Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter] 

Index

* (for bipartitions) 3.4
* (for PBRs) 4.4
* (for matrices over a semiring) 5.2
* (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-7
< (for bipartitions) 3.4
< (for PBRs) 4.4
< (for matrices over a semiring) 5.2
< (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-7
= (for bipartitions) 3.4
= (for PBRs) 4.4
= (for matrices over a semiring) 5.2
= (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-7
\<, for Green's classes 13.3-1
\^, for a matrix over finite field group and matrix over finite field 5.7-8
\in 5.3-3
^ (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-7
AnnularJonesMonoid 8.3-5
AntiIsomorphismDualSemigroup 6.5-4
ApsisMonoid 8.3-11
AsBipartition 3.3-1
AsBlockBijection 3.3-2
AsBooleanMat 5.3-2
AsInverseSemigroupCongruenceByKernelTrace 17.7-3
AsList 5.1-10
AsListCanonical 14.1-1
AsMatrix, for a filter and a matrix 5.1-6
    for a filter, matrix, and threshold 5.1-6
    for a filter, matrix, threshold, and period 5.1-6
AsMatrixGroup 5.7-10
AsMonoid 6.6-4
AsMutableList 5.1-10
AsPartialPerm, for a bipartition 3.3-4
    for a PBR 4.3-3
AsPBR 4.3-1
AsPermutation, for a bipartition 3.3-5
    for a PBR 4.3-4
AsRMSCongruenceByLinkedTriple 17.6-8
AsRZMSCongruenceByLinkedTriple 17.6-8
AsSemigroup 6.6-3
AsSemigroupCongruenceByGeneratingPairs 17.6-7
AsTransformation, for a bipartition 3.3-3
    for a PBR 4.3-2
AutomorphismGroup, for a semigroup 18.1-7
BaseDomain, for a matrix over finite field 5.4-7
Bipartition 3.2-1
BipartitionByIntRep 3.2-2
BlistNumber 5.3-7
BlocksNC 3.6-2
BooleanMat 5.3-1
BooleanMatNumber 5.3-6
BrandtSemigroup 9.1-6
BrauerMonoid 8.3-2
CanonicalBlocks 3.5-18
CanonicalBooleanMat 5.3-8
    for a perm group and boolean matrix 5.3-8
    for a perm group, perm group and boolean matrix 5.3-8
CanonicalForm, for a free inverse semigroup element 10.3-1
CanonicalMultiplicationTable 18.1-3
CanonicalMultiplicationTablePerm 18.1-4
CanonicalReesMatrixSemigroup 18.2-6
CanonicalReesZeroMatrixSemigroup 18.2-6
CanonicalRepresentative 17.6-6
CanonicalTransformation 14.12-9
CatalanMonoid 8.1-1
CharacterTableOfInverseSemigroup 16.1-10
ClosureInverseMonoid 6.4-1
ClosureInverseSemigroup 6.4-1
ClosureMonoid 6.4-1
ClosureSemigroup 6.4-1
CodomainOfBipartition 3.5-11
ComponentRepsOfPartialPermSemigroup 14.13-1
ComponentRepsOfTransformationSemigroup 14.12-1
ComponentsOfPartialPermSemigroup 14.13-2
ComponentsOfTransformationSemigroup 14.12-2
CompositionMapping2, for IsRMSIsoByTriple 18.2-4
    for IsRZMSIsoByTriple 18.2-4
CongruenceClasses 17.3-5
CongruenceClassOfElement 17.3-4
CongruencesOfPoset 17.4-7
CongruencesOfSemigroup, for a semigroup 17.4-1
    for a semigroup and a multiplicative element collection 17.4-1
ContentOfFreeBandElement 10.4-7
ContentOfFreeBandElementCollection 10.4-7
CrossedApsisMonoid 8.3-11
CyclesOfPartialPerm 14.13-3
CyclesOfPartialPermSemigroup 14.13-4
CyclesOfTransformationSemigroup 14.12-3
DClass 13.1-2
DClasses 13.1-4
DClassNC 13.1-3
DClassOfHClass 13.1-1
DClassOfLClass 13.1-1
DClassOfRClass 13.1-1
DClassReps 13.1-5
DegreeOfBipartition 3.5-1
DegreeOfBipartitionCollection 3.5-1
DegreeOfBipartitionSemigroup 3.8-5
DegreeOfBlocks 3.6-5
DegreeOfPBR 4.5-2
DegreeOfPBRCollection 4.5-2
DegreeOfPBRSemigroup 4.6-2
DigraphOfActionOnPairs, for a transformation semigroup 14.12-4
    for a transformation semigroup and an integer 14.12-4
DigraphOfActionOnPoints, for a transformation semigroup 14.12-5
    for a transformation semigroup and an integer 14.12-5
DimensionOfMatrixOverSemiring 5.1-3
DimensionOfMatrixOverSemiringCollection 5.1-4
DirectProduct 6.4-4
DirectProductOp 6.4-4
DomainOfBipartition 3.5-10
DotLeftCayleyDigraph 19.1-4
DotRightCayleyDigraph 19.1-4
DotSemilatticeOfIdempotents 19.1-3
DotString 19.1-1
    for a Cayley digraph 19.1-2
DualSemigroup 6.5-1
DualSymmetricInverseMonoid 8.3-7
DualSymmetricInverseSemigroup 8.3-7
ELM_LIST (for Rees (0-)matrix semigroup isomorphisms by triples) 18.2-7
ELM_LIST, for IsRMSIsoByTriple 18.2-3
EmptyPBR 4.2-3
EndomorphismMonoid, for a digraph 6.8-1
    for a digraph and vertex coloring 6.8-1
EndomorphismsPartition 8.1-2
Enumerate 14.1-3
EnumeratorCanonical 14.1-1
EquivalenceRelationCanonicalLookup 17.3-11
EquivalenceRelationCanonicalPartition 17.3-12
EquivalenceRelationLookup 17.3-10
EUnitaryInverseCover 16.1-11
EvaluateWord 14.5-1
ExtRepOfObj, for a bipartition 3.5-3
    for a blocks 3.6-3
    for a PBR 4.5-3
FactorisableDualSymmetricInverseMonoid 8.3-8
Factorization 14.5-2
FixedPointsOfTransformationSemigroup, for a transformation semigroup 14.12-6
FreeBand, for a given rank 10.4-1
    for a list of names 10.4-1
    for various names 10.4-1
FreeInverseSemigroup, for a given rank 10.1-1
    for a list of names 10.1-1
    for various names 10.1-1
FullBooleanMatMonoid 8.6-1
FullMatrixMonoid 8.5-1
FullPBRMonoid 8.4-1
FullTropicalMaxPlusMonoid 8.7-1
FullTropicalMinPlusMonoid 8.7-2
GeneralLinearMonoid 8.5-1
GeneratingPairsOfLeftSemigroupCongruence 17.2-4
GeneratingPairsOfRightSemigroupCongruence 17.2-4
GeneratingPairsOfSemigroupCongruence 17.2-4
Generators 14.6-1
GeneratorsOfSemigroupIdeal 7.2-1
GeneratorsSmallest, for a semigroup 14.6-5
GLM 8.5-1
GossipMonoid 8.6-5
GraphInverseSemigroup 11.1-1
GraphOfGraphInverseSemigroup 11.1-5
GreensDClasses 13.1-4
GreensDClassOfElement 13.1-2
    for a free band and element 10.5-1
GreensDClassOfElementNC 13.1-3
GreensHClasses 13.1-4
GreensHClassOfElement 13.1-2
    for a Rees matrix semigroup 13.1-2
GreensHClassOfElementNC 13.1-3
GreensJClasses 13.1-4
GreensLClasses 13.1-4
GreensLClassOfElement 13.1-2
GreensLClassOfElementNC 13.1-3
GreensRClasses 13.1-4
GreensRClassOfElement 13.1-2
GreensRClassOfElementNC 13.1-3
GroupHClass 13.4-1
GroupOfUnits 14.8-1
HallMonoid 8.6-4
HClass 13.1-2
    for a Rees matrix semigroup 13.1-2
HClasses 13.1-4
HClassNC 13.1-3
HClassReps 13.1-5
Ideals, for a semigroup 7.1-2
IdempotentGeneratedSubsemigroup 14.9-3
Idempotents 14.9-1
IdentityBipartition 3.2-3
IdentityMatrixOverFiniteField, for a finite field and a pos int 5.4-2
    for a matrix over finite field and pos int 5.4-2
IdentityPBR 4.2-4
ImagesElm, for IsRMSIsoByTriple 18.2-5
ImagesRepresentative, for IsRMSIsoByTriple 18.2-5
IndecomposableElements 14.6-6
IndexPeriodOfSemigroupElement 14.4-1
InfoSemigroups 2.6-1
InjectionNormalizedPrincipalFactor 13.4-7
InjectionPrincipalFactor 13.4-7
IntRepOfBipartition 3.5-4
InverseMonoidByGenerators 6.2-1
InverseOp 5.6-1
    for an integer matrix 5.5-1
InverseSemigroupByGenerators 6.2-1
InverseSemigroupCongruenceByKernelTrace 17.7-2
InverseSubsemigroupByProperty 6.4-3
IrredundantGeneratingSubset 14.6-3
IsActingSemigroup 6.1-3
IsAntiSymmetricBooleanMat 5.3-13
IsAperiodicSemigroup 15.1-19
IsBand 15.1-1
IsBipartition 3.1-1
IsBipartitionCollColl 3.1-2
IsBipartitionCollection 3.1-2
IsBipartitionMonoid 3.8-1
IsBipartitionPBR 4.5-8
IsBipartitionSemigroup 3.8-1
IsBlockBijection 3.5-16
IsBlockBijectionMonoid 3.8-2
IsBlockBijectionPBR 4.5-8
IsBlockBijectionSemigroup 3.8-2
IsBlockGroup 15.1-2
IsBlocks 3.6-1
IsBooleanMat 5.1-8
IsBooleanMatCollColl 5.1-9
IsBooleanMatCollection 5.1-9
IsBooleanMatMonoid 5.7-2
IsBooleanMatSemigroup 5.7-1
IsBrandtSemigroup 16.2-2
IsCliffordSemigroup 16.2-1
IsColTrimBooleanMat 5.3-9
IsCombinatorialSemigroup 15.1-19
IsCommutativeSemigroup 15.1-3
IsCompletelyRegularSemigroup 15.1-4
IsCompletelySimpleSemigroup 15.1-22
IsCongruenceClass 17.3-1
IsCongruenceFreeSemigroup 15.1-5
IsCongruencePoset 17.4-4
IsConnectedTransformationSemigroup, for a transformation semigroup 14.12-10
IsDTrivial 15.1-19
IsDualSemigroupElement 6.5-3
IsDualSemigroupRep 6.5-2
IsDualTransBipartition 3.5-13
IsDualTransformationPBR 4.5-10
IsEmptyPBR 4.5-5
IsEnumerableSemigroupRep 6.1-4
IsEquivalenceBooleanMat 5.3-16
IsEUnitaryInverseSemigroup 16.2-3
IsFactorisableInverseMonoid 16.2-6
IsFinite 5.7-3
IsFInverseMonoid 16.2-5
IsFInverseSemigroup 16.2-4
IsFreeBand, for a given semigroup 10.4-3
IsFreeBandCategory 10.4-2
IsFreeBandElement 10.4-4
IsFreeBandElementCollection 10.4-5
IsFreeBandSubsemigroup 10.4-6
IsFreeInverseSemigroup 10.1-3
IsFreeInverseSemigroupCategory 10.1-2
IsFreeInverseSemigroupElement 10.1-4
IsFreeInverseSemigroupElementCollection 10.1-5
IsFullMatrixMonoid 8.5-3
IsFullyEnumerated 14.1-4
IsGeneralLinearMonoid 8.5-3
IsGraphInverseSemigroup 11.1-4
IsGraphInverseSemigroupElement 11.1-4
IsGraphInverseSemigroupElementCollection 11.1-6
IsGraphInverseSubsemigroup 11.1-7
IsGreensClassNC 13.3-3
IsGreensDGreaterThanFunc 13.1-12
IsGroupAsSemigroup 15.1-7
IsHTrivial 15.1-19
IsIdempotentGenerated 15.1-8
IsIdentityPBR 4.5-6
IsIntegerMatrix 5.1-8
IsIntegerMatrixCollColl 5.1-9
IsIntegerMatrixCollection 5.1-9
IsIntegerMatrixMonoid 5.7-2
IsIntegerMatrixSemigroup 5.7-1
IsInverseSemigroupCongruenceByKernelTrace 17.7-1
IsInverseSemigroupCongruenceClassByKernelTrace 17.7-6
IsIsomorphicSemigroup 18.1-1
IsJoinIrreducible 16.2-7
IsLeftCongruenceClass 17.3-2
IsLeftSemigroupCongruence 17.1-2
IsLeftSimple 15.1-9
IsLeftZeroSemigroup 15.1-10
IsLinkedTriple 17.6-5
IsLTrivial 15.1-19
IsMajorantlyClosed 16.2-8
IsMatrixOverFiniteField 5.1-8
IsMatrixOverFiniteFieldCollColl 5.1-9
IsMatrixOverFiniteFieldCollection 5.1-9
IsMatrixOverFiniteFieldGroup 5.7-7
IsMatrixOverFiniteFieldMonoid 5.7-2
IsMatrixOverFiniteFieldSemigroup 5.7-1
IsMatrixOverSemiring 5.1-1
IsMatrixOverSemiringCollColl 5.1-2
IsMatrixOverSemiringCollection 5.1-2
IsMatrixOverSemiringMonoid 5.7-2
IsMatrixOverSemiringSemigroup 5.7-1
IsMaximalSubsemigroup 14.10-3
IsMaxPlusMatrix 5.1-8
IsMaxPlusMatrixCollColl 5.1-9
IsMaxPlusMatrixCollection 5.1-9
IsMaxPlusMatrixMonoid 5.7-2
IsMaxPlusMatrixSemigroup 5.7-1
IsMcAlisterTripleSemigroup 12.1-1
IsMcAlisterTripleSemigroupElement 12.1-7
IsMinPlusMatrix 5.1-8
IsMinPlusMatrixCollColl 5.1-9
IsMinPlusMatrixCollection 5.1-9
IsMinPlusMatrixMonoid 5.7-2
IsMinPlusMatrixSemigroup 5.7-1
IsMonogenicInverseMonoid 16.2-10
IsMonogenicInverseSemigroup 16.2-9
IsMonogenicMonoid 15.1-12
IsMonogenicSemigroup 15.1-11
IsMonoidAsSemigroup 15.1-13
IsMTSE 12.1-7
IsNTPMatrix 5.1-8
IsNTPMatrixCollColl 5.1-9
IsNTPMatrixCollection 5.1-9
IsNTPMatrixMonoid 5.7-2
IsNTPMatrixSemigroup 5.7-1
IsomorphismMatrixGroup 5.7-9
IsomorphismMonoid 6.6-2
IsomorphismPermGroup 6.6-5
IsomorphismReesMatrixSemigroup, for a D-class 13.4-7
    for a semigroup 14.15-1
IsomorphismReesMatrixSemigroupOverPermGroup 14.15-1
IsomorphismReesZeroMatrixSemigroup 14.15-1
IsomorphismReesZeroMatrixSemigroupOverPermGroup 14.15-1
IsomorphismSemigroup 6.6-1
IsomorphismSemigroups 18.1-6
IsOntoBooleanMat 5.3-14
IsOrthodoxSemigroup 15.1-14
IsPartialOrderBooleanMat 5.3-15
IsPartialPermBipartition 3.5-15
IsPartialPermBipartitionMonoid 3.8-3
IsPartialPermBipartitionSemigroup 3.8-3
IsPartialPermPBR 4.5-11
IsPBR 4.1-1
IsPBRCollColl 4.1-2
IsPBRCollection 4.1-2
IsPBRMonoid 4.6-1
IsPBRSemigroup 4.6-1
IsPermBipartition 3.5-14
IsPermBipartitionGroup 3.8-4
IsPermPBR 4.5-12
IsRectangularBand 15.1-15
IsRectangularGroup 15.1-16
IsReesCongruenceClass 17.8-2
IsReflexiveBooleanMat 5.3-11
IsRegularGreensClass 13.3-2
IsRegularSemigroup 15.1-17
IsRightCongruenceClass 17.3-3
IsRightSemigroupCongruence 17.1-3
IsRightSimple 15.1-9
IsRightZeroSemigroup 15.1-18
IsRMSCongruenceByLinkedTriple 17.6-1
IsRMSCongruenceClassByLinkedTriple 17.6-3
IsRMSIsoByTriple 18.2-1
IsRowTrimBooleanMat 5.3-9
IsRTrivial 15.1-19
IsRZMSCongruenceByLinkedTriple 17.6-1
IsRZMSCongruenceClassByLinkedTriple 17.6-3
IsRZMSIsoByTriple 18.2-1
IsSemiband 15.1-8
IsSemigroupCongruence 17.1-1
IsSemigroupWithAdjoinedZero 15.1-20
IsSemilattice 15.1-21
IsSimpleSemigroup 15.1-22
IsSubrelation 17.5-1
IsSuperrelation 17.5-2
IsSurjectiveSemigroup 15.1-6
IsSymmetricBooleanMat 5.3-10
IsSynchronizingSemigroup, for a transformation semigroup 15.1-23
    for a transformation semigroup and a positive integer 15.1-23
IsTorsion 5.7-4
    for an integer matrix 5.5-2
IsTotalBooleanMat 5.3-14
IsTransBipartition 3.5-12
IsTransformationBooleanMat 5.3-17
IsTransformationPBR 4.5-9
IsTransitive, for a transformation semigroup and a pos int 14.12-7
    for a transformation semigroup and a set 14.12-7
IsTransitiveBooleanMat 5.3-12
IsTrimBooleanMat 5.3-9
IsTropicalMatrix 5.1-8
IsTropicalMatrixCollection 5.1-9
IsTropicalMatrixMonoid 5.7-2
IsTropicalMatrixSemigroup 5.7-1
IsTropicalMaxPlusMatrix 5.1-8
IsTropicalMaxPlusMatrixCollColl 5.1-9
IsTropicalMaxPlusMatrixCollection 5.1-9
IsTropicalMaxPlusMatrixMonoid 5.7-2
IsTropicalMaxPlusMatrixSemigroup 5.7-1
IsTropicalMinPlusMatrix 5.1-8
IsTropicalMinPlusMatrixCollColl 5.1-9
IsTropicalMinPlusMatrixCollection 5.1-9
IsTropicalMinPlusMatrixMonoid 5.7-2
IsTropicalMinPlusMatrixSemigroup 5.7-1
IsUniformBlockBijection 3.5-17
IsUnitRegularMonoid 15.1-24
IsUniversalPBR 4.5-7
IsUniversalSemigroupCongruence 17.9-1
IsUniversalSemigroupCongruenceClass 17.9-2
IsVertex, for a graph inverse semigroup element 11.1-3
IsZeroGroup 15.1-25
IsZeroRectangularBand 15.1-26
IsZeroSemigroup 15.1-27
IsZeroSimpleSemigroup 15.1-28
IteratorCanonical 14.1-1
IteratorFromGeneratorsFile 20.1-3
IteratorFromMultiplicationTableFile 20.2-3
IteratorOfDClasses 13.2-2
IteratorOfDClassReps 13.2-1
IteratorOfHClasses 13.2-2
IteratorOfHClassReps 13.2-1
IteratorOfLClasses 13.2-2
IteratorOfLClassReps 13.2-1
IteratorOfRClasses 13.2-2
IteratorOfRClassReps 13.2-1
JClasses 13.1-4
JoinIrreducibleDClasses 16.1-2
JoinLeftSemigroupCongruences 17.5-4
JoinRightSemigroupCongruences 17.5-4
JoinSemigroupCongruences 17.5-4
JoinSemilatticeOfCongruences, for a congruence poset and a function 17.4-10
    for a list or collection and a function 17.4-10
JonesMonoid 8.3-3
KernelOfSemigroupCongruence 17.7-4
LargestElementSemigroup 14.12-8
LatticeOfCongruences, for a semigroup 17.4-5
    for a semigroup and a multiplicative element collection 17.4-5
LatticeOfLeftCongruences, for a semigroup 17.4-5
    for a semigroup and a multiplicative element collection 17.4-5
LatticeOfRightCongruences, for a semigroup 17.4-5
    for a semigroup and a multiplicative element collection 17.4-5
LClass 13.1-2
LClasses 13.1-4
LClassNC 13.1-3
LClassOfHClass 13.1-1
LClassReps 13.1-5
LeftBlocks 3.5-6
LeftCayleyDigraph 14.2-1
LeftCongruenceClasses 17.3-5
LeftCongruenceClassOfElement 17.3-4
LeftCongruencesOfSemigroup, for a semigroup 17.4-1
    for a semigroup and a multiplicative element collection 17.4-1
LeftInverse, for a matrix over finite field 5.4-6
LeftOne, for a bipartition 3.2-4
LeftProjection 3.2-4
LeftSemigroupCongruence 17.2-2
LeftZeroSemigroup 9.1-5
LengthOfLongestDClassChain 13.1-11
MajorantClosure 16.1-3
Matrix, for a filter and a matrix 5.1-5
    for a semiring and a matrix 5.1-5
MaximalDClasses 13.1-7
MaximalSubsemigroups, for a finite semigroup 14.10-1
    for a finite semigroup and a record 14.10-1
McAlisterTripleSemigroup 12.1-2
McAlisterTripleSemigroupAction 12.1-6
McAlisterTripleSemigroupElement 12.1-8
McAlisterTripleSemigroupGroup 12.1-3
McAlisterTripleSemigroupPartialOrder 12.1-4
McAlisterTripleSemigroupSemilattice 12.1-5
MeetSemigroupCongruences 17.5-3
MinimalCongruences, for a congruence poset 17.4-11
    for a list or collection 17.4-11
MinimalCongruencesOfSemigroup, for a semigroup 17.4-2
    for a semigroup and a multiplicative element collection 17.4-2
MinimalDClass 13.1-6
MinimalFactorization 14.5-3
MinimalIdeal 14.7-1
MinimalIdealGeneratingSet 7.2-2
MinimalLeftCongruencesOfSemigroup, for a semigroup 17.4-2
    for a semigroup and a multiplicative element collection 17.4-2
MinimalMonoidGeneratingSet 14.6-4
MinimalRightCongruencesOfSemigroup, for a semigroup 17.4-2
    for a semigroup and a multiplicative element collection 17.4-2
MinimalSemigroupGeneratingSet 14.6-4
MinimalWord, for free inverse semigroup element 10.3-2
MinimumGroupCongruence 17.7-7
Minorants 16.1-4
ModularPartitionMonoid 8.3-10
MonogenicSemigroup 9.1-2
MotzkinMonoid 8.3-6
MTSE 12.1-8
MultiplicativeNeutralElement, for an H-class 13.4-5
MultiplicativeZero 14.7-3
MunnSemigroup 8.2-1
NambooripadLeqRegularSemigroup 14.16-1
NambooripadPartialOrder 14.16-2
NaturalLeqBlockBijection 3.4-3
NaturalLeqInverseSemigroup 16.1-1
NaturalLeqPartialPermBipartition 3.4-2
NewIdentityMatrixOverFiniteField 5.4-3
NewMatrixOverFiniteField, for a filter, a field, an integer, and a list 5.4-1
NewZeroMatrixOverFiniteField 5.4-3
NonTrivialCongruenceClasses 17.3-7
NonTrivialEquivalenceClasses 17.3-6
NonTrivialFactorization 14.5-4
NonTrivialLeftCongruenceClasses 17.3-7
NonTrivialRightCongruenceClasses 17.3-7
NormalizedPrincipalFactor 13.4-8
Normalizer, for a perm group, semigroup, record 14.11-1
    for a semigroup, record 14.11-1
NormalizeSemigroup 5.7-5
NrBlocks, for a bipartition 3.5-9
    for blocks 3.5-9
NrCongruenceClasses 17.3-9
NrDClasses 13.1-9
NrEquivalenceClasses 17.3-8
NrHClasses 13.1-9
NrIdempotents 14.9-2
NrLClasses 13.1-9
NrLeftBlocks 3.5-7
NrLeftCongruenceClasses 17.3-9
NrMaximalSubsemigroups 14.10-2
NrRClasses 13.1-9
NrRegularDClasses 13.1-8
NrRightBlocks 3.5-8
NrRightCongruenceClasses 17.3-9
NrTransverseBlocks, for a bipartition 3.5-2
    for blocks 3.6-4
NumberBlist 5.3-7
NumberBooleanMat 5.3-6
NumberPBR 4.5-4
OnBlist 5.3-4
OnLeftBlocks 3.7-2
OnLeftCongruenceClasses 17.3-13
OnMultiplicationTable 18.1-5
OnRightBlocks 3.7-1
OnRightCongruenceClasses 17.3-14
Order 5.5-3
OrderAntiEndomorphisms 8.1-5
OrderEndomorphisms, monoid of order preserving transformations 8.1-5
PartialBrauerMonoid 8.3-2
PartialDualSymmetricInverseMonoid 8.3-7
PartialJonesMonoid 8.3-4
PartialOrderAntiEndomorphisms 8.1-5
PartialOrderEndomorphisms 8.1-5
PartialOrderOfDClasses 13.1-10
PartialPermLeqBipartition 3.4-1
PartialTransformationMonoid 8.1-3
PartialUniformBlockBijectionMonoid 8.3-8
PartitionMonoid 8.3-1
PBR 4.2-1
PBRNumber 4.5-4
PeriodNTPMatrix 5.1-12
PermLeftQuoBipartition 3.4-4
PlanarModularPartitionMonoid 8.3-10
PlanarPartitionMonoid 8.3-9
PlanarUniformBlockBijectionMonoid 8.3-8
PODI, monoid of order preserving or reversing partial perms 8.2-3
POI, monoid of order preserving partial perms 8.2-3
POPI, monoid of orientation preserving partial perms 8.2-3
PORI, monoid of orientation preserving or reversing partial perms 8.2-3
PosetOfCongruences 17.4-9
PosetOfPrincipalCongruences, for a semigroup 17.4-6
    for a semigroup and a multiplicative element collection 17.4-6
PosetOfPrincipalLeftCongruences, for a semigroup 17.4-6
    for a semigroup and a multiplicative element collection 17.4-6
PosetOfPrincipalRightCongruences, for a semigroup 17.4-6
    for a semigroup and a multiplicative element collection 17.4-6
PositionCanonical 14.1-2
PrimitiveIdempotents 16.1-5
PrincipalCongruencesOfSemigroup, for a semigroup 17.4-3
    for a semigroup and a multiplicative element collection 17.4-3
PrincipalFactor 13.4-8
PrincipalLeftCongruencesOfSemigroup, for a semigroup 17.4-3
    for a semigroup and a multiplicative element collection 17.4-3
PrincipalRightCongruencesOfSemigroup, for a semigroup 17.4-3
    for a semigroup and a multiplicative element collection 17.4-3
ProjectionFromBlocks 3.6-6
RadialEigenvector 5.6-2
Random, for a semigroup 14.3-1
RandomBipartition 3.2-7
RandomBlockBijection 3.2-7
RandomInverseMonoid 6.7-1
RandomInverseSemigroup 6.7-1
RandomMatrix, for a filter and a matrix 5.1-7
    for a semiring and a matrix 5.1-7
RandomMonoid 6.7-1
RandomPBR 4.2-2
RandomSemigroup 6.7-1
Range, for a graph inverse semigroup element 11.1-2
RankOfBipartition 3.5-2
RankOfBlocks 3.6-4
RClass 13.1-2
RClasses 13.1-4
RClassNC 13.1-3
RClassOfHClass 13.1-1
RClassReps 13.1-5
ReadGenerators 20.1-1
ReadMultiplicationTable 20.2-1
RectangularBand 9.1-3
ReflexiveBooleanMatMonoid 8.6-3
RegularBooleanMatMonoid 8.6-2
RegularDClasses 13.1-8
RepresentativeOfMinimalDClass 14.7-2
RepresentativeOfMinimalIdeal 14.7-2
RightBlocks 3.5-5
RightCayleyDigraph 14.2-1
RightCongruenceClasses 17.3-5
RightCongruenceClassOfElement 17.3-4
RightCongruencesOfSemigroup, for a semigroup 17.4-1
    for a semigroup and a multiplicative element collection 17.4-1
RightCosetsOfInverseSemigroup 16.1-6
RightInverse, for a matrix over finite field 5.4-6
RightOne, for a bipartition 3.2-5
RightProjection 3.2-5
RightSemigroupCongruence 17.2-3
RightZeroSemigroup 9.1-5
RMSCongruenceByLinkedTriple 17.6-2
RMSCongruenceClassByLinkedTriple 17.6-4
RMSIsoByTriple 18.2-2
RMSNormalization 6.6-7
RookMonoid 8.2-2
RookPartitionMonoid 8.3-1
RowRank, for a matrix over finite field 5.4-5
RowSpaceBasis, for a matrix over finite field 5.4-4
RowSpaceTransformation, for a matrix over finite field 5.4-4
RowSpaceTransformationInv, for a matrix over finite field 5.4-4
RZMSCongruenceByLinkedTriple 17.6-2
RZMSCongruenceClassByLinkedTriple 17.6-4
RZMSConnectedComponents 14.14-2
RZMSDigraph 14.14-1
RZMSIsoByTriple 18.2-2
RZMSNormalization 6.6-6
SameMinorantsSubgroup 16.1-7
SchutzenbergerGroup 13.4-2
SemigroupCongruence 17.2-1
SemigroupIdeal 7.1-1
SemigroupIdealOfReesCongruence 17.8-1
Semigroups package overview 1.
SEMIGROUPS.DefaultOptionsRec 6.3-1
SemigroupsMakeDoc 2.4-1
SemigroupsTestAll 2.5-4
SemigroupsTestExtreme 2.5-3
SemigroupsTestInstall 2.5-1
SemigroupsTestStandard 2.5-2
SingularApsisMonoid 8.3-11
SingularBrauerMonoid 8.3-2
SingularCrossedApsisMonoid 8.3-11
SingularDualSymmetricInverseMonoid 8.3-7
SingularFactorisableDualSymmetricInverseMonoid 8.3-8
SingularJonesMonoid 8.3-3
SingularModularPartitionMonoid 8.3-10
SingularOrderEndomorphisms 8.1-5
SingularPartitionMonoid 8.3-1
SingularPlanarModularPartitionMonoid 8.3-10
SingularPlanarPartitionMonoid 8.3-9
SingularPlanarUniformBlockBijectionMonoid 8.3-8
SingularTransformationMonoid 8.1-4
SingularTransformationSemigroup 8.1-4
SingularUniformBlockBijectionMonoid 8.3-8
SLM 8.5-2
SmallerDegreePartialPermRepresentation 16.1-8
SmallestElementSemigroup 14.12-8
SmallestIdempotentPower 14.4-2
SmallestMultiplicationTable 18.1-2
SmallGeneratingSet 14.6-2
SmallInverseMonoidGeneratingSet 14.6-2
SmallInverseSemigroupGeneratingSet 14.6-2
SmallMonoidGeneratingSet 14.6-2
SmallSemigroupGeneratingSet 14.6-2
Source, for a graph inverse semigroup element 11.1-2
SpecialLinearMonoid 8.5-2
SpectralRadius 5.6-3
Star, for a bipartition 3.2-6
    for a PBR 4.5-1
StarOp, for a bipartition 3.2-6
    for a PBR 4.5-1
StructureDescription, for an H-class 13.4-6
StructureDescriptionMaximalSubgroups 13.4-4
StructureDescriptionSchutzenbergerGroups 13.4-3
SubsemigroupByProperty, for a semigroup and function 6.4-2
    for a semigroup, function, and limit on the size of the subsemigroup 6.4-2
Successors 5.3-5
SupersemigroupOfIdeal 7.2-3
TemperleyLiebMonoid 8.3-3
TexString 19.2-1
ThresholdNTPMatrix 5.1-12
ThresholdTropicalMatrix 5.1-11
TikzLeftCayleyDigraph 19.3-2
TikzRightCayleyDigraph 19.3-2
TikzString 19.3-1
TraceOfSemigroupCongruence 17.7-5
TransposedMatImmutable, for a matrix over finite field 5.4-8
TriangularBooleanMatMonoid 8.6-6
TrivialSemigroup 9.1-1
UnderlyingSemigroupOfCongruencePoset 17.4-8
UnderlyingSemigroupOfSemigroupWithAdjoinedZero 14.7-4
UniformBlockBijectionMonoid 8.3-8
UnitriangularBooleanMatMonoid 8.6-6
UniversalPBR 4.2-5
UniversalSemigroupCongruence 17.9-3
UnweightedPrecedenceDigraph 5.6-4
VagnerPrestonRepresentation 16.1-9
WreathProduct 6.4-5
WriteGenerators 20.1-2
WriteMultiplicationTable 20.2-2
ZeroSemigroup 9.1-4

 [Top of Book]  [Contents]   [Previous Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Bib Ind

generated by GAPDoc2HTML