.3-2 TikzString
16.3-1 TraceOfSemigroupCongruence
13.7-5 TranslationalHull
, for IsSemigroup and CanUseFroidurePin and IsFinite 18.1-11 TranslationalHullOfFamily
, for IsFamily 18.1-8 TriangularBooleanMatMonoid
7.6-6 TrivialCongruence
13.10-4 TrivialSemigroup
7.8-1 TypeBitranslations
, for IsBitranslationsSemigroup 18.1-9 TypeLeftTranslationsSemigroupElements
, for IsLeftTranslationsSemigroup 18.1-9 TypeRightTranslationsSemigroupElements
, for IsRightTranslationsSemigroup 18.1-9 UnderlyingRepresentatives
, for IsTranslationsSemigroup 18.1-15 UnderlyingSemigroup
, for IsBitranslationsSemigroup 18.1-7 UnderlyingSemigroupOfCongruencePoset
13.4-9 UnderlyingSemigroupOfSemigroupWithAdjoinedZero
11.7-4 UniformBlockBijectionMonoid
7.3-8 UnitriangularBooleanMatMonoid
7.6-6 UniversalPBR
4.2-5 UniversalSemigroupCongruence
13.10-3 UnreducedFpSemigroup
, for a presentation 15.3-5 UnweightedPrecedenceDigraph
5.6-4 VagnerPrestonRepresentation
11.14-9 VerticesOfGraphInverseSemigroup
7.10-8 WordToString
, for a string and a list 15.1-1 WreathProduct
8.1-2 WriteGenerators
17.1-2 WriteMultiplicationTable
17.2-2 ZeroSemigroup
7.8-4
generated by GAPDoc2HTML